Partition coefficient prediction of Baker's yeast invertase in aqueous two phase systems using hybrid group method data handling neural network

Detalhes bibliográficos
Autor(a) principal: Souza, Domingos Fabiano de Santana
Data de Publicação: 2017
Outros Autores: Padilha, Carlos Eduardo de Araújo, Oliveira Júnior, Sérgio Dantas de, Oliveira, Jackson Araújo de, Macedo, Gorete Ribeiro de, Santos, Everaldo Silvino dos
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UFRN
Texto Completo: https://repositorio.ufrn.br/handle/123456789/45191
Resumo: A hybrid GMDH neural network model has been developed in order to predict the partition coefficients of invertase from Baker's yeast. ATPS experiments were carried out changing the molar average mass of PEG (1500–6000 Da), pH (4.0–7.0), percentage of PEG (10.0–20.0 w/w), percentage of MgSO4 (8.0–16.0 w/w), percentage of the cell homogenate (10.0–20.0 w/w) and the percentage of MnSO4 (0–5.0 w/w) added as cosolute. The network evaluation was carried out comparing the partition coefficients obtained from the hybrid GMDH neural network with the experimental data using different statistical metrics. The hybrid GMDH neural network model showed better fitting (AARD = 32.752%) as well as good generalization capacity of the partition coefficients of the ATPS than the original GMDH network approach and a BPANN model. Therefore hybrid GMDH neural network model appears as a powerful tool for predicting partition coefficients during downstream processing of biomolecules
id UFRN_725be57217a47a6e7061759a26591b68
oai_identifier_str oai:https://repositorio.ufrn.br:123456789/45191
network_acronym_str UFRN
network_name_str Repositório Institucional da UFRN
repository_id_str
spelling Souza, Domingos Fabiano de SantanaPadilha, Carlos Eduardo de AraújoOliveira Júnior, Sérgio Dantas deOliveira, Jackson Araújo deMacedo, Gorete Ribeiro deSantos, Everaldo Silvino dos2021-12-06T18:15:05Z2021-12-06T18:15:05Z2017-05PADILHA, Carlos Eduardo de Araújo; OLIVEIRA JÚNIOR, Sérgio Dantas de; SOUZA, Domingos Fabiano de Santana; OLIVEIRA, Jackson Araújo de; MACEDO, Gorete Ribeiro de; SANTOS, Everaldo Silvino dos. Partition coefficient prediction of Baker's yeast invertase in aqueous two phase systems using hybrid group method data handling neural network. Chinese Journal Of Chemical Engineering, [S.L.], v. 25, n. 5, p. 652-657, maio 2017. Elsevier BV. http://dx.doi.org/10.1016/j.cjche.2016.07.015. Disponível em <https://www.sciencedirect.com/science/article/pii/S1004954116304165?via%3Dihub> Acesso em 05 nov. 2021.1004-9541https://repositorio.ufrn.br/handle/123456789/4519110.1016/j.cjche.2016.07.015ElsevierPartitioningInvertaseAqueous two phase systemGMDHGMDHPartition coefficient prediction of Baker's yeast invertase in aqueous two phase systems using hybrid group method data handling neural networkinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleA hybrid GMDH neural network model has been developed in order to predict the partition coefficients of invertase from Baker's yeast. ATPS experiments were carried out changing the molar average mass of PEG (1500–6000 Da), pH (4.0–7.0), percentage of PEG (10.0–20.0 w/w), percentage of MgSO4 (8.0–16.0 w/w), percentage of the cell homogenate (10.0–20.0 w/w) and the percentage of MnSO4 (0–5.0 w/w) added as cosolute. The network evaluation was carried out comparing the partition coefficients obtained from the hybrid GMDH neural network with the experimental data using different statistical metrics. The hybrid GMDH neural network model showed better fitting (AARD = 32.752%) as well as good generalization capacity of the partition coefficients of the ATPS than the original GMDH network approach and a BPANN model. Therefore hybrid GMDH neural network model appears as a powerful tool for predicting partition coefficients during downstream processing of biomoleculesengreponame:Repositório Institucional da UFRNinstname:Universidade Federal do Rio Grande do Norte (UFRN)instacron:UFRNinfo:eu-repo/semantics/openAccessCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8914https://repositorio.ufrn.br/bitstream/123456789/45191/2/license_rdf4d2950bda3d176f570a9f8b328dfbbefMD52LICENSElicense.txtlicense.txttext/plain; charset=utf-81484https://repositorio.ufrn.br/bitstream/123456789/45191/3/license.txte9597aa2854d128fd968be5edc8a28d9MD53123456789/451912023-02-01 18:30:35.806oai:https://repositorio.ufrn.br:123456789/45191Tk9OLUVYQ0xVU0lWRSBESVNUUklCVVRJT04gTElDRU5TRQoKCkJ5IHNpZ25pbmcgYW5kIGRlbGl2ZXJpbmcgdGhpcyBsaWNlbnNlLCBNci4gKGF1dGhvciBvciBjb3B5cmlnaHQgaG9sZGVyKToKCgphKSBHcmFudHMgdGhlIFVuaXZlcnNpZGFkZSBGZWRlcmFsIFJpbyBHcmFuZGUgZG8gTm9ydGUgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgb2YKcmVwcm9kdWNlLCBjb252ZXJ0IChhcyBkZWZpbmVkIGJlbG93KSwgY29tbXVuaWNhdGUgYW5kIC8gb3IKZGlzdHJpYnV0ZSB0aGUgZGVsaXZlcmVkIGRvY3VtZW50IChpbmNsdWRpbmcgYWJzdHJhY3QgLyBhYnN0cmFjdCkgaW4KZGlnaXRhbCBvciBwcmludGVkIGZvcm1hdCBhbmQgaW4gYW55IG1lZGl1bS4KCmIpIERlY2xhcmVzIHRoYXQgdGhlIGRvY3VtZW50IHN1Ym1pdHRlZCBpcyBpdHMgb3JpZ2luYWwgd29yaywgYW5kIHRoYXQKeW91IGhhdmUgdGhlIHJpZ2h0IHRvIGdyYW50IHRoZSByaWdodHMgY29udGFpbmVkIGluIHRoaXMgbGljZW5zZS4gRGVjbGFyZXMKdGhhdCB0aGUgZGVsaXZlcnkgb2YgdGhlIGRvY3VtZW50IGRvZXMgbm90IGluZnJpbmdlLCBhcyBmYXIgYXMgaXQgaXMKdGhlIHJpZ2h0cyBvZiBhbnkgb3RoZXIgcGVyc29uIG9yIGVudGl0eS4KCmMpIElmIHRoZSBkb2N1bWVudCBkZWxpdmVyZWQgY29udGFpbnMgbWF0ZXJpYWwgd2hpY2ggZG9lcyBub3QKcmlnaHRzLCBkZWNsYXJlcyB0aGF0IGl0IGhhcyBvYnRhaW5lZCBhdXRob3JpemF0aW9uIGZyb20gdGhlIGhvbGRlciBvZiB0aGUKY29weXJpZ2h0IHRvIGdyYW50IHRoZSBVbml2ZXJzaWRhZGUgRmVkZXJhbCBkbyBSaW8gR3JhbmRlIGRvIE5vcnRlIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdCB0aGlzIG1hdGVyaWFsIHdob3NlIHJpZ2h0cyBhcmUgb2YKdGhpcmQgcGFydGllcyBpcyBjbGVhcmx5IGlkZW50aWZpZWQgYW5kIHJlY29nbml6ZWQgaW4gdGhlIHRleHQgb3IKY29udGVudCBvZiB0aGUgZG9jdW1lbnQgZGVsaXZlcmVkLgoKSWYgdGhlIGRvY3VtZW50IHN1Ym1pdHRlZCBpcyBiYXNlZCBvbiBmdW5kZWQgb3Igc3VwcG9ydGVkIHdvcmsKYnkgYW5vdGhlciBpbnN0aXR1dGlvbiBvdGhlciB0aGFuIHRoZSBVbml2ZXJzaWRhZGUgRmVkZXJhbCBkbyBSaW8gR3JhbmRlIGRvIE5vcnRlLCBkZWNsYXJlcyB0aGF0IGl0IGhhcyBmdWxmaWxsZWQgYW55IG9ibGlnYXRpb25zIHJlcXVpcmVkIGJ5IHRoZSByZXNwZWN0aXZlIGFncmVlbWVudCBvciBhZ3JlZW1lbnQuCgpUaGUgVW5pdmVyc2lkYWRlIEZlZGVyYWwgZG8gUmlvIEdyYW5kZSBkbyBOb3J0ZSB3aWxsIGNsZWFybHkgaWRlbnRpZnkgaXRzIG5hbWUgKHMpIGFzIHRoZSBhdXRob3IgKHMpIG9yIGhvbGRlciAocykgb2YgdGhlIGRvY3VtZW50J3MgcmlnaHRzCmRlbGl2ZXJlZCwgYW5kIHdpbGwgbm90IG1ha2UgYW55IGNoYW5nZXMsIG90aGVyIHRoYW4gdGhvc2UgcGVybWl0dGVkIGJ5CnRoaXMgbGljZW5zZQo=Repositório de PublicaçõesPUBhttp://repositorio.ufrn.br/oai/opendoar:2023-02-01T21:30:35Repositório Institucional da UFRN - Universidade Federal do Rio Grande do Norte (UFRN)false
dc.title.pt_BR.fl_str_mv Partition coefficient prediction of Baker's yeast invertase in aqueous two phase systems using hybrid group method data handling neural network
title Partition coefficient prediction of Baker's yeast invertase in aqueous two phase systems using hybrid group method data handling neural network
spellingShingle Partition coefficient prediction of Baker's yeast invertase in aqueous two phase systems using hybrid group method data handling neural network
Souza, Domingos Fabiano de Santana
Partitioning
Invertase
Aqueous two phase system
GMDH
GMDH
title_short Partition coefficient prediction of Baker's yeast invertase in aqueous two phase systems using hybrid group method data handling neural network
title_full Partition coefficient prediction of Baker's yeast invertase in aqueous two phase systems using hybrid group method data handling neural network
title_fullStr Partition coefficient prediction of Baker's yeast invertase in aqueous two phase systems using hybrid group method data handling neural network
title_full_unstemmed Partition coefficient prediction of Baker's yeast invertase in aqueous two phase systems using hybrid group method data handling neural network
title_sort Partition coefficient prediction of Baker's yeast invertase in aqueous two phase systems using hybrid group method data handling neural network
author Souza, Domingos Fabiano de Santana
author_facet Souza, Domingos Fabiano de Santana
Padilha, Carlos Eduardo de Araújo
Oliveira Júnior, Sérgio Dantas de
Oliveira, Jackson Araújo de
Macedo, Gorete Ribeiro de
Santos, Everaldo Silvino dos
author_role author
author2 Padilha, Carlos Eduardo de Araújo
Oliveira Júnior, Sérgio Dantas de
Oliveira, Jackson Araújo de
Macedo, Gorete Ribeiro de
Santos, Everaldo Silvino dos
author2_role author
author
author
author
author
dc.contributor.author.fl_str_mv Souza, Domingos Fabiano de Santana
Padilha, Carlos Eduardo de Araújo
Oliveira Júnior, Sérgio Dantas de
Oliveira, Jackson Araújo de
Macedo, Gorete Ribeiro de
Santos, Everaldo Silvino dos
dc.subject.por.fl_str_mv Partitioning
Invertase
Aqueous two phase system
GMDH
GMDH
topic Partitioning
Invertase
Aqueous two phase system
GMDH
GMDH
description A hybrid GMDH neural network model has been developed in order to predict the partition coefficients of invertase from Baker's yeast. ATPS experiments were carried out changing the molar average mass of PEG (1500–6000 Da), pH (4.0–7.0), percentage of PEG (10.0–20.0 w/w), percentage of MgSO4 (8.0–16.0 w/w), percentage of the cell homogenate (10.0–20.0 w/w) and the percentage of MnSO4 (0–5.0 w/w) added as cosolute. The network evaluation was carried out comparing the partition coefficients obtained from the hybrid GMDH neural network with the experimental data using different statistical metrics. The hybrid GMDH neural network model showed better fitting (AARD = 32.752%) as well as good generalization capacity of the partition coefficients of the ATPS than the original GMDH network approach and a BPANN model. Therefore hybrid GMDH neural network model appears as a powerful tool for predicting partition coefficients during downstream processing of biomolecules
publishDate 2017
dc.date.issued.fl_str_mv 2017-05
dc.date.accessioned.fl_str_mv 2021-12-06T18:15:05Z
dc.date.available.fl_str_mv 2021-12-06T18:15:05Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.citation.fl_str_mv PADILHA, Carlos Eduardo de Araújo; OLIVEIRA JÚNIOR, Sérgio Dantas de; SOUZA, Domingos Fabiano de Santana; OLIVEIRA, Jackson Araújo de; MACEDO, Gorete Ribeiro de; SANTOS, Everaldo Silvino dos. Partition coefficient prediction of Baker's yeast invertase in aqueous two phase systems using hybrid group method data handling neural network. Chinese Journal Of Chemical Engineering, [S.L.], v. 25, n. 5, p. 652-657, maio 2017. Elsevier BV. http://dx.doi.org/10.1016/j.cjche.2016.07.015. Disponível em <https://www.sciencedirect.com/science/article/pii/S1004954116304165?via%3Dihub> Acesso em 05 nov. 2021.
dc.identifier.uri.fl_str_mv https://repositorio.ufrn.br/handle/123456789/45191
dc.identifier.issn.none.fl_str_mv 1004-9541
dc.identifier.doi.none.fl_str_mv 10.1016/j.cjche.2016.07.015
identifier_str_mv PADILHA, Carlos Eduardo de Araújo; OLIVEIRA JÚNIOR, Sérgio Dantas de; SOUZA, Domingos Fabiano de Santana; OLIVEIRA, Jackson Araújo de; MACEDO, Gorete Ribeiro de; SANTOS, Everaldo Silvino dos. Partition coefficient prediction of Baker's yeast invertase in aqueous two phase systems using hybrid group method data handling neural network. Chinese Journal Of Chemical Engineering, [S.L.], v. 25, n. 5, p. 652-657, maio 2017. Elsevier BV. http://dx.doi.org/10.1016/j.cjche.2016.07.015. Disponível em <https://www.sciencedirect.com/science/article/pii/S1004954116304165?via%3Dihub> Acesso em 05 nov. 2021.
1004-9541
10.1016/j.cjche.2016.07.015
url https://repositorio.ufrn.br/handle/123456789/45191
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Elsevier
publisher.none.fl_str_mv Elsevier
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFRN
instname:Universidade Federal do Rio Grande do Norte (UFRN)
instacron:UFRN
instname_str Universidade Federal do Rio Grande do Norte (UFRN)
instacron_str UFRN
institution UFRN
reponame_str Repositório Institucional da UFRN
collection Repositório Institucional da UFRN
bitstream.url.fl_str_mv https://repositorio.ufrn.br/bitstream/123456789/45191/2/license_rdf
https://repositorio.ufrn.br/bitstream/123456789/45191/3/license.txt
bitstream.checksum.fl_str_mv 4d2950bda3d176f570a9f8b328dfbbef
e9597aa2854d128fd968be5edc8a28d9
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFRN - Universidade Federal do Rio Grande do Norte (UFRN)
repository.mail.fl_str_mv
_version_ 1814832686560182272