Partition coefficient prediction of Baker's yeast invertase in aqueous two phase systems using hybrid group method data handling neural network
Autor(a) principal: | |
---|---|
Data de Publicação: | 2017 |
Outros Autores: | , , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UFRN |
Texto Completo: | https://repositorio.ufrn.br/handle/123456789/45191 |
Resumo: | A hybrid GMDH neural network model has been developed in order to predict the partition coefficients of invertase from Baker's yeast. ATPS experiments were carried out changing the molar average mass of PEG (1500–6000 Da), pH (4.0–7.0), percentage of PEG (10.0–20.0 w/w), percentage of MgSO4 (8.0–16.0 w/w), percentage of the cell homogenate (10.0–20.0 w/w) and the percentage of MnSO4 (0–5.0 w/w) added as cosolute. The network evaluation was carried out comparing the partition coefficients obtained from the hybrid GMDH neural network with the experimental data using different statistical metrics. The hybrid GMDH neural network model showed better fitting (AARD = 32.752%) as well as good generalization capacity of the partition coefficients of the ATPS than the original GMDH network approach and a BPANN model. Therefore hybrid GMDH neural network model appears as a powerful tool for predicting partition coefficients during downstream processing of biomolecules |
id |
UFRN_725be57217a47a6e7061759a26591b68 |
---|---|
oai_identifier_str |
oai:https://repositorio.ufrn.br:123456789/45191 |
network_acronym_str |
UFRN |
network_name_str |
Repositório Institucional da UFRN |
repository_id_str |
|
spelling |
Souza, Domingos Fabiano de SantanaPadilha, Carlos Eduardo de AraújoOliveira Júnior, Sérgio Dantas deOliveira, Jackson Araújo deMacedo, Gorete Ribeiro deSantos, Everaldo Silvino dos2021-12-06T18:15:05Z2021-12-06T18:15:05Z2017-05PADILHA, Carlos Eduardo de Araújo; OLIVEIRA JÚNIOR, Sérgio Dantas de; SOUZA, Domingos Fabiano de Santana; OLIVEIRA, Jackson Araújo de; MACEDO, Gorete Ribeiro de; SANTOS, Everaldo Silvino dos. Partition coefficient prediction of Baker's yeast invertase in aqueous two phase systems using hybrid group method data handling neural network. Chinese Journal Of Chemical Engineering, [S.L.], v. 25, n. 5, p. 652-657, maio 2017. Elsevier BV. http://dx.doi.org/10.1016/j.cjche.2016.07.015. Disponível em <https://www.sciencedirect.com/science/article/pii/S1004954116304165?via%3Dihub> Acesso em 05 nov. 2021.1004-9541https://repositorio.ufrn.br/handle/123456789/4519110.1016/j.cjche.2016.07.015ElsevierPartitioningInvertaseAqueous two phase systemGMDHGMDHPartition coefficient prediction of Baker's yeast invertase in aqueous two phase systems using hybrid group method data handling neural networkinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleA hybrid GMDH neural network model has been developed in order to predict the partition coefficients of invertase from Baker's yeast. ATPS experiments were carried out changing the molar average mass of PEG (1500–6000 Da), pH (4.0–7.0), percentage of PEG (10.0–20.0 w/w), percentage of MgSO4 (8.0–16.0 w/w), percentage of the cell homogenate (10.0–20.0 w/w) and the percentage of MnSO4 (0–5.0 w/w) added as cosolute. The network evaluation was carried out comparing the partition coefficients obtained from the hybrid GMDH neural network with the experimental data using different statistical metrics. The hybrid GMDH neural network model showed better fitting (AARD = 32.752%) as well as good generalization capacity of the partition coefficients of the ATPS than the original GMDH network approach and a BPANN model. Therefore hybrid GMDH neural network model appears as a powerful tool for predicting partition coefficients during downstream processing of biomoleculesengreponame:Repositório Institucional da UFRNinstname:Universidade Federal do Rio Grande do Norte (UFRN)instacron:UFRNinfo:eu-repo/semantics/openAccessCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8914https://repositorio.ufrn.br/bitstream/123456789/45191/2/license_rdf4d2950bda3d176f570a9f8b328dfbbefMD52LICENSElicense.txtlicense.txttext/plain; charset=utf-81484https://repositorio.ufrn.br/bitstream/123456789/45191/3/license.txte9597aa2854d128fd968be5edc8a28d9MD53123456789/451912023-02-01 18:30:35.806oai:https://repositorio.ufrn.br:123456789/45191Tk9OLUVYQ0xVU0lWRSBESVNUUklCVVRJT04gTElDRU5TRQoKCkJ5IHNpZ25pbmcgYW5kIGRlbGl2ZXJpbmcgdGhpcyBsaWNlbnNlLCBNci4gKGF1dGhvciBvciBjb3B5cmlnaHQgaG9sZGVyKToKCgphKSBHcmFudHMgdGhlIFVuaXZlcnNpZGFkZSBGZWRlcmFsIFJpbyBHcmFuZGUgZG8gTm9ydGUgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgb2YKcmVwcm9kdWNlLCBjb252ZXJ0IChhcyBkZWZpbmVkIGJlbG93KSwgY29tbXVuaWNhdGUgYW5kIC8gb3IKZGlzdHJpYnV0ZSB0aGUgZGVsaXZlcmVkIGRvY3VtZW50IChpbmNsdWRpbmcgYWJzdHJhY3QgLyBhYnN0cmFjdCkgaW4KZGlnaXRhbCBvciBwcmludGVkIGZvcm1hdCBhbmQgaW4gYW55IG1lZGl1bS4KCmIpIERlY2xhcmVzIHRoYXQgdGhlIGRvY3VtZW50IHN1Ym1pdHRlZCBpcyBpdHMgb3JpZ2luYWwgd29yaywgYW5kIHRoYXQKeW91IGhhdmUgdGhlIHJpZ2h0IHRvIGdyYW50IHRoZSByaWdodHMgY29udGFpbmVkIGluIHRoaXMgbGljZW5zZS4gRGVjbGFyZXMKdGhhdCB0aGUgZGVsaXZlcnkgb2YgdGhlIGRvY3VtZW50IGRvZXMgbm90IGluZnJpbmdlLCBhcyBmYXIgYXMgaXQgaXMKdGhlIHJpZ2h0cyBvZiBhbnkgb3RoZXIgcGVyc29uIG9yIGVudGl0eS4KCmMpIElmIHRoZSBkb2N1bWVudCBkZWxpdmVyZWQgY29udGFpbnMgbWF0ZXJpYWwgd2hpY2ggZG9lcyBub3QKcmlnaHRzLCBkZWNsYXJlcyB0aGF0IGl0IGhhcyBvYnRhaW5lZCBhdXRob3JpemF0aW9uIGZyb20gdGhlIGhvbGRlciBvZiB0aGUKY29weXJpZ2h0IHRvIGdyYW50IHRoZSBVbml2ZXJzaWRhZGUgRmVkZXJhbCBkbyBSaW8gR3JhbmRlIGRvIE5vcnRlIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdCB0aGlzIG1hdGVyaWFsIHdob3NlIHJpZ2h0cyBhcmUgb2YKdGhpcmQgcGFydGllcyBpcyBjbGVhcmx5IGlkZW50aWZpZWQgYW5kIHJlY29nbml6ZWQgaW4gdGhlIHRleHQgb3IKY29udGVudCBvZiB0aGUgZG9jdW1lbnQgZGVsaXZlcmVkLgoKSWYgdGhlIGRvY3VtZW50IHN1Ym1pdHRlZCBpcyBiYXNlZCBvbiBmdW5kZWQgb3Igc3VwcG9ydGVkIHdvcmsKYnkgYW5vdGhlciBpbnN0aXR1dGlvbiBvdGhlciB0aGFuIHRoZSBVbml2ZXJzaWRhZGUgRmVkZXJhbCBkbyBSaW8gR3JhbmRlIGRvIE5vcnRlLCBkZWNsYXJlcyB0aGF0IGl0IGhhcyBmdWxmaWxsZWQgYW55IG9ibGlnYXRpb25zIHJlcXVpcmVkIGJ5IHRoZSByZXNwZWN0aXZlIGFncmVlbWVudCBvciBhZ3JlZW1lbnQuCgpUaGUgVW5pdmVyc2lkYWRlIEZlZGVyYWwgZG8gUmlvIEdyYW5kZSBkbyBOb3J0ZSB3aWxsIGNsZWFybHkgaWRlbnRpZnkgaXRzIG5hbWUgKHMpIGFzIHRoZSBhdXRob3IgKHMpIG9yIGhvbGRlciAocykgb2YgdGhlIGRvY3VtZW50J3MgcmlnaHRzCmRlbGl2ZXJlZCwgYW5kIHdpbGwgbm90IG1ha2UgYW55IGNoYW5nZXMsIG90aGVyIHRoYW4gdGhvc2UgcGVybWl0dGVkIGJ5CnRoaXMgbGljZW5zZQo=Repositório de PublicaçõesPUBhttp://repositorio.ufrn.br/oai/opendoar:2023-02-01T21:30:35Repositório Institucional da UFRN - Universidade Federal do Rio Grande do Norte (UFRN)false |
dc.title.pt_BR.fl_str_mv |
Partition coefficient prediction of Baker's yeast invertase in aqueous two phase systems using hybrid group method data handling neural network |
title |
Partition coefficient prediction of Baker's yeast invertase in aqueous two phase systems using hybrid group method data handling neural network |
spellingShingle |
Partition coefficient prediction of Baker's yeast invertase in aqueous two phase systems using hybrid group method data handling neural network Souza, Domingos Fabiano de Santana Partitioning Invertase Aqueous two phase system GMDH GMDH |
title_short |
Partition coefficient prediction of Baker's yeast invertase in aqueous two phase systems using hybrid group method data handling neural network |
title_full |
Partition coefficient prediction of Baker's yeast invertase in aqueous two phase systems using hybrid group method data handling neural network |
title_fullStr |
Partition coefficient prediction of Baker's yeast invertase in aqueous two phase systems using hybrid group method data handling neural network |
title_full_unstemmed |
Partition coefficient prediction of Baker's yeast invertase in aqueous two phase systems using hybrid group method data handling neural network |
title_sort |
Partition coefficient prediction of Baker's yeast invertase in aqueous two phase systems using hybrid group method data handling neural network |
author |
Souza, Domingos Fabiano de Santana |
author_facet |
Souza, Domingos Fabiano de Santana Padilha, Carlos Eduardo de Araújo Oliveira Júnior, Sérgio Dantas de Oliveira, Jackson Araújo de Macedo, Gorete Ribeiro de Santos, Everaldo Silvino dos |
author_role |
author |
author2 |
Padilha, Carlos Eduardo de Araújo Oliveira Júnior, Sérgio Dantas de Oliveira, Jackson Araújo de Macedo, Gorete Ribeiro de Santos, Everaldo Silvino dos |
author2_role |
author author author author author |
dc.contributor.author.fl_str_mv |
Souza, Domingos Fabiano de Santana Padilha, Carlos Eduardo de Araújo Oliveira Júnior, Sérgio Dantas de Oliveira, Jackson Araújo de Macedo, Gorete Ribeiro de Santos, Everaldo Silvino dos |
dc.subject.por.fl_str_mv |
Partitioning Invertase Aqueous two phase system GMDH GMDH |
topic |
Partitioning Invertase Aqueous two phase system GMDH GMDH |
description |
A hybrid GMDH neural network model has been developed in order to predict the partition coefficients of invertase from Baker's yeast. ATPS experiments were carried out changing the molar average mass of PEG (1500–6000 Da), pH (4.0–7.0), percentage of PEG (10.0–20.0 w/w), percentage of MgSO4 (8.0–16.0 w/w), percentage of the cell homogenate (10.0–20.0 w/w) and the percentage of MnSO4 (0–5.0 w/w) added as cosolute. The network evaluation was carried out comparing the partition coefficients obtained from the hybrid GMDH neural network with the experimental data using different statistical metrics. The hybrid GMDH neural network model showed better fitting (AARD = 32.752%) as well as good generalization capacity of the partition coefficients of the ATPS than the original GMDH network approach and a BPANN model. Therefore hybrid GMDH neural network model appears as a powerful tool for predicting partition coefficients during downstream processing of biomolecules |
publishDate |
2017 |
dc.date.issued.fl_str_mv |
2017-05 |
dc.date.accessioned.fl_str_mv |
2021-12-06T18:15:05Z |
dc.date.available.fl_str_mv |
2021-12-06T18:15:05Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.citation.fl_str_mv |
PADILHA, Carlos Eduardo de Araújo; OLIVEIRA JÚNIOR, Sérgio Dantas de; SOUZA, Domingos Fabiano de Santana; OLIVEIRA, Jackson Araújo de; MACEDO, Gorete Ribeiro de; SANTOS, Everaldo Silvino dos. Partition coefficient prediction of Baker's yeast invertase in aqueous two phase systems using hybrid group method data handling neural network. Chinese Journal Of Chemical Engineering, [S.L.], v. 25, n. 5, p. 652-657, maio 2017. Elsevier BV. http://dx.doi.org/10.1016/j.cjche.2016.07.015. Disponível em <https://www.sciencedirect.com/science/article/pii/S1004954116304165?via%3Dihub> Acesso em 05 nov. 2021. |
dc.identifier.uri.fl_str_mv |
https://repositorio.ufrn.br/handle/123456789/45191 |
dc.identifier.issn.none.fl_str_mv |
1004-9541 |
dc.identifier.doi.none.fl_str_mv |
10.1016/j.cjche.2016.07.015 |
identifier_str_mv |
PADILHA, Carlos Eduardo de Araújo; OLIVEIRA JÚNIOR, Sérgio Dantas de; SOUZA, Domingos Fabiano de Santana; OLIVEIRA, Jackson Araújo de; MACEDO, Gorete Ribeiro de; SANTOS, Everaldo Silvino dos. Partition coefficient prediction of Baker's yeast invertase in aqueous two phase systems using hybrid group method data handling neural network. Chinese Journal Of Chemical Engineering, [S.L.], v. 25, n. 5, p. 652-657, maio 2017. Elsevier BV. http://dx.doi.org/10.1016/j.cjche.2016.07.015. Disponível em <https://www.sciencedirect.com/science/article/pii/S1004954116304165?via%3Dihub> Acesso em 05 nov. 2021. 1004-9541 10.1016/j.cjche.2016.07.015 |
url |
https://repositorio.ufrn.br/handle/123456789/45191 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
Elsevier |
publisher.none.fl_str_mv |
Elsevier |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFRN instname:Universidade Federal do Rio Grande do Norte (UFRN) instacron:UFRN |
instname_str |
Universidade Federal do Rio Grande do Norte (UFRN) |
instacron_str |
UFRN |
institution |
UFRN |
reponame_str |
Repositório Institucional da UFRN |
collection |
Repositório Institucional da UFRN |
bitstream.url.fl_str_mv |
https://repositorio.ufrn.br/bitstream/123456789/45191/2/license_rdf https://repositorio.ufrn.br/bitstream/123456789/45191/3/license.txt |
bitstream.checksum.fl_str_mv |
4d2950bda3d176f570a9f8b328dfbbef e9597aa2854d128fd968be5edc8a28d9 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional da UFRN - Universidade Federal do Rio Grande do Norte (UFRN) |
repository.mail.fl_str_mv |
|
_version_ |
1814832686560182272 |