Baker’s yeast invertase purification using aqueous two phase system—modeling and optimization with PCA/LS-SVM
Autor(a) principal: | |
---|---|
Data de Publicação: | 2017 |
Outros Autores: | , , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UFRN |
Texto Completo: | https://repositorio.ufrn.br/handle/123456789/45189 |
Resumo: | Least Squares-Support Vector Machine (LS-SVM) was used to predict data of Baker’s yeast invertase purification using PEG/MgSO4 Aqueous Two Phase-System (ATPS). Experiments were carried out changing the average molecular mass and percentage of PEG, pH, percentage of MgSO4 as well as of raw extract in order to observe the percentage of yield (% Yield) and Purification Factor (PF) at the bottom phase. The Principal Component Analysis (PCA) was used to eliminate the less significant input variables on the % Yield as well as on the PF. The generalization capacity evaluation for these two parameters has shown that the model generated by the LS-SVM (R2 = 0.974; 0.932) approach has given the best performance than partial least squares (R2 = 0.960; 0.926), base radial neural network (R2 = 0.874; 0.687) and multi-layer perceptron (R2 = 0.911; 0.652). Also, a bi-objective optimization has been carried out using the previously adjusted models in order to obtain a set of input data producing higher % Yield for the enzymatic activity (448.34%) as well as for the PF (8.45) |
id |
UFRN_49907de5d31ab2a55298e38c5013cf05 |
---|---|
oai_identifier_str |
oai:https://repositorio.ufrn.br:123456789/45189 |
network_acronym_str |
UFRN |
network_name_str |
Repositório Institucional da UFRN |
repository_id_str |
|
spelling |
Souza, Domingos Fabiano de SantanaPadilha, Carlos Eduardo de AraújoOliveira Junior, Sergio DantasOliveira, Jackson Araújo deMacedo, Gorete Ribeiro deSantos, Everaldo Silvino dos2021-12-06T18:06:41Z2021-12-06T18:06:41Z2017-01PADILHA, Carlos Eduardo de Araújo; OLIVEIRA JÚNIOR, Sérgio Dantas; SOUZA, Domingos Fabiano de Santana; OLIVEIRA, Jackson Araújo de; MACEDO, Gorete Ribeiro de; SANTOS, Everaldo Silvino dos. Baker’s yeast invertase purification using Aqueous Two Phase System—Modeling and optimization with PCA/LS-SVM. Food And Bioproducts Processing, [S.L.], v. 101, p. 157-165, jan. 2017. Elsevier BV. http://dx.doi.org/10.1016/j.fbp.2016.11.004. Disponível em <https://www.sciencedirect.com/science/article/abs/pii/S0960308516301559?via%3Dihub>. Acesso em 05 nov. 2021.0960-3085https://repositorio.ufrn.br/handle/123456789/4518910.1016/j.fbp.2016.11.004ElsevierPrincipal component analysisLeast squares-support vector machineGenetic algorithmAqueous two-phase systemInvertaseBaker’s yeast invertase purification using aqueous two phase system—modeling and optimization with PCA/LS-SVMinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleLeast Squares-Support Vector Machine (LS-SVM) was used to predict data of Baker’s yeast invertase purification using PEG/MgSO4 Aqueous Two Phase-System (ATPS). Experiments were carried out changing the average molecular mass and percentage of PEG, pH, percentage of MgSO4 as well as of raw extract in order to observe the percentage of yield (% Yield) and Purification Factor (PF) at the bottom phase. The Principal Component Analysis (PCA) was used to eliminate the less significant input variables on the % Yield as well as on the PF. The generalization capacity evaluation for these two parameters has shown that the model generated by the LS-SVM (R2 = 0.974; 0.932) approach has given the best performance than partial least squares (R2 = 0.960; 0.926), base radial neural network (R2 = 0.874; 0.687) and multi-layer perceptron (R2 = 0.911; 0.652). Also, a bi-objective optimization has been carried out using the previously adjusted models in order to obtain a set of input data producing higher % Yield for the enzymatic activity (448.34%) as well as for the PF (8.45)engreponame:Repositório Institucional da UFRNinstname:Universidade Federal do Rio Grande do Norte (UFRN)instacron:UFRNinfo:eu-repo/semantics/openAccessCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8914https://repositorio.ufrn.br/bitstream/123456789/45189/2/license_rdf4d2950bda3d176f570a9f8b328dfbbefMD52LICENSElicense.txtlicense.txttext/plain; charset=utf-81484https://repositorio.ufrn.br/bitstream/123456789/45189/3/license.txte9597aa2854d128fd968be5edc8a28d9MD53123456789/451892023-02-06 15:49:21.35oai:https://repositorio.ufrn.br:123456789/45189Tk9OLUVYQ0xVU0lWRSBESVNUUklCVVRJT04gTElDRU5TRQoKCkJ5IHNpZ25pbmcgYW5kIGRlbGl2ZXJpbmcgdGhpcyBsaWNlbnNlLCBNci4gKGF1dGhvciBvciBjb3B5cmlnaHQgaG9sZGVyKToKCgphKSBHcmFudHMgdGhlIFVuaXZlcnNpZGFkZSBGZWRlcmFsIFJpbyBHcmFuZGUgZG8gTm9ydGUgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgb2YKcmVwcm9kdWNlLCBjb252ZXJ0IChhcyBkZWZpbmVkIGJlbG93KSwgY29tbXVuaWNhdGUgYW5kIC8gb3IKZGlzdHJpYnV0ZSB0aGUgZGVsaXZlcmVkIGRvY3VtZW50IChpbmNsdWRpbmcgYWJzdHJhY3QgLyBhYnN0cmFjdCkgaW4KZGlnaXRhbCBvciBwcmludGVkIGZvcm1hdCBhbmQgaW4gYW55IG1lZGl1bS4KCmIpIERlY2xhcmVzIHRoYXQgdGhlIGRvY3VtZW50IHN1Ym1pdHRlZCBpcyBpdHMgb3JpZ2luYWwgd29yaywgYW5kIHRoYXQKeW91IGhhdmUgdGhlIHJpZ2h0IHRvIGdyYW50IHRoZSByaWdodHMgY29udGFpbmVkIGluIHRoaXMgbGljZW5zZS4gRGVjbGFyZXMKdGhhdCB0aGUgZGVsaXZlcnkgb2YgdGhlIGRvY3VtZW50IGRvZXMgbm90IGluZnJpbmdlLCBhcyBmYXIgYXMgaXQgaXMKdGhlIHJpZ2h0cyBvZiBhbnkgb3RoZXIgcGVyc29uIG9yIGVudGl0eS4KCmMpIElmIHRoZSBkb2N1bWVudCBkZWxpdmVyZWQgY29udGFpbnMgbWF0ZXJpYWwgd2hpY2ggZG9lcyBub3QKcmlnaHRzLCBkZWNsYXJlcyB0aGF0IGl0IGhhcyBvYnRhaW5lZCBhdXRob3JpemF0aW9uIGZyb20gdGhlIGhvbGRlciBvZiB0aGUKY29weXJpZ2h0IHRvIGdyYW50IHRoZSBVbml2ZXJzaWRhZGUgRmVkZXJhbCBkbyBSaW8gR3JhbmRlIGRvIE5vcnRlIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdCB0aGlzIG1hdGVyaWFsIHdob3NlIHJpZ2h0cyBhcmUgb2YKdGhpcmQgcGFydGllcyBpcyBjbGVhcmx5IGlkZW50aWZpZWQgYW5kIHJlY29nbml6ZWQgaW4gdGhlIHRleHQgb3IKY29udGVudCBvZiB0aGUgZG9jdW1lbnQgZGVsaXZlcmVkLgoKSWYgdGhlIGRvY3VtZW50IHN1Ym1pdHRlZCBpcyBiYXNlZCBvbiBmdW5kZWQgb3Igc3VwcG9ydGVkIHdvcmsKYnkgYW5vdGhlciBpbnN0aXR1dGlvbiBvdGhlciB0aGFuIHRoZSBVbml2ZXJzaWRhZGUgRmVkZXJhbCBkbyBSaW8gR3JhbmRlIGRvIE5vcnRlLCBkZWNsYXJlcyB0aGF0IGl0IGhhcyBmdWxmaWxsZWQgYW55IG9ibGlnYXRpb25zIHJlcXVpcmVkIGJ5IHRoZSByZXNwZWN0aXZlIGFncmVlbWVudCBvciBhZ3JlZW1lbnQuCgpUaGUgVW5pdmVyc2lkYWRlIEZlZGVyYWwgZG8gUmlvIEdyYW5kZSBkbyBOb3J0ZSB3aWxsIGNsZWFybHkgaWRlbnRpZnkgaXRzIG5hbWUgKHMpIGFzIHRoZSBhdXRob3IgKHMpIG9yIGhvbGRlciAocykgb2YgdGhlIGRvY3VtZW50J3MgcmlnaHRzCmRlbGl2ZXJlZCwgYW5kIHdpbGwgbm90IG1ha2UgYW55IGNoYW5nZXMsIG90aGVyIHRoYW4gdGhvc2UgcGVybWl0dGVkIGJ5CnRoaXMgbGljZW5zZQo=Repositório de PublicaçõesPUBhttp://repositorio.ufrn.br/oai/opendoar:2023-02-06T18:49:21Repositório Institucional da UFRN - Universidade Federal do Rio Grande do Norte (UFRN)false |
dc.title.pt_BR.fl_str_mv |
Baker’s yeast invertase purification using aqueous two phase system—modeling and optimization with PCA/LS-SVM |
title |
Baker’s yeast invertase purification using aqueous two phase system—modeling and optimization with PCA/LS-SVM |
spellingShingle |
Baker’s yeast invertase purification using aqueous two phase system—modeling and optimization with PCA/LS-SVM Souza, Domingos Fabiano de Santana Principal component analysis Least squares-support vector machine Genetic algorithm Aqueous two-phase system Invertase |
title_short |
Baker’s yeast invertase purification using aqueous two phase system—modeling and optimization with PCA/LS-SVM |
title_full |
Baker’s yeast invertase purification using aqueous two phase system—modeling and optimization with PCA/LS-SVM |
title_fullStr |
Baker’s yeast invertase purification using aqueous two phase system—modeling and optimization with PCA/LS-SVM |
title_full_unstemmed |
Baker’s yeast invertase purification using aqueous two phase system—modeling and optimization with PCA/LS-SVM |
title_sort |
Baker’s yeast invertase purification using aqueous two phase system—modeling and optimization with PCA/LS-SVM |
author |
Souza, Domingos Fabiano de Santana |
author_facet |
Souza, Domingos Fabiano de Santana Padilha, Carlos Eduardo de Araújo Oliveira Junior, Sergio Dantas Oliveira, Jackson Araújo de Macedo, Gorete Ribeiro de Santos, Everaldo Silvino dos |
author_role |
author |
author2 |
Padilha, Carlos Eduardo de Araújo Oliveira Junior, Sergio Dantas Oliveira, Jackson Araújo de Macedo, Gorete Ribeiro de Santos, Everaldo Silvino dos |
author2_role |
author author author author author |
dc.contributor.author.fl_str_mv |
Souza, Domingos Fabiano de Santana Padilha, Carlos Eduardo de Araújo Oliveira Junior, Sergio Dantas Oliveira, Jackson Araújo de Macedo, Gorete Ribeiro de Santos, Everaldo Silvino dos |
dc.subject.por.fl_str_mv |
Principal component analysis Least squares-support vector machine Genetic algorithm Aqueous two-phase system Invertase |
topic |
Principal component analysis Least squares-support vector machine Genetic algorithm Aqueous two-phase system Invertase |
description |
Least Squares-Support Vector Machine (LS-SVM) was used to predict data of Baker’s yeast invertase purification using PEG/MgSO4 Aqueous Two Phase-System (ATPS). Experiments were carried out changing the average molecular mass and percentage of PEG, pH, percentage of MgSO4 as well as of raw extract in order to observe the percentage of yield (% Yield) and Purification Factor (PF) at the bottom phase. The Principal Component Analysis (PCA) was used to eliminate the less significant input variables on the % Yield as well as on the PF. The generalization capacity evaluation for these two parameters has shown that the model generated by the LS-SVM (R2 = 0.974; 0.932) approach has given the best performance than partial least squares (R2 = 0.960; 0.926), base radial neural network (R2 = 0.874; 0.687) and multi-layer perceptron (R2 = 0.911; 0.652). Also, a bi-objective optimization has been carried out using the previously adjusted models in order to obtain a set of input data producing higher % Yield for the enzymatic activity (448.34%) as well as for the PF (8.45) |
publishDate |
2017 |
dc.date.issued.fl_str_mv |
2017-01 |
dc.date.accessioned.fl_str_mv |
2021-12-06T18:06:41Z |
dc.date.available.fl_str_mv |
2021-12-06T18:06:41Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.citation.fl_str_mv |
PADILHA, Carlos Eduardo de Araújo; OLIVEIRA JÚNIOR, Sérgio Dantas; SOUZA, Domingos Fabiano de Santana; OLIVEIRA, Jackson Araújo de; MACEDO, Gorete Ribeiro de; SANTOS, Everaldo Silvino dos. Baker’s yeast invertase purification using Aqueous Two Phase System—Modeling and optimization with PCA/LS-SVM. Food And Bioproducts Processing, [S.L.], v. 101, p. 157-165, jan. 2017. Elsevier BV. http://dx.doi.org/10.1016/j.fbp.2016.11.004. Disponível em <https://www.sciencedirect.com/science/article/abs/pii/S0960308516301559?via%3Dihub>. Acesso em 05 nov. 2021. |
dc.identifier.uri.fl_str_mv |
https://repositorio.ufrn.br/handle/123456789/45189 |
dc.identifier.issn.none.fl_str_mv |
0960-3085 |
dc.identifier.doi.none.fl_str_mv |
10.1016/j.fbp.2016.11.004 |
identifier_str_mv |
PADILHA, Carlos Eduardo de Araújo; OLIVEIRA JÚNIOR, Sérgio Dantas; SOUZA, Domingos Fabiano de Santana; OLIVEIRA, Jackson Araújo de; MACEDO, Gorete Ribeiro de; SANTOS, Everaldo Silvino dos. Baker’s yeast invertase purification using Aqueous Two Phase System—Modeling and optimization with PCA/LS-SVM. Food And Bioproducts Processing, [S.L.], v. 101, p. 157-165, jan. 2017. Elsevier BV. http://dx.doi.org/10.1016/j.fbp.2016.11.004. Disponível em <https://www.sciencedirect.com/science/article/abs/pii/S0960308516301559?via%3Dihub>. Acesso em 05 nov. 2021. 0960-3085 10.1016/j.fbp.2016.11.004 |
url |
https://repositorio.ufrn.br/handle/123456789/45189 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
Elsevier |
publisher.none.fl_str_mv |
Elsevier |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFRN instname:Universidade Federal do Rio Grande do Norte (UFRN) instacron:UFRN |
instname_str |
Universidade Federal do Rio Grande do Norte (UFRN) |
instacron_str |
UFRN |
institution |
UFRN |
reponame_str |
Repositório Institucional da UFRN |
collection |
Repositório Institucional da UFRN |
bitstream.url.fl_str_mv |
https://repositorio.ufrn.br/bitstream/123456789/45189/2/license_rdf https://repositorio.ufrn.br/bitstream/123456789/45189/3/license.txt |
bitstream.checksum.fl_str_mv |
4d2950bda3d176f570a9f8b328dfbbef e9597aa2854d128fd968be5edc8a28d9 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional da UFRN - Universidade Federal do Rio Grande do Norte (UFRN) |
repository.mail.fl_str_mv |
|
_version_ |
1814832692529725440 |