Plasma lipid metabolites as potential biomarkers for identifying individuals at risk of obesity-induced metabolic complications

Detalhes bibliográficos
Autor(a) principal: Lyra, Clelia de Oliveira
Data de Publicação: 2023
Outros Autores: Bellot, Paula Emília Nunes Ribeiro, Braga, Erik Sobrinho, Omage, Folorunsho Bright, Nunes, Francisca Leide da Silva, Lima, Severina Carla Vieira Cunha, Marchioni, Dirce Maria Lobo, Pedrosa, Lucia Fatima Campos, Barbosa, Fernando, Tasic, Ljubica, Evangelista, Karine Cavalcanti Maurício Sena
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UFRN
Texto Completo: https://repositorio.ufrn.br/handle/123456789/57877
http://dx.doi.org/10.1038/s41598-023-38703-8
Resumo: Lipidomics studies have indicated an association between obesity and lipid metabolism dysfunction. This study aimed to evaluate and compare cardiometabolic risk factors, and the lipidomic profle in adults and older people. A cross-sectional study was conducted with 72 individuals, divided into two sex and age-matched groups: obese (body mass index—BMI≥ 30 kg/m2 ; n= 36) and nonobese (BMI < 30 kg/m2 ; n= 36). The lipidomic profles were evaluated in plasma using 1 H nuclear magnetic resonance (1 H-NMR) spectroscopy. Obese individuals had higher waist circumference (p< 0.001), visceral adiposity index (p= 0.029), homeostatic model assessment insulin resistance (HOMA-IR) (p= 0.010), and triacylglycerols (TAG) levels (p= 0.018). 1 H-NMR analysis identifed higher amounts of saturated lipid metabolite fragments, lower levels of unsaturated lipids, and some phosphatidylcholine species in the obese group. Two powerful machine learning (ML) models—knearest neighbors (kNN) and XGBoost (XGB) were employed to characterize the lipidomic profle of obese individuals. The results revealed metabolic alterations associated with obesity in the NMR signals. The models achieved high accuracy of 86% and 81%, respectively. The feature importance analysis identifed signal at 1.50–1.60 ppm (–CO–CH2–CH2–, Cholesterol and fatty acid in TAG, Phospholipids) to have the highest importance in the two models
id UFRN_471313afec55698bacaa05a7a9d081b6
oai_identifier_str oai:https://repositorio.ufrn.br:123456789/57877
network_acronym_str UFRN
network_name_str Repositório Institucional da UFRN
repository_id_str
spelling Lyra, Clelia de OliveiraBellot, Paula Emília Nunes RibeiroBraga, Erik SobrinhoOmage, Folorunsho BrightNunes, Francisca Leide da SilvaLima, Severina Carla Vieira CunhaMarchioni, Dirce Maria LoboPedrosa, Lucia Fatima CamposBarbosa, FernandoTasic, LjubicaEvangelista, Karine Cavalcanti Maurício Sena2024-03-18T20:01:55Z2024-03-18T20:01:55Z2023-07BELLOT, Paula Emília Nunes Ribeiro; BRAGA, Erik Sobrinho; OMAGE, Folorunsho Bright; NUNES, Francisca Leide da Silva; LIMA, Severina Carla Vieira Cunha; LYRA, Clélia Oliveira; MARCHIONI, Dirce Maria Lobo; PEDROSA, Lucia Fatima Campos; BARBOSA, Fernando; TASIC, Ljubica; EVANGELISTA, Karine Cavalcanti Maurício Sena. Plasma lipid metabolites as potential biomarkers for identifying individuals at risk of obesity-induced metabolic complications. Scientific Reports, [S.l.], v. 13, n. 1, p. 1-13, 20 jul. 2023. DOI: 10.1038/s41598-023-38703-8. Disponível em: https://www.nature.com/articles/s41598-023-38703-8. Acesso em: 4 mar. 2024.https://repositorio.ufrn.br/handle/123456789/57877http://dx.doi.org/10.1038/s41598-023-38703-8Scientific ReportsAttribution 3.0 Brazilhttp://creativecommons.org/licenses/by/3.0/br/info:eu-repo/semantics/openAccessLipid metabolitesObesityBiomarkersCardiometabolic riskPlasma lipid metabolites as potential biomarkers for identifying individuals at risk of obesity-induced metabolic complicationsinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleLipidomics studies have indicated an association between obesity and lipid metabolism dysfunction. This study aimed to evaluate and compare cardiometabolic risk factors, and the lipidomic profle in adults and older people. A cross-sectional study was conducted with 72 individuals, divided into two sex and age-matched groups: obese (body mass index—BMI≥ 30 kg/m2 ; n= 36) and nonobese (BMI < 30 kg/m2 ; n= 36). The lipidomic profles were evaluated in plasma using 1 H nuclear magnetic resonance (1 H-NMR) spectroscopy. Obese individuals had higher waist circumference (p< 0.001), visceral adiposity index (p= 0.029), homeostatic model assessment insulin resistance (HOMA-IR) (p= 0.010), and triacylglycerols (TAG) levels (p= 0.018). 1 H-NMR analysis identifed higher amounts of saturated lipid metabolite fragments, lower levels of unsaturated lipids, and some phosphatidylcholine species in the obese group. Two powerful machine learning (ML) models—knearest neighbors (kNN) and XGBoost (XGB) were employed to characterize the lipidomic profle of obese individuals. The results revealed metabolic alterations associated with obesity in the NMR signals. The models achieved high accuracy of 86% and 81%, respectively. The feature importance analysis identifed signal at 1.50–1.60 ppm (–CO–CH2–CH2–, Cholesterol and fatty acid in TAG, Phospholipids) to have the highest importance in the two modelsengreponame:Repositório Institucional da UFRNinstname:Universidade Federal do Rio Grande do Norte (UFRN)instacron:UFRNORIGINALPlasmaLipid_Bellot_2023.pdfPlasmaLipid_Bellot_2023.pdfapplication/pdf2394007https://repositorio.ufrn.br/bitstream/123456789/57877/1/PlasmaLipid_Bellot_2023.pdf3da219a9717c0852dac60bb544ba0a6dMD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8914https://repositorio.ufrn.br/bitstream/123456789/57877/2/license_rdf4d2950bda3d176f570a9f8b328dfbbefMD52LICENSElicense.txtlicense.txttext/plain; charset=utf-81484https://repositorio.ufrn.br/bitstream/123456789/57877/3/license.txte9597aa2854d128fd968be5edc8a28d9MD53123456789/578772024-03-18 17:01:55.995oai:https://repositorio.ufrn.br:123456789/57877Tk9OLUVYQ0xVU0lWRSBESVNUUklCVVRJT04gTElDRU5TRQoKCkJ5IHNpZ25pbmcgYW5kIGRlbGl2ZXJpbmcgdGhpcyBsaWNlbnNlLCBNci4gKGF1dGhvciBvciBjb3B5cmlnaHQgaG9sZGVyKToKCgphKSBHcmFudHMgdGhlIFVuaXZlcnNpZGFkZSBGZWRlcmFsIFJpbyBHcmFuZGUgZG8gTm9ydGUgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgb2YKcmVwcm9kdWNlLCBjb252ZXJ0IChhcyBkZWZpbmVkIGJlbG93KSwgY29tbXVuaWNhdGUgYW5kIC8gb3IKZGlzdHJpYnV0ZSB0aGUgZGVsaXZlcmVkIGRvY3VtZW50IChpbmNsdWRpbmcgYWJzdHJhY3QgLyBhYnN0cmFjdCkgaW4KZGlnaXRhbCBvciBwcmludGVkIGZvcm1hdCBhbmQgaW4gYW55IG1lZGl1bS4KCmIpIERlY2xhcmVzIHRoYXQgdGhlIGRvY3VtZW50IHN1Ym1pdHRlZCBpcyBpdHMgb3JpZ2luYWwgd29yaywgYW5kIHRoYXQKeW91IGhhdmUgdGhlIHJpZ2h0IHRvIGdyYW50IHRoZSByaWdodHMgY29udGFpbmVkIGluIHRoaXMgbGljZW5zZS4gRGVjbGFyZXMKdGhhdCB0aGUgZGVsaXZlcnkgb2YgdGhlIGRvY3VtZW50IGRvZXMgbm90IGluZnJpbmdlLCBhcyBmYXIgYXMgaXQgaXMKdGhlIHJpZ2h0cyBvZiBhbnkgb3RoZXIgcGVyc29uIG9yIGVudGl0eS4KCmMpIElmIHRoZSBkb2N1bWVudCBkZWxpdmVyZWQgY29udGFpbnMgbWF0ZXJpYWwgd2hpY2ggZG9lcyBub3QKcmlnaHRzLCBkZWNsYXJlcyB0aGF0IGl0IGhhcyBvYnRhaW5lZCBhdXRob3JpemF0aW9uIGZyb20gdGhlIGhvbGRlciBvZiB0aGUKY29weXJpZ2h0IHRvIGdyYW50IHRoZSBVbml2ZXJzaWRhZGUgRmVkZXJhbCBkbyBSaW8gR3JhbmRlIGRvIE5vcnRlIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdCB0aGlzIG1hdGVyaWFsIHdob3NlIHJpZ2h0cyBhcmUgb2YKdGhpcmQgcGFydGllcyBpcyBjbGVhcmx5IGlkZW50aWZpZWQgYW5kIHJlY29nbml6ZWQgaW4gdGhlIHRleHQgb3IKY29udGVudCBvZiB0aGUgZG9jdW1lbnQgZGVsaXZlcmVkLgoKSWYgdGhlIGRvY3VtZW50IHN1Ym1pdHRlZCBpcyBiYXNlZCBvbiBmdW5kZWQgb3Igc3VwcG9ydGVkIHdvcmsKYnkgYW5vdGhlciBpbnN0aXR1dGlvbiBvdGhlciB0aGFuIHRoZSBVbml2ZXJzaWRhZGUgRmVkZXJhbCBkbyBSaW8gR3JhbmRlIGRvIE5vcnRlLCBkZWNsYXJlcyB0aGF0IGl0IGhhcyBmdWxmaWxsZWQgYW55IG9ibGlnYXRpb25zIHJlcXVpcmVkIGJ5IHRoZSByZXNwZWN0aXZlIGFncmVlbWVudCBvciBhZ3JlZW1lbnQuCgpUaGUgVW5pdmVyc2lkYWRlIEZlZGVyYWwgZG8gUmlvIEdyYW5kZSBkbyBOb3J0ZSB3aWxsIGNsZWFybHkgaWRlbnRpZnkgaXRzIG5hbWUgKHMpIGFzIHRoZSBhdXRob3IgKHMpIG9yIGhvbGRlciAocykgb2YgdGhlIGRvY3VtZW50J3MgcmlnaHRzCmRlbGl2ZXJlZCwgYW5kIHdpbGwgbm90IG1ha2UgYW55IGNoYW5nZXMsIG90aGVyIHRoYW4gdGhvc2UgcGVybWl0dGVkIGJ5CnRoaXMgbGljZW5zZQo=Repositório de PublicaçõesPUBhttp://repositorio.ufrn.br/oai/opendoar:2024-03-18T20:01:55Repositório Institucional da UFRN - Universidade Federal do Rio Grande do Norte (UFRN)false
dc.title.pt_BR.fl_str_mv Plasma lipid metabolites as potential biomarkers for identifying individuals at risk of obesity-induced metabolic complications
title Plasma lipid metabolites as potential biomarkers for identifying individuals at risk of obesity-induced metabolic complications
spellingShingle Plasma lipid metabolites as potential biomarkers for identifying individuals at risk of obesity-induced metabolic complications
Lyra, Clelia de Oliveira
Lipid metabolites
Obesity
Biomarkers
Cardiometabolic risk
title_short Plasma lipid metabolites as potential biomarkers for identifying individuals at risk of obesity-induced metabolic complications
title_full Plasma lipid metabolites as potential biomarkers for identifying individuals at risk of obesity-induced metabolic complications
title_fullStr Plasma lipid metabolites as potential biomarkers for identifying individuals at risk of obesity-induced metabolic complications
title_full_unstemmed Plasma lipid metabolites as potential biomarkers for identifying individuals at risk of obesity-induced metabolic complications
title_sort Plasma lipid metabolites as potential biomarkers for identifying individuals at risk of obesity-induced metabolic complications
author Lyra, Clelia de Oliveira
author_facet Lyra, Clelia de Oliveira
Bellot, Paula Emília Nunes Ribeiro
Braga, Erik Sobrinho
Omage, Folorunsho Bright
Nunes, Francisca Leide da Silva
Lima, Severina Carla Vieira Cunha
Marchioni, Dirce Maria Lobo
Pedrosa, Lucia Fatima Campos
Barbosa, Fernando
Tasic, Ljubica
Evangelista, Karine Cavalcanti Maurício Sena
author_role author
author2 Bellot, Paula Emília Nunes Ribeiro
Braga, Erik Sobrinho
Omage, Folorunsho Bright
Nunes, Francisca Leide da Silva
Lima, Severina Carla Vieira Cunha
Marchioni, Dirce Maria Lobo
Pedrosa, Lucia Fatima Campos
Barbosa, Fernando
Tasic, Ljubica
Evangelista, Karine Cavalcanti Maurício Sena
author2_role author
author
author
author
author
author
author
author
author
author
dc.contributor.author.fl_str_mv Lyra, Clelia de Oliveira
Bellot, Paula Emília Nunes Ribeiro
Braga, Erik Sobrinho
Omage, Folorunsho Bright
Nunes, Francisca Leide da Silva
Lima, Severina Carla Vieira Cunha
Marchioni, Dirce Maria Lobo
Pedrosa, Lucia Fatima Campos
Barbosa, Fernando
Tasic, Ljubica
Evangelista, Karine Cavalcanti Maurício Sena
dc.subject.por.fl_str_mv Lipid metabolites
Obesity
Biomarkers
Cardiometabolic risk
topic Lipid metabolites
Obesity
Biomarkers
Cardiometabolic risk
description Lipidomics studies have indicated an association between obesity and lipid metabolism dysfunction. This study aimed to evaluate and compare cardiometabolic risk factors, and the lipidomic profle in adults and older people. A cross-sectional study was conducted with 72 individuals, divided into two sex and age-matched groups: obese (body mass index—BMI≥ 30 kg/m2 ; n= 36) and nonobese (BMI < 30 kg/m2 ; n= 36). The lipidomic profles were evaluated in plasma using 1 H nuclear magnetic resonance (1 H-NMR) spectroscopy. Obese individuals had higher waist circumference (p< 0.001), visceral adiposity index (p= 0.029), homeostatic model assessment insulin resistance (HOMA-IR) (p= 0.010), and triacylglycerols (TAG) levels (p= 0.018). 1 H-NMR analysis identifed higher amounts of saturated lipid metabolite fragments, lower levels of unsaturated lipids, and some phosphatidylcholine species in the obese group. Two powerful machine learning (ML) models—knearest neighbors (kNN) and XGBoost (XGB) were employed to characterize the lipidomic profle of obese individuals. The results revealed metabolic alterations associated with obesity in the NMR signals. The models achieved high accuracy of 86% and 81%, respectively. The feature importance analysis identifed signal at 1.50–1.60 ppm (–CO–CH2–CH2–, Cholesterol and fatty acid in TAG, Phospholipids) to have the highest importance in the two models
publishDate 2023
dc.date.issued.fl_str_mv 2023-07
dc.date.accessioned.fl_str_mv 2024-03-18T20:01:55Z
dc.date.available.fl_str_mv 2024-03-18T20:01:55Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.citation.fl_str_mv BELLOT, Paula Emília Nunes Ribeiro; BRAGA, Erik Sobrinho; OMAGE, Folorunsho Bright; NUNES, Francisca Leide da Silva; LIMA, Severina Carla Vieira Cunha; LYRA, Clélia Oliveira; MARCHIONI, Dirce Maria Lobo; PEDROSA, Lucia Fatima Campos; BARBOSA, Fernando; TASIC, Ljubica; EVANGELISTA, Karine Cavalcanti Maurício Sena. Plasma lipid metabolites as potential biomarkers for identifying individuals at risk of obesity-induced metabolic complications. Scientific Reports, [S.l.], v. 13, n. 1, p. 1-13, 20 jul. 2023. DOI: 10.1038/s41598-023-38703-8. Disponível em: https://www.nature.com/articles/s41598-023-38703-8. Acesso em: 4 mar. 2024.
dc.identifier.uri.fl_str_mv https://repositorio.ufrn.br/handle/123456789/57877
dc.identifier.doi.none.fl_str_mv http://dx.doi.org/10.1038/s41598-023-38703-8
identifier_str_mv BELLOT, Paula Emília Nunes Ribeiro; BRAGA, Erik Sobrinho; OMAGE, Folorunsho Bright; NUNES, Francisca Leide da Silva; LIMA, Severina Carla Vieira Cunha; LYRA, Clélia Oliveira; MARCHIONI, Dirce Maria Lobo; PEDROSA, Lucia Fatima Campos; BARBOSA, Fernando; TASIC, Ljubica; EVANGELISTA, Karine Cavalcanti Maurício Sena. Plasma lipid metabolites as potential biomarkers for identifying individuals at risk of obesity-induced metabolic complications. Scientific Reports, [S.l.], v. 13, n. 1, p. 1-13, 20 jul. 2023. DOI: 10.1038/s41598-023-38703-8. Disponível em: https://www.nature.com/articles/s41598-023-38703-8. Acesso em: 4 mar. 2024.
url https://repositorio.ufrn.br/handle/123456789/57877
http://dx.doi.org/10.1038/s41598-023-38703-8
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv Attribution 3.0 Brazil
http://creativecommons.org/licenses/by/3.0/br/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Attribution 3.0 Brazil
http://creativecommons.org/licenses/by/3.0/br/
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Scientific Reports
publisher.none.fl_str_mv Scientific Reports
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFRN
instname:Universidade Federal do Rio Grande do Norte (UFRN)
instacron:UFRN
instname_str Universidade Federal do Rio Grande do Norte (UFRN)
instacron_str UFRN
institution UFRN
reponame_str Repositório Institucional da UFRN
collection Repositório Institucional da UFRN
bitstream.url.fl_str_mv https://repositorio.ufrn.br/bitstream/123456789/57877/1/PlasmaLipid_Bellot_2023.pdf
https://repositorio.ufrn.br/bitstream/123456789/57877/2/license_rdf
https://repositorio.ufrn.br/bitstream/123456789/57877/3/license.txt
bitstream.checksum.fl_str_mv 3da219a9717c0852dac60bb544ba0a6d
4d2950bda3d176f570a9f8b328dfbbef
e9597aa2854d128fd968be5edc8a28d9
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFRN - Universidade Federal do Rio Grande do Norte (UFRN)
repository.mail.fl_str_mv
_version_ 1814832694384656384