Baker’s yeast invertase purification using aqueous two phase system—modeling and optimization with PCA/LS-SVM

Detalhes bibliográficos
Autor(a) principal: Souza, Domingos Fabiano de Santana
Data de Publicação: 2017
Outros Autores: Padilha, Carlos Eduardo de Araújo, Oliveira Junior, Sergio Dantas, Oliveira, Jackson Araújo de, Macedo, Gorete Ribeiro de, Santos, Everaldo Silvino dos
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UFRN
Texto Completo: https://repositorio.ufrn.br/handle/123456789/45189
Resumo: Least Squares-Support Vector Machine (LS-SVM) was used to predict data of Baker’s yeast invertase purification using PEG/MgSO4 Aqueous Two Phase-System (ATPS). Experiments were carried out changing the average molecular mass and percentage of PEG, pH, percentage of MgSO4 as well as of raw extract in order to observe the percentage of yield (% Yield) and Purification Factor (PF) at the bottom phase. The Principal Component Analysis (PCA) was used to eliminate the less significant input variables on the % Yield as well as on the PF. The generalization capacity evaluation for these two parameters has shown that the model generated by the LS-SVM (R2 = 0.974; 0.932) approach has given the best performance than partial least squares (R2 = 0.960; 0.926), base radial neural network (R2 = 0.874; 0.687) and multi-layer perceptron (R2 = 0.911; 0.652). Also, a bi-objective optimization has been carried out using the previously adjusted models in order to obtain a set of input data producing higher % Yield for the enzymatic activity (448.34%) as well as for the PF (8.45)
id UFRN_49907de5d31ab2a55298e38c5013cf05
oai_identifier_str oai:https://repositorio.ufrn.br:123456789/45189
network_acronym_str UFRN
network_name_str Repositório Institucional da UFRN
repository_id_str
spelling Souza, Domingos Fabiano de SantanaPadilha, Carlos Eduardo de AraújoOliveira Junior, Sergio DantasOliveira, Jackson Araújo deMacedo, Gorete Ribeiro deSantos, Everaldo Silvino dos2021-12-06T18:06:41Z2021-12-06T18:06:41Z2017-01PADILHA, Carlos Eduardo de Araújo; OLIVEIRA JÚNIOR, Sérgio Dantas; SOUZA, Domingos Fabiano de Santana; OLIVEIRA, Jackson Araújo de; MACEDO, Gorete Ribeiro de; SANTOS, Everaldo Silvino dos. Baker’s yeast invertase purification using Aqueous Two Phase System—Modeling and optimization with PCA/LS-SVM. Food And Bioproducts Processing, [S.L.], v. 101, p. 157-165, jan. 2017. Elsevier BV. http://dx.doi.org/10.1016/j.fbp.2016.11.004. Disponível em <https://www.sciencedirect.com/science/article/abs/pii/S0960308516301559?via%3Dihub>. Acesso em 05 nov. 2021.0960-3085https://repositorio.ufrn.br/handle/123456789/4518910.1016/j.fbp.2016.11.004ElsevierPrincipal component analysisLeast squares-support vector machineGenetic algorithmAqueous two-phase systemInvertaseBaker’s yeast invertase purification using aqueous two phase system—modeling and optimization with PCA/LS-SVMinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleLeast Squares-Support Vector Machine (LS-SVM) was used to predict data of Baker’s yeast invertase purification using PEG/MgSO4 Aqueous Two Phase-System (ATPS). Experiments were carried out changing the average molecular mass and percentage of PEG, pH, percentage of MgSO4 as well as of raw extract in order to observe the percentage of yield (% Yield) and Purification Factor (PF) at the bottom phase. The Principal Component Analysis (PCA) was used to eliminate the less significant input variables on the % Yield as well as on the PF. The generalization capacity evaluation for these two parameters has shown that the model generated by the LS-SVM (R2 = 0.974; 0.932) approach has given the best performance than partial least squares (R2 = 0.960; 0.926), base radial neural network (R2 = 0.874; 0.687) and multi-layer perceptron (R2 = 0.911; 0.652). Also, a bi-objective optimization has been carried out using the previously adjusted models in order to obtain a set of input data producing higher % Yield for the enzymatic activity (448.34%) as well as for the PF (8.45)engreponame:Repositório Institucional da UFRNinstname:Universidade Federal do Rio Grande do Norte (UFRN)instacron:UFRNinfo:eu-repo/semantics/openAccessCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8914https://repositorio.ufrn.br/bitstream/123456789/45189/2/license_rdf4d2950bda3d176f570a9f8b328dfbbefMD52LICENSElicense.txtlicense.txttext/plain; charset=utf-81484https://repositorio.ufrn.br/bitstream/123456789/45189/3/license.txte9597aa2854d128fd968be5edc8a28d9MD53123456789/451892023-02-06 15:49:21.35oai:https://repositorio.ufrn.br:123456789/45189Tk9OLUVYQ0xVU0lWRSBESVNUUklCVVRJT04gTElDRU5TRQoKCkJ5IHNpZ25pbmcgYW5kIGRlbGl2ZXJpbmcgdGhpcyBsaWNlbnNlLCBNci4gKGF1dGhvciBvciBjb3B5cmlnaHQgaG9sZGVyKToKCgphKSBHcmFudHMgdGhlIFVuaXZlcnNpZGFkZSBGZWRlcmFsIFJpbyBHcmFuZGUgZG8gTm9ydGUgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgb2YKcmVwcm9kdWNlLCBjb252ZXJ0IChhcyBkZWZpbmVkIGJlbG93KSwgY29tbXVuaWNhdGUgYW5kIC8gb3IKZGlzdHJpYnV0ZSB0aGUgZGVsaXZlcmVkIGRvY3VtZW50IChpbmNsdWRpbmcgYWJzdHJhY3QgLyBhYnN0cmFjdCkgaW4KZGlnaXRhbCBvciBwcmludGVkIGZvcm1hdCBhbmQgaW4gYW55IG1lZGl1bS4KCmIpIERlY2xhcmVzIHRoYXQgdGhlIGRvY3VtZW50IHN1Ym1pdHRlZCBpcyBpdHMgb3JpZ2luYWwgd29yaywgYW5kIHRoYXQKeW91IGhhdmUgdGhlIHJpZ2h0IHRvIGdyYW50IHRoZSByaWdodHMgY29udGFpbmVkIGluIHRoaXMgbGljZW5zZS4gRGVjbGFyZXMKdGhhdCB0aGUgZGVsaXZlcnkgb2YgdGhlIGRvY3VtZW50IGRvZXMgbm90IGluZnJpbmdlLCBhcyBmYXIgYXMgaXQgaXMKdGhlIHJpZ2h0cyBvZiBhbnkgb3RoZXIgcGVyc29uIG9yIGVudGl0eS4KCmMpIElmIHRoZSBkb2N1bWVudCBkZWxpdmVyZWQgY29udGFpbnMgbWF0ZXJpYWwgd2hpY2ggZG9lcyBub3QKcmlnaHRzLCBkZWNsYXJlcyB0aGF0IGl0IGhhcyBvYnRhaW5lZCBhdXRob3JpemF0aW9uIGZyb20gdGhlIGhvbGRlciBvZiB0aGUKY29weXJpZ2h0IHRvIGdyYW50IHRoZSBVbml2ZXJzaWRhZGUgRmVkZXJhbCBkbyBSaW8gR3JhbmRlIGRvIE5vcnRlIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdCB0aGlzIG1hdGVyaWFsIHdob3NlIHJpZ2h0cyBhcmUgb2YKdGhpcmQgcGFydGllcyBpcyBjbGVhcmx5IGlkZW50aWZpZWQgYW5kIHJlY29nbml6ZWQgaW4gdGhlIHRleHQgb3IKY29udGVudCBvZiB0aGUgZG9jdW1lbnQgZGVsaXZlcmVkLgoKSWYgdGhlIGRvY3VtZW50IHN1Ym1pdHRlZCBpcyBiYXNlZCBvbiBmdW5kZWQgb3Igc3VwcG9ydGVkIHdvcmsKYnkgYW5vdGhlciBpbnN0aXR1dGlvbiBvdGhlciB0aGFuIHRoZSBVbml2ZXJzaWRhZGUgRmVkZXJhbCBkbyBSaW8gR3JhbmRlIGRvIE5vcnRlLCBkZWNsYXJlcyB0aGF0IGl0IGhhcyBmdWxmaWxsZWQgYW55IG9ibGlnYXRpb25zIHJlcXVpcmVkIGJ5IHRoZSByZXNwZWN0aXZlIGFncmVlbWVudCBvciBhZ3JlZW1lbnQuCgpUaGUgVW5pdmVyc2lkYWRlIEZlZGVyYWwgZG8gUmlvIEdyYW5kZSBkbyBOb3J0ZSB3aWxsIGNsZWFybHkgaWRlbnRpZnkgaXRzIG5hbWUgKHMpIGFzIHRoZSBhdXRob3IgKHMpIG9yIGhvbGRlciAocykgb2YgdGhlIGRvY3VtZW50J3MgcmlnaHRzCmRlbGl2ZXJlZCwgYW5kIHdpbGwgbm90IG1ha2UgYW55IGNoYW5nZXMsIG90aGVyIHRoYW4gdGhvc2UgcGVybWl0dGVkIGJ5CnRoaXMgbGljZW5zZQo=Repositório de PublicaçõesPUBhttp://repositorio.ufrn.br/oai/opendoar:2023-02-06T18:49:21Repositório Institucional da UFRN - Universidade Federal do Rio Grande do Norte (UFRN)false
dc.title.pt_BR.fl_str_mv Baker’s yeast invertase purification using aqueous two phase system—modeling and optimization with PCA/LS-SVM
title Baker’s yeast invertase purification using aqueous two phase system—modeling and optimization with PCA/LS-SVM
spellingShingle Baker’s yeast invertase purification using aqueous two phase system—modeling and optimization with PCA/LS-SVM
Souza, Domingos Fabiano de Santana
Principal component analysis
Least squares-support vector machine
Genetic algorithm
Aqueous two-phase system
Invertase
title_short Baker’s yeast invertase purification using aqueous two phase system—modeling and optimization with PCA/LS-SVM
title_full Baker’s yeast invertase purification using aqueous two phase system—modeling and optimization with PCA/LS-SVM
title_fullStr Baker’s yeast invertase purification using aqueous two phase system—modeling and optimization with PCA/LS-SVM
title_full_unstemmed Baker’s yeast invertase purification using aqueous two phase system—modeling and optimization with PCA/LS-SVM
title_sort Baker’s yeast invertase purification using aqueous two phase system—modeling and optimization with PCA/LS-SVM
author Souza, Domingos Fabiano de Santana
author_facet Souza, Domingos Fabiano de Santana
Padilha, Carlos Eduardo de Araújo
Oliveira Junior, Sergio Dantas
Oliveira, Jackson Araújo de
Macedo, Gorete Ribeiro de
Santos, Everaldo Silvino dos
author_role author
author2 Padilha, Carlos Eduardo de Araújo
Oliveira Junior, Sergio Dantas
Oliveira, Jackson Araújo de
Macedo, Gorete Ribeiro de
Santos, Everaldo Silvino dos
author2_role author
author
author
author
author
dc.contributor.author.fl_str_mv Souza, Domingos Fabiano de Santana
Padilha, Carlos Eduardo de Araújo
Oliveira Junior, Sergio Dantas
Oliveira, Jackson Araújo de
Macedo, Gorete Ribeiro de
Santos, Everaldo Silvino dos
dc.subject.por.fl_str_mv Principal component analysis
Least squares-support vector machine
Genetic algorithm
Aqueous two-phase system
Invertase
topic Principal component analysis
Least squares-support vector machine
Genetic algorithm
Aqueous two-phase system
Invertase
description Least Squares-Support Vector Machine (LS-SVM) was used to predict data of Baker’s yeast invertase purification using PEG/MgSO4 Aqueous Two Phase-System (ATPS). Experiments were carried out changing the average molecular mass and percentage of PEG, pH, percentage of MgSO4 as well as of raw extract in order to observe the percentage of yield (% Yield) and Purification Factor (PF) at the bottom phase. The Principal Component Analysis (PCA) was used to eliminate the less significant input variables on the % Yield as well as on the PF. The generalization capacity evaluation for these two parameters has shown that the model generated by the LS-SVM (R2 = 0.974; 0.932) approach has given the best performance than partial least squares (R2 = 0.960; 0.926), base radial neural network (R2 = 0.874; 0.687) and multi-layer perceptron (R2 = 0.911; 0.652). Also, a bi-objective optimization has been carried out using the previously adjusted models in order to obtain a set of input data producing higher % Yield for the enzymatic activity (448.34%) as well as for the PF (8.45)
publishDate 2017
dc.date.issued.fl_str_mv 2017-01
dc.date.accessioned.fl_str_mv 2021-12-06T18:06:41Z
dc.date.available.fl_str_mv 2021-12-06T18:06:41Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.citation.fl_str_mv PADILHA, Carlos Eduardo de Araújo; OLIVEIRA JÚNIOR, Sérgio Dantas; SOUZA, Domingos Fabiano de Santana; OLIVEIRA, Jackson Araújo de; MACEDO, Gorete Ribeiro de; SANTOS, Everaldo Silvino dos. Baker’s yeast invertase purification using Aqueous Two Phase System—Modeling and optimization with PCA/LS-SVM. Food And Bioproducts Processing, [S.L.], v. 101, p. 157-165, jan. 2017. Elsevier BV. http://dx.doi.org/10.1016/j.fbp.2016.11.004. Disponível em <https://www.sciencedirect.com/science/article/abs/pii/S0960308516301559?via%3Dihub>. Acesso em 05 nov. 2021.
dc.identifier.uri.fl_str_mv https://repositorio.ufrn.br/handle/123456789/45189
dc.identifier.issn.none.fl_str_mv 0960-3085
dc.identifier.doi.none.fl_str_mv 10.1016/j.fbp.2016.11.004
identifier_str_mv PADILHA, Carlos Eduardo de Araújo; OLIVEIRA JÚNIOR, Sérgio Dantas; SOUZA, Domingos Fabiano de Santana; OLIVEIRA, Jackson Araújo de; MACEDO, Gorete Ribeiro de; SANTOS, Everaldo Silvino dos. Baker’s yeast invertase purification using Aqueous Two Phase System—Modeling and optimization with PCA/LS-SVM. Food And Bioproducts Processing, [S.L.], v. 101, p. 157-165, jan. 2017. Elsevier BV. http://dx.doi.org/10.1016/j.fbp.2016.11.004. Disponível em <https://www.sciencedirect.com/science/article/abs/pii/S0960308516301559?via%3Dihub>. Acesso em 05 nov. 2021.
0960-3085
10.1016/j.fbp.2016.11.004
url https://repositorio.ufrn.br/handle/123456789/45189
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Elsevier
publisher.none.fl_str_mv Elsevier
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFRN
instname:Universidade Federal do Rio Grande do Norte (UFRN)
instacron:UFRN
instname_str Universidade Federal do Rio Grande do Norte (UFRN)
instacron_str UFRN
institution UFRN
reponame_str Repositório Institucional da UFRN
collection Repositório Institucional da UFRN
bitstream.url.fl_str_mv https://repositorio.ufrn.br/bitstream/123456789/45189/2/license_rdf
https://repositorio.ufrn.br/bitstream/123456789/45189/3/license.txt
bitstream.checksum.fl_str_mv 4d2950bda3d176f570a9f8b328dfbbef
e9597aa2854d128fd968be5edc8a28d9
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFRN - Universidade Federal do Rio Grande do Norte (UFRN)
repository.mail.fl_str_mv
_version_ 1814832692529725440