Plasma lipid metabolites as potential biomarkers for identifying individuals at risk of obesity-induced metabolic complications
Autor(a) principal: | |
---|---|
Data de Publicação: | 2023 |
Outros Autores: | , , , , , , , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UFRN |
Texto Completo: | https://repositorio.ufrn.br/handle/123456789/57877 http://dx.doi.org/10.1038/s41598-023-38703-8 |
Resumo: | Lipidomics studies have indicated an association between obesity and lipid metabolism dysfunction. This study aimed to evaluate and compare cardiometabolic risk factors, and the lipidomic profle in adults and older people. A cross-sectional study was conducted with 72 individuals, divided into two sex and age-matched groups: obese (body mass index—BMI≥ 30 kg/m2 ; n= 36) and nonobese (BMI < 30 kg/m2 ; n= 36). The lipidomic profles were evaluated in plasma using 1 H nuclear magnetic resonance (1 H-NMR) spectroscopy. Obese individuals had higher waist circumference (p< 0.001), visceral adiposity index (p= 0.029), homeostatic model assessment insulin resistance (HOMA-IR) (p= 0.010), and triacylglycerols (TAG) levels (p= 0.018). 1 H-NMR analysis identifed higher amounts of saturated lipid metabolite fragments, lower levels of unsaturated lipids, and some phosphatidylcholine species in the obese group. Two powerful machine learning (ML) models—knearest neighbors (kNN) and XGBoost (XGB) were employed to characterize the lipidomic profle of obese individuals. The results revealed metabolic alterations associated with obesity in the NMR signals. The models achieved high accuracy of 86% and 81%, respectively. The feature importance analysis identifed signal at 1.50–1.60 ppm (–CO–CH2–CH2–, Cholesterol and fatty acid in TAG, Phospholipids) to have the highest importance in the two models |
id |
UFRN_471313afec55698bacaa05a7a9d081b6 |
---|---|
oai_identifier_str |
oai:https://repositorio.ufrn.br:123456789/57877 |
network_acronym_str |
UFRN |
network_name_str |
Repositório Institucional da UFRN |
repository_id_str |
|
spelling |
Lyra, Clelia de OliveiraBellot, Paula Emília Nunes RibeiroBraga, Erik SobrinhoOmage, Folorunsho BrightNunes, Francisca Leide da SilvaLima, Severina Carla Vieira CunhaMarchioni, Dirce Maria LoboPedrosa, Lucia Fatima CamposBarbosa, FernandoTasic, LjubicaEvangelista, Karine Cavalcanti Maurício Sena2024-03-18T20:01:55Z2024-03-18T20:01:55Z2023-07BELLOT, Paula Emília Nunes Ribeiro; BRAGA, Erik Sobrinho; OMAGE, Folorunsho Bright; NUNES, Francisca Leide da Silva; LIMA, Severina Carla Vieira Cunha; LYRA, Clélia Oliveira; MARCHIONI, Dirce Maria Lobo; PEDROSA, Lucia Fatima Campos; BARBOSA, Fernando; TASIC, Ljubica; EVANGELISTA, Karine Cavalcanti Maurício Sena. Plasma lipid metabolites as potential biomarkers for identifying individuals at risk of obesity-induced metabolic complications. Scientific Reports, [S.l.], v. 13, n. 1, p. 1-13, 20 jul. 2023. DOI: 10.1038/s41598-023-38703-8. Disponível em: https://www.nature.com/articles/s41598-023-38703-8. Acesso em: 4 mar. 2024.https://repositorio.ufrn.br/handle/123456789/57877http://dx.doi.org/10.1038/s41598-023-38703-8Scientific ReportsAttribution 3.0 Brazilhttp://creativecommons.org/licenses/by/3.0/br/info:eu-repo/semantics/openAccessLipid metabolitesObesityBiomarkersCardiometabolic riskPlasma lipid metabolites as potential biomarkers for identifying individuals at risk of obesity-induced metabolic complicationsinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleLipidomics studies have indicated an association between obesity and lipid metabolism dysfunction. This study aimed to evaluate and compare cardiometabolic risk factors, and the lipidomic profle in adults and older people. A cross-sectional study was conducted with 72 individuals, divided into two sex and age-matched groups: obese (body mass index—BMI≥ 30 kg/m2 ; n= 36) and nonobese (BMI < 30 kg/m2 ; n= 36). The lipidomic profles were evaluated in plasma using 1 H nuclear magnetic resonance (1 H-NMR) spectroscopy. Obese individuals had higher waist circumference (p< 0.001), visceral adiposity index (p= 0.029), homeostatic model assessment insulin resistance (HOMA-IR) (p= 0.010), and triacylglycerols (TAG) levels (p= 0.018). 1 H-NMR analysis identifed higher amounts of saturated lipid metabolite fragments, lower levels of unsaturated lipids, and some phosphatidylcholine species in the obese group. Two powerful machine learning (ML) models—knearest neighbors (kNN) and XGBoost (XGB) were employed to characterize the lipidomic profle of obese individuals. The results revealed metabolic alterations associated with obesity in the NMR signals. The models achieved high accuracy of 86% and 81%, respectively. The feature importance analysis identifed signal at 1.50–1.60 ppm (–CO–CH2–CH2–, Cholesterol and fatty acid in TAG, Phospholipids) to have the highest importance in the two modelsengreponame:Repositório Institucional da UFRNinstname:Universidade Federal do Rio Grande do Norte (UFRN)instacron:UFRNORIGINALPlasmaLipid_Bellot_2023.pdfPlasmaLipid_Bellot_2023.pdfapplication/pdf2394007https://repositorio.ufrn.br/bitstream/123456789/57877/1/PlasmaLipid_Bellot_2023.pdf3da219a9717c0852dac60bb544ba0a6dMD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8914https://repositorio.ufrn.br/bitstream/123456789/57877/2/license_rdf4d2950bda3d176f570a9f8b328dfbbefMD52LICENSElicense.txtlicense.txttext/plain; charset=utf-81484https://repositorio.ufrn.br/bitstream/123456789/57877/3/license.txte9597aa2854d128fd968be5edc8a28d9MD53123456789/578772024-03-18 17:01:55.995oai:https://repositorio.ufrn.br:123456789/57877Tk9OLUVYQ0xVU0lWRSBESVNUUklCVVRJT04gTElDRU5TRQoKCkJ5IHNpZ25pbmcgYW5kIGRlbGl2ZXJpbmcgdGhpcyBsaWNlbnNlLCBNci4gKGF1dGhvciBvciBjb3B5cmlnaHQgaG9sZGVyKToKCgphKSBHcmFudHMgdGhlIFVuaXZlcnNpZGFkZSBGZWRlcmFsIFJpbyBHcmFuZGUgZG8gTm9ydGUgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgb2YKcmVwcm9kdWNlLCBjb252ZXJ0IChhcyBkZWZpbmVkIGJlbG93KSwgY29tbXVuaWNhdGUgYW5kIC8gb3IKZGlzdHJpYnV0ZSB0aGUgZGVsaXZlcmVkIGRvY3VtZW50IChpbmNsdWRpbmcgYWJzdHJhY3QgLyBhYnN0cmFjdCkgaW4KZGlnaXRhbCBvciBwcmludGVkIGZvcm1hdCBhbmQgaW4gYW55IG1lZGl1bS4KCmIpIERlY2xhcmVzIHRoYXQgdGhlIGRvY3VtZW50IHN1Ym1pdHRlZCBpcyBpdHMgb3JpZ2luYWwgd29yaywgYW5kIHRoYXQKeW91IGhhdmUgdGhlIHJpZ2h0IHRvIGdyYW50IHRoZSByaWdodHMgY29udGFpbmVkIGluIHRoaXMgbGljZW5zZS4gRGVjbGFyZXMKdGhhdCB0aGUgZGVsaXZlcnkgb2YgdGhlIGRvY3VtZW50IGRvZXMgbm90IGluZnJpbmdlLCBhcyBmYXIgYXMgaXQgaXMKdGhlIHJpZ2h0cyBvZiBhbnkgb3RoZXIgcGVyc29uIG9yIGVudGl0eS4KCmMpIElmIHRoZSBkb2N1bWVudCBkZWxpdmVyZWQgY29udGFpbnMgbWF0ZXJpYWwgd2hpY2ggZG9lcyBub3QKcmlnaHRzLCBkZWNsYXJlcyB0aGF0IGl0IGhhcyBvYnRhaW5lZCBhdXRob3JpemF0aW9uIGZyb20gdGhlIGhvbGRlciBvZiB0aGUKY29weXJpZ2h0IHRvIGdyYW50IHRoZSBVbml2ZXJzaWRhZGUgRmVkZXJhbCBkbyBSaW8gR3JhbmRlIGRvIE5vcnRlIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdCB0aGlzIG1hdGVyaWFsIHdob3NlIHJpZ2h0cyBhcmUgb2YKdGhpcmQgcGFydGllcyBpcyBjbGVhcmx5IGlkZW50aWZpZWQgYW5kIHJlY29nbml6ZWQgaW4gdGhlIHRleHQgb3IKY29udGVudCBvZiB0aGUgZG9jdW1lbnQgZGVsaXZlcmVkLgoKSWYgdGhlIGRvY3VtZW50IHN1Ym1pdHRlZCBpcyBiYXNlZCBvbiBmdW5kZWQgb3Igc3VwcG9ydGVkIHdvcmsKYnkgYW5vdGhlciBpbnN0aXR1dGlvbiBvdGhlciB0aGFuIHRoZSBVbml2ZXJzaWRhZGUgRmVkZXJhbCBkbyBSaW8gR3JhbmRlIGRvIE5vcnRlLCBkZWNsYXJlcyB0aGF0IGl0IGhhcyBmdWxmaWxsZWQgYW55IG9ibGlnYXRpb25zIHJlcXVpcmVkIGJ5IHRoZSByZXNwZWN0aXZlIGFncmVlbWVudCBvciBhZ3JlZW1lbnQuCgpUaGUgVW5pdmVyc2lkYWRlIEZlZGVyYWwgZG8gUmlvIEdyYW5kZSBkbyBOb3J0ZSB3aWxsIGNsZWFybHkgaWRlbnRpZnkgaXRzIG5hbWUgKHMpIGFzIHRoZSBhdXRob3IgKHMpIG9yIGhvbGRlciAocykgb2YgdGhlIGRvY3VtZW50J3MgcmlnaHRzCmRlbGl2ZXJlZCwgYW5kIHdpbGwgbm90IG1ha2UgYW55IGNoYW5nZXMsIG90aGVyIHRoYW4gdGhvc2UgcGVybWl0dGVkIGJ5CnRoaXMgbGljZW5zZQo=Repositório de PublicaçõesPUBhttp://repositorio.ufrn.br/oai/opendoar:2024-03-18T20:01:55Repositório Institucional da UFRN - Universidade Federal do Rio Grande do Norte (UFRN)false |
dc.title.pt_BR.fl_str_mv |
Plasma lipid metabolites as potential biomarkers for identifying individuals at risk of obesity-induced metabolic complications |
title |
Plasma lipid metabolites as potential biomarkers for identifying individuals at risk of obesity-induced metabolic complications |
spellingShingle |
Plasma lipid metabolites as potential biomarkers for identifying individuals at risk of obesity-induced metabolic complications Lyra, Clelia de Oliveira Lipid metabolites Obesity Biomarkers Cardiometabolic risk |
title_short |
Plasma lipid metabolites as potential biomarkers for identifying individuals at risk of obesity-induced metabolic complications |
title_full |
Plasma lipid metabolites as potential biomarkers for identifying individuals at risk of obesity-induced metabolic complications |
title_fullStr |
Plasma lipid metabolites as potential biomarkers for identifying individuals at risk of obesity-induced metabolic complications |
title_full_unstemmed |
Plasma lipid metabolites as potential biomarkers for identifying individuals at risk of obesity-induced metabolic complications |
title_sort |
Plasma lipid metabolites as potential biomarkers for identifying individuals at risk of obesity-induced metabolic complications |
author |
Lyra, Clelia de Oliveira |
author_facet |
Lyra, Clelia de Oliveira Bellot, Paula Emília Nunes Ribeiro Braga, Erik Sobrinho Omage, Folorunsho Bright Nunes, Francisca Leide da Silva Lima, Severina Carla Vieira Cunha Marchioni, Dirce Maria Lobo Pedrosa, Lucia Fatima Campos Barbosa, Fernando Tasic, Ljubica Evangelista, Karine Cavalcanti Maurício Sena |
author_role |
author |
author2 |
Bellot, Paula Emília Nunes Ribeiro Braga, Erik Sobrinho Omage, Folorunsho Bright Nunes, Francisca Leide da Silva Lima, Severina Carla Vieira Cunha Marchioni, Dirce Maria Lobo Pedrosa, Lucia Fatima Campos Barbosa, Fernando Tasic, Ljubica Evangelista, Karine Cavalcanti Maurício Sena |
author2_role |
author author author author author author author author author author |
dc.contributor.author.fl_str_mv |
Lyra, Clelia de Oliveira Bellot, Paula Emília Nunes Ribeiro Braga, Erik Sobrinho Omage, Folorunsho Bright Nunes, Francisca Leide da Silva Lima, Severina Carla Vieira Cunha Marchioni, Dirce Maria Lobo Pedrosa, Lucia Fatima Campos Barbosa, Fernando Tasic, Ljubica Evangelista, Karine Cavalcanti Maurício Sena |
dc.subject.por.fl_str_mv |
Lipid metabolites Obesity Biomarkers Cardiometabolic risk |
topic |
Lipid metabolites Obesity Biomarkers Cardiometabolic risk |
description |
Lipidomics studies have indicated an association between obesity and lipid metabolism dysfunction. This study aimed to evaluate and compare cardiometabolic risk factors, and the lipidomic profle in adults and older people. A cross-sectional study was conducted with 72 individuals, divided into two sex and age-matched groups: obese (body mass index—BMI≥ 30 kg/m2 ; n= 36) and nonobese (BMI < 30 kg/m2 ; n= 36). The lipidomic profles were evaluated in plasma using 1 H nuclear magnetic resonance (1 H-NMR) spectroscopy. Obese individuals had higher waist circumference (p< 0.001), visceral adiposity index (p= 0.029), homeostatic model assessment insulin resistance (HOMA-IR) (p= 0.010), and triacylglycerols (TAG) levels (p= 0.018). 1 H-NMR analysis identifed higher amounts of saturated lipid metabolite fragments, lower levels of unsaturated lipids, and some phosphatidylcholine species in the obese group. Two powerful machine learning (ML) models—knearest neighbors (kNN) and XGBoost (XGB) were employed to characterize the lipidomic profle of obese individuals. The results revealed metabolic alterations associated with obesity in the NMR signals. The models achieved high accuracy of 86% and 81%, respectively. The feature importance analysis identifed signal at 1.50–1.60 ppm (–CO–CH2–CH2–, Cholesterol and fatty acid in TAG, Phospholipids) to have the highest importance in the two models |
publishDate |
2023 |
dc.date.issued.fl_str_mv |
2023-07 |
dc.date.accessioned.fl_str_mv |
2024-03-18T20:01:55Z |
dc.date.available.fl_str_mv |
2024-03-18T20:01:55Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.citation.fl_str_mv |
BELLOT, Paula Emília Nunes Ribeiro; BRAGA, Erik Sobrinho; OMAGE, Folorunsho Bright; NUNES, Francisca Leide da Silva; LIMA, Severina Carla Vieira Cunha; LYRA, Clélia Oliveira; MARCHIONI, Dirce Maria Lobo; PEDROSA, Lucia Fatima Campos; BARBOSA, Fernando; TASIC, Ljubica; EVANGELISTA, Karine Cavalcanti Maurício Sena. Plasma lipid metabolites as potential biomarkers for identifying individuals at risk of obesity-induced metabolic complications. Scientific Reports, [S.l.], v. 13, n. 1, p. 1-13, 20 jul. 2023. DOI: 10.1038/s41598-023-38703-8. Disponível em: https://www.nature.com/articles/s41598-023-38703-8. Acesso em: 4 mar. 2024. |
dc.identifier.uri.fl_str_mv |
https://repositorio.ufrn.br/handle/123456789/57877 |
dc.identifier.doi.none.fl_str_mv |
http://dx.doi.org/10.1038/s41598-023-38703-8 |
identifier_str_mv |
BELLOT, Paula Emília Nunes Ribeiro; BRAGA, Erik Sobrinho; OMAGE, Folorunsho Bright; NUNES, Francisca Leide da Silva; LIMA, Severina Carla Vieira Cunha; LYRA, Clélia Oliveira; MARCHIONI, Dirce Maria Lobo; PEDROSA, Lucia Fatima Campos; BARBOSA, Fernando; TASIC, Ljubica; EVANGELISTA, Karine Cavalcanti Maurício Sena. Plasma lipid metabolites as potential biomarkers for identifying individuals at risk of obesity-induced metabolic complications. Scientific Reports, [S.l.], v. 13, n. 1, p. 1-13, 20 jul. 2023. DOI: 10.1038/s41598-023-38703-8. Disponível em: https://www.nature.com/articles/s41598-023-38703-8. Acesso em: 4 mar. 2024. |
url |
https://repositorio.ufrn.br/handle/123456789/57877 http://dx.doi.org/10.1038/s41598-023-38703-8 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
Attribution 3.0 Brazil http://creativecommons.org/licenses/by/3.0/br/ info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Attribution 3.0 Brazil http://creativecommons.org/licenses/by/3.0/br/ |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
Scientific Reports |
publisher.none.fl_str_mv |
Scientific Reports |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFRN instname:Universidade Federal do Rio Grande do Norte (UFRN) instacron:UFRN |
instname_str |
Universidade Federal do Rio Grande do Norte (UFRN) |
instacron_str |
UFRN |
institution |
UFRN |
reponame_str |
Repositório Institucional da UFRN |
collection |
Repositório Institucional da UFRN |
bitstream.url.fl_str_mv |
https://repositorio.ufrn.br/bitstream/123456789/57877/1/PlasmaLipid_Bellot_2023.pdf https://repositorio.ufrn.br/bitstream/123456789/57877/2/license_rdf https://repositorio.ufrn.br/bitstream/123456789/57877/3/license.txt |
bitstream.checksum.fl_str_mv |
3da219a9717c0852dac60bb544ba0a6d 4d2950bda3d176f570a9f8b328dfbbef e9597aa2854d128fd968be5edc8a28d9 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional da UFRN - Universidade Federal do Rio Grande do Norte (UFRN) |
repository.mail.fl_str_mv |
|
_version_ |
1814832694384656384 |