Improving regional dynamic downscaling with multiple linear regression model using components principal analysis: precipitation over Amazon and Northeast Brazil

Detalhes bibliográficos
Autor(a) principal: Silva, Aline Gomes da
Data de Publicação: 2014
Outros Autores: Silva, Claudio Moisés Santos e
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UFRN
Texto Completo: https://repositorio.ufrn.br/jspui/handle/123456789/28862
https://doi.org/10.1155/2014/928729
Resumo: In the current context of climate change discussions, predictions of future scenarios of weather and climate are crucial for the generation of information of interest to the global community. Due to the atmosphere being a chaotic system, errors in predictions of future scenarios are systematically observed. Therefore, numerous techniques have been tested in order to generate more reliable predictions, and two techniques have excelled in science: dynamic downscaling, through regional models, and ensemble prediction,combining different outputs of climate models through the arithmetic average, in other words, a postprocessing of the output data species. Thus, this paper proposes a method of postprocessing outputs of regional climate models. This method consists in using the statistical tool multiple linear regression by principal components for combining different simulations obtained by dynamic downscaling with the regional climate model (RegCM4). Tests for the Amazon and Northeast region of Brazil (South America) showed that the method provided a more realistic prediction in terms of average daily rainfall for the analyzed period prescribed, after comparing with the prediction made by set through the arithmetic averages of the simulations. This method photographed the extreme events (outlier) that the prediction by averaging failed. Data from the Tropical Rainfall Measuring Mission (TRMM) were used to evaluate the method.
id UFRN_52046c622b717a7d12c9839a93521282
oai_identifier_str oai:https://repositorio.ufrn.br:123456789/28862
network_acronym_str UFRN
network_name_str Repositório Institucional da UFRN
repository_id_str
spelling Silva, Aline Gomes daSilva, Claudio Moisés Santos e2020-04-30T20:01:47Z2020-04-30T20:01:47Z2014-07-10SILVA, Aline Gomes da; SILVA, Claudio Moises Santos e. Improving Regional Dynamic Downscaling with Multiple Linear Regression Model Using Components Principal Analysis: precipitation over amazon and northeast brazil. Advances In Meteorology, [s. l.], v. 2014, p. 1-9, 2014. ISSN 1687-9317 versão online. DOI http://dx.doi.org/10.1155/2014/928729. Disponível em: https://www.hindawi.com/journals/amete/2014/928729/. Acesso em: 30 abr. 2020.1687-9309 (print), 1687-9317 (online)https://repositorio.ufrn.br/jspui/handle/123456789/28862https://doi.org/10.1155/2014/928729Hindawi LimitedAttribution 3.0 Brazilhttp://creativecommons.org/licenses/by/3.0/br/info:eu-repo/semantics/openAccessPrecipitationMultiple linear regressionDynamic downscalingImproving regional dynamic downscaling with multiple linear regression model using components principal analysis: precipitation over Amazon and Northeast Brazilinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleIn the current context of climate change discussions, predictions of future scenarios of weather and climate are crucial for the generation of information of interest to the global community. Due to the atmosphere being a chaotic system, errors in predictions of future scenarios are systematically observed. Therefore, numerous techniques have been tested in order to generate more reliable predictions, and two techniques have excelled in science: dynamic downscaling, through regional models, and ensemble prediction,combining different outputs of climate models through the arithmetic average, in other words, a postprocessing of the output data species. Thus, this paper proposes a method of postprocessing outputs of regional climate models. This method consists in using the statistical tool multiple linear regression by principal components for combining different simulations obtained by dynamic downscaling with the regional climate model (RegCM4). Tests for the Amazon and Northeast region of Brazil (South America) showed that the method provided a more realistic prediction in terms of average daily rainfall for the analyzed period prescribed, after comparing with the prediction made by set through the arithmetic averages of the simulations. This method photographed the extreme events (outlier) that the prediction by averaging failed. Data from the Tropical Rainfall Measuring Mission (TRMM) were used to evaluate the method.engreponame:Repositório Institucional da UFRNinstname:Universidade Federal do Rio Grande do Norte (UFRN)instacron:UFRNCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8914https://repositorio.ufrn.br/bitstream/123456789/28862/2/license_rdf4d2950bda3d176f570a9f8b328dfbbefMD52LICENSElicense.txtlicense.txttext/plain; charset=utf-81484https://repositorio.ufrn.br/bitstream/123456789/28862/3/license.txte9597aa2854d128fd968be5edc8a28d9MD53ORIGINALImprovingRegionalDynamicDownscaling_Silva_2014.pdfImprovingRegionalDynamicDownscaling_Silva_2014.pdfapplication/pdf2587379https://repositorio.ufrn.br/bitstream/123456789/28862/1/ImprovingRegionalDynamicDownscaling_Silva_2014.pdf7aa5b8b1f6d22671a28441a05d024a1aMD51TEXTImprovingRegionalDynamicDownscaling_Silva_2014.pdf.txtImprovingRegionalDynamicDownscaling_Silva_2014.pdf.txtExtracted texttext/plain39380https://repositorio.ufrn.br/bitstream/123456789/28862/4/ImprovingRegionalDynamicDownscaling_Silva_2014.pdf.txtac13855d6b4f56feda7af4a8c48b89b4MD54THUMBNAILImprovingRegionalDynamicDownscaling_Silva_2014.pdf.jpgImprovingRegionalDynamicDownscaling_Silva_2014.pdf.jpgGenerated Thumbnailimage/jpeg1652https://repositorio.ufrn.br/bitstream/123456789/28862/5/ImprovingRegionalDynamicDownscaling_Silva_2014.pdf.jpg990463a20f7b134f4b04f20ecccc73caMD55123456789/288622020-05-04 23:40:46.771oai:https://repositorio.ufrn.br:123456789/28862Tk9OLUVYQ0xVU0lWRSBESVNUUklCVVRJT04gTElDRU5TRQoKCkJ5IHNpZ25pbmcgYW5kIGRlbGl2ZXJpbmcgdGhpcyBsaWNlbnNlLCBNci4gKGF1dGhvciBvciBjb3B5cmlnaHQgaG9sZGVyKToKCgphKSBHcmFudHMgdGhlIFVuaXZlcnNpZGFkZSBGZWRlcmFsIFJpbyBHcmFuZGUgZG8gTm9ydGUgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgb2YKcmVwcm9kdWNlLCBjb252ZXJ0IChhcyBkZWZpbmVkIGJlbG93KSwgY29tbXVuaWNhdGUgYW5kIC8gb3IKZGlzdHJpYnV0ZSB0aGUgZGVsaXZlcmVkIGRvY3VtZW50IChpbmNsdWRpbmcgYWJzdHJhY3QgLyBhYnN0cmFjdCkgaW4KZGlnaXRhbCBvciBwcmludGVkIGZvcm1hdCBhbmQgaW4gYW55IG1lZGl1bS4KCmIpIERlY2xhcmVzIHRoYXQgdGhlIGRvY3VtZW50IHN1Ym1pdHRlZCBpcyBpdHMgb3JpZ2luYWwgd29yaywgYW5kIHRoYXQKeW91IGhhdmUgdGhlIHJpZ2h0IHRvIGdyYW50IHRoZSByaWdodHMgY29udGFpbmVkIGluIHRoaXMgbGljZW5zZS4gRGVjbGFyZXMKdGhhdCB0aGUgZGVsaXZlcnkgb2YgdGhlIGRvY3VtZW50IGRvZXMgbm90IGluZnJpbmdlLCBhcyBmYXIgYXMgaXQgaXMKdGhlIHJpZ2h0cyBvZiBhbnkgb3RoZXIgcGVyc29uIG9yIGVudGl0eS4KCmMpIElmIHRoZSBkb2N1bWVudCBkZWxpdmVyZWQgY29udGFpbnMgbWF0ZXJpYWwgd2hpY2ggZG9lcyBub3QKcmlnaHRzLCBkZWNsYXJlcyB0aGF0IGl0IGhhcyBvYnRhaW5lZCBhdXRob3JpemF0aW9uIGZyb20gdGhlIGhvbGRlciBvZiB0aGUKY29weXJpZ2h0IHRvIGdyYW50IHRoZSBVbml2ZXJzaWRhZGUgRmVkZXJhbCBkbyBSaW8gR3JhbmRlIGRvIE5vcnRlIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdCB0aGlzIG1hdGVyaWFsIHdob3NlIHJpZ2h0cyBhcmUgb2YKdGhpcmQgcGFydGllcyBpcyBjbGVhcmx5IGlkZW50aWZpZWQgYW5kIHJlY29nbml6ZWQgaW4gdGhlIHRleHQgb3IKY29udGVudCBvZiB0aGUgZG9jdW1lbnQgZGVsaXZlcmVkLgoKSWYgdGhlIGRvY3VtZW50IHN1Ym1pdHRlZCBpcyBiYXNlZCBvbiBmdW5kZWQgb3Igc3VwcG9ydGVkIHdvcmsKYnkgYW5vdGhlciBpbnN0aXR1dGlvbiBvdGhlciB0aGFuIHRoZSBVbml2ZXJzaWRhZGUgRmVkZXJhbCBkbyBSaW8gR3JhbmRlIGRvIE5vcnRlLCBkZWNsYXJlcyB0aGF0IGl0IGhhcyBmdWxmaWxsZWQgYW55IG9ibGlnYXRpb25zIHJlcXVpcmVkIGJ5IHRoZSByZXNwZWN0aXZlIGFncmVlbWVudCBvciBhZ3JlZW1lbnQuCgpUaGUgVW5pdmVyc2lkYWRlIEZlZGVyYWwgZG8gUmlvIEdyYW5kZSBkbyBOb3J0ZSB3aWxsIGNsZWFybHkgaWRlbnRpZnkgaXRzIG5hbWUgKHMpIGFzIHRoZSBhdXRob3IgKHMpIG9yIGhvbGRlciAocykgb2YgdGhlIGRvY3VtZW50J3MgcmlnaHRzCmRlbGl2ZXJlZCwgYW5kIHdpbGwgbm90IG1ha2UgYW55IGNoYW5nZXMsIG90aGVyIHRoYW4gdGhvc2UgcGVybWl0dGVkIGJ5CnRoaXMgbGljZW5zZQo=Repositório de PublicaçõesPUBhttp://repositorio.ufrn.br/oai/opendoar:2020-05-05T02:40:46Repositório Institucional da UFRN - Universidade Federal do Rio Grande do Norte (UFRN)false
dc.title.pt_BR.fl_str_mv Improving regional dynamic downscaling with multiple linear regression model using components principal analysis: precipitation over Amazon and Northeast Brazil
title Improving regional dynamic downscaling with multiple linear regression model using components principal analysis: precipitation over Amazon and Northeast Brazil
spellingShingle Improving regional dynamic downscaling with multiple linear regression model using components principal analysis: precipitation over Amazon and Northeast Brazil
Silva, Aline Gomes da
Precipitation
Multiple linear regression
Dynamic downscaling
title_short Improving regional dynamic downscaling with multiple linear regression model using components principal analysis: precipitation over Amazon and Northeast Brazil
title_full Improving regional dynamic downscaling with multiple linear regression model using components principal analysis: precipitation over Amazon and Northeast Brazil
title_fullStr Improving regional dynamic downscaling with multiple linear regression model using components principal analysis: precipitation over Amazon and Northeast Brazil
title_full_unstemmed Improving regional dynamic downscaling with multiple linear regression model using components principal analysis: precipitation over Amazon and Northeast Brazil
title_sort Improving regional dynamic downscaling with multiple linear regression model using components principal analysis: precipitation over Amazon and Northeast Brazil
author Silva, Aline Gomes da
author_facet Silva, Aline Gomes da
Silva, Claudio Moisés Santos e
author_role author
author2 Silva, Claudio Moisés Santos e
author2_role author
dc.contributor.author.fl_str_mv Silva, Aline Gomes da
Silva, Claudio Moisés Santos e
dc.subject.por.fl_str_mv Precipitation
Multiple linear regression
Dynamic downscaling
topic Precipitation
Multiple linear regression
Dynamic downscaling
description In the current context of climate change discussions, predictions of future scenarios of weather and climate are crucial for the generation of information of interest to the global community. Due to the atmosphere being a chaotic system, errors in predictions of future scenarios are systematically observed. Therefore, numerous techniques have been tested in order to generate more reliable predictions, and two techniques have excelled in science: dynamic downscaling, through regional models, and ensemble prediction,combining different outputs of climate models through the arithmetic average, in other words, a postprocessing of the output data species. Thus, this paper proposes a method of postprocessing outputs of regional climate models. This method consists in using the statistical tool multiple linear regression by principal components for combining different simulations obtained by dynamic downscaling with the regional climate model (RegCM4). Tests for the Amazon and Northeast region of Brazil (South America) showed that the method provided a more realistic prediction in terms of average daily rainfall for the analyzed period prescribed, after comparing with the prediction made by set through the arithmetic averages of the simulations. This method photographed the extreme events (outlier) that the prediction by averaging failed. Data from the Tropical Rainfall Measuring Mission (TRMM) were used to evaluate the method.
publishDate 2014
dc.date.issued.fl_str_mv 2014-07-10
dc.date.accessioned.fl_str_mv 2020-04-30T20:01:47Z
dc.date.available.fl_str_mv 2020-04-30T20:01:47Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.citation.fl_str_mv SILVA, Aline Gomes da; SILVA, Claudio Moises Santos e. Improving Regional Dynamic Downscaling with Multiple Linear Regression Model Using Components Principal Analysis: precipitation over amazon and northeast brazil. Advances In Meteorology, [s. l.], v. 2014, p. 1-9, 2014. ISSN 1687-9317 versão online. DOI http://dx.doi.org/10.1155/2014/928729. Disponível em: https://www.hindawi.com/journals/amete/2014/928729/. Acesso em: 30 abr. 2020.
dc.identifier.uri.fl_str_mv https://repositorio.ufrn.br/jspui/handle/123456789/28862
dc.identifier.issn.none.fl_str_mv 1687-9309 (print), 1687-9317 (online)
dc.identifier.doi.none.fl_str_mv https://doi.org/10.1155/2014/928729
identifier_str_mv SILVA, Aline Gomes da; SILVA, Claudio Moises Santos e. Improving Regional Dynamic Downscaling with Multiple Linear Regression Model Using Components Principal Analysis: precipitation over amazon and northeast brazil. Advances In Meteorology, [s. l.], v. 2014, p. 1-9, 2014. ISSN 1687-9317 versão online. DOI http://dx.doi.org/10.1155/2014/928729. Disponível em: https://www.hindawi.com/journals/amete/2014/928729/. Acesso em: 30 abr. 2020.
1687-9309 (print), 1687-9317 (online)
url https://repositorio.ufrn.br/jspui/handle/123456789/28862
https://doi.org/10.1155/2014/928729
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv Attribution 3.0 Brazil
http://creativecommons.org/licenses/by/3.0/br/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Attribution 3.0 Brazil
http://creativecommons.org/licenses/by/3.0/br/
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Hindawi Limited
publisher.none.fl_str_mv Hindawi Limited
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFRN
instname:Universidade Federal do Rio Grande do Norte (UFRN)
instacron:UFRN
instname_str Universidade Federal do Rio Grande do Norte (UFRN)
instacron_str UFRN
institution UFRN
reponame_str Repositório Institucional da UFRN
collection Repositório Institucional da UFRN
bitstream.url.fl_str_mv https://repositorio.ufrn.br/bitstream/123456789/28862/2/license_rdf
https://repositorio.ufrn.br/bitstream/123456789/28862/3/license.txt
https://repositorio.ufrn.br/bitstream/123456789/28862/1/ImprovingRegionalDynamicDownscaling_Silva_2014.pdf
https://repositorio.ufrn.br/bitstream/123456789/28862/4/ImprovingRegionalDynamicDownscaling_Silva_2014.pdf.txt
https://repositorio.ufrn.br/bitstream/123456789/28862/5/ImprovingRegionalDynamicDownscaling_Silva_2014.pdf.jpg
bitstream.checksum.fl_str_mv 4d2950bda3d176f570a9f8b328dfbbef
e9597aa2854d128fd968be5edc8a28d9
7aa5b8b1f6d22671a28441a05d024a1a
ac13855d6b4f56feda7af4a8c48b89b4
990463a20f7b134f4b04f20ecccc73ca
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFRN - Universidade Federal do Rio Grande do Norte (UFRN)
repository.mail.fl_str_mv
_version_ 1814832978968182784