Improving regional dynamic downscaling with multiple linear regression model using components principal analysis: precipitation over Amazon and Northeast Brazil
Autor(a) principal: | |
---|---|
Data de Publicação: | 2014 |
Outros Autores: | |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UFRN |
Texto Completo: | https://repositorio.ufrn.br/jspui/handle/123456789/28862 https://doi.org/10.1155/2014/928729 |
Resumo: | In the current context of climate change discussions, predictions of future scenarios of weather and climate are crucial for the generation of information of interest to the global community. Due to the atmosphere being a chaotic system, errors in predictions of future scenarios are systematically observed. Therefore, numerous techniques have been tested in order to generate more reliable predictions, and two techniques have excelled in science: dynamic downscaling, through regional models, and ensemble prediction,combining different outputs of climate models through the arithmetic average, in other words, a postprocessing of the output data species. Thus, this paper proposes a method of postprocessing outputs of regional climate models. This method consists in using the statistical tool multiple linear regression by principal components for combining different simulations obtained by dynamic downscaling with the regional climate model (RegCM4). Tests for the Amazon and Northeast region of Brazil (South America) showed that the method provided a more realistic prediction in terms of average daily rainfall for the analyzed period prescribed, after comparing with the prediction made by set through the arithmetic averages of the simulations. This method photographed the extreme events (outlier) that the prediction by averaging failed. Data from the Tropical Rainfall Measuring Mission (TRMM) were used to evaluate the method. |
id |
UFRN_52046c622b717a7d12c9839a93521282 |
---|---|
oai_identifier_str |
oai:https://repositorio.ufrn.br:123456789/28862 |
network_acronym_str |
UFRN |
network_name_str |
Repositório Institucional da UFRN |
repository_id_str |
|
spelling |
Silva, Aline Gomes daSilva, Claudio Moisés Santos e2020-04-30T20:01:47Z2020-04-30T20:01:47Z2014-07-10SILVA, Aline Gomes da; SILVA, Claudio Moises Santos e. Improving Regional Dynamic Downscaling with Multiple Linear Regression Model Using Components Principal Analysis: precipitation over amazon and northeast brazil. Advances In Meteorology, [s. l.], v. 2014, p. 1-9, 2014. ISSN 1687-9317 versão online. DOI http://dx.doi.org/10.1155/2014/928729. Disponível em: https://www.hindawi.com/journals/amete/2014/928729/. Acesso em: 30 abr. 2020.1687-9309 (print), 1687-9317 (online)https://repositorio.ufrn.br/jspui/handle/123456789/28862https://doi.org/10.1155/2014/928729Hindawi LimitedAttribution 3.0 Brazilhttp://creativecommons.org/licenses/by/3.0/br/info:eu-repo/semantics/openAccessPrecipitationMultiple linear regressionDynamic downscalingImproving regional dynamic downscaling with multiple linear regression model using components principal analysis: precipitation over Amazon and Northeast Brazilinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleIn the current context of climate change discussions, predictions of future scenarios of weather and climate are crucial for the generation of information of interest to the global community. Due to the atmosphere being a chaotic system, errors in predictions of future scenarios are systematically observed. Therefore, numerous techniques have been tested in order to generate more reliable predictions, and two techniques have excelled in science: dynamic downscaling, through regional models, and ensemble prediction,combining different outputs of climate models through the arithmetic average, in other words, a postprocessing of the output data species. Thus, this paper proposes a method of postprocessing outputs of regional climate models. This method consists in using the statistical tool multiple linear regression by principal components for combining different simulations obtained by dynamic downscaling with the regional climate model (RegCM4). Tests for the Amazon and Northeast region of Brazil (South America) showed that the method provided a more realistic prediction in terms of average daily rainfall for the analyzed period prescribed, after comparing with the prediction made by set through the arithmetic averages of the simulations. This method photographed the extreme events (outlier) that the prediction by averaging failed. Data from the Tropical Rainfall Measuring Mission (TRMM) were used to evaluate the method.engreponame:Repositório Institucional da UFRNinstname:Universidade Federal do Rio Grande do Norte (UFRN)instacron:UFRNCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8914https://repositorio.ufrn.br/bitstream/123456789/28862/2/license_rdf4d2950bda3d176f570a9f8b328dfbbefMD52LICENSElicense.txtlicense.txttext/plain; charset=utf-81484https://repositorio.ufrn.br/bitstream/123456789/28862/3/license.txte9597aa2854d128fd968be5edc8a28d9MD53ORIGINALImprovingRegionalDynamicDownscaling_Silva_2014.pdfImprovingRegionalDynamicDownscaling_Silva_2014.pdfapplication/pdf2587379https://repositorio.ufrn.br/bitstream/123456789/28862/1/ImprovingRegionalDynamicDownscaling_Silva_2014.pdf7aa5b8b1f6d22671a28441a05d024a1aMD51TEXTImprovingRegionalDynamicDownscaling_Silva_2014.pdf.txtImprovingRegionalDynamicDownscaling_Silva_2014.pdf.txtExtracted texttext/plain39380https://repositorio.ufrn.br/bitstream/123456789/28862/4/ImprovingRegionalDynamicDownscaling_Silva_2014.pdf.txtac13855d6b4f56feda7af4a8c48b89b4MD54THUMBNAILImprovingRegionalDynamicDownscaling_Silva_2014.pdf.jpgImprovingRegionalDynamicDownscaling_Silva_2014.pdf.jpgGenerated Thumbnailimage/jpeg1652https://repositorio.ufrn.br/bitstream/123456789/28862/5/ImprovingRegionalDynamicDownscaling_Silva_2014.pdf.jpg990463a20f7b134f4b04f20ecccc73caMD55123456789/288622020-05-04 23:40:46.771oai:https://repositorio.ufrn.br:123456789/28862Tk9OLUVYQ0xVU0lWRSBESVNUUklCVVRJT04gTElDRU5TRQoKCkJ5IHNpZ25pbmcgYW5kIGRlbGl2ZXJpbmcgdGhpcyBsaWNlbnNlLCBNci4gKGF1dGhvciBvciBjb3B5cmlnaHQgaG9sZGVyKToKCgphKSBHcmFudHMgdGhlIFVuaXZlcnNpZGFkZSBGZWRlcmFsIFJpbyBHcmFuZGUgZG8gTm9ydGUgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgb2YKcmVwcm9kdWNlLCBjb252ZXJ0IChhcyBkZWZpbmVkIGJlbG93KSwgY29tbXVuaWNhdGUgYW5kIC8gb3IKZGlzdHJpYnV0ZSB0aGUgZGVsaXZlcmVkIGRvY3VtZW50IChpbmNsdWRpbmcgYWJzdHJhY3QgLyBhYnN0cmFjdCkgaW4KZGlnaXRhbCBvciBwcmludGVkIGZvcm1hdCBhbmQgaW4gYW55IG1lZGl1bS4KCmIpIERlY2xhcmVzIHRoYXQgdGhlIGRvY3VtZW50IHN1Ym1pdHRlZCBpcyBpdHMgb3JpZ2luYWwgd29yaywgYW5kIHRoYXQKeW91IGhhdmUgdGhlIHJpZ2h0IHRvIGdyYW50IHRoZSByaWdodHMgY29udGFpbmVkIGluIHRoaXMgbGljZW5zZS4gRGVjbGFyZXMKdGhhdCB0aGUgZGVsaXZlcnkgb2YgdGhlIGRvY3VtZW50IGRvZXMgbm90IGluZnJpbmdlLCBhcyBmYXIgYXMgaXQgaXMKdGhlIHJpZ2h0cyBvZiBhbnkgb3RoZXIgcGVyc29uIG9yIGVudGl0eS4KCmMpIElmIHRoZSBkb2N1bWVudCBkZWxpdmVyZWQgY29udGFpbnMgbWF0ZXJpYWwgd2hpY2ggZG9lcyBub3QKcmlnaHRzLCBkZWNsYXJlcyB0aGF0IGl0IGhhcyBvYnRhaW5lZCBhdXRob3JpemF0aW9uIGZyb20gdGhlIGhvbGRlciBvZiB0aGUKY29weXJpZ2h0IHRvIGdyYW50IHRoZSBVbml2ZXJzaWRhZGUgRmVkZXJhbCBkbyBSaW8gR3JhbmRlIGRvIE5vcnRlIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdCB0aGlzIG1hdGVyaWFsIHdob3NlIHJpZ2h0cyBhcmUgb2YKdGhpcmQgcGFydGllcyBpcyBjbGVhcmx5IGlkZW50aWZpZWQgYW5kIHJlY29nbml6ZWQgaW4gdGhlIHRleHQgb3IKY29udGVudCBvZiB0aGUgZG9jdW1lbnQgZGVsaXZlcmVkLgoKSWYgdGhlIGRvY3VtZW50IHN1Ym1pdHRlZCBpcyBiYXNlZCBvbiBmdW5kZWQgb3Igc3VwcG9ydGVkIHdvcmsKYnkgYW5vdGhlciBpbnN0aXR1dGlvbiBvdGhlciB0aGFuIHRoZSBVbml2ZXJzaWRhZGUgRmVkZXJhbCBkbyBSaW8gR3JhbmRlIGRvIE5vcnRlLCBkZWNsYXJlcyB0aGF0IGl0IGhhcyBmdWxmaWxsZWQgYW55IG9ibGlnYXRpb25zIHJlcXVpcmVkIGJ5IHRoZSByZXNwZWN0aXZlIGFncmVlbWVudCBvciBhZ3JlZW1lbnQuCgpUaGUgVW5pdmVyc2lkYWRlIEZlZGVyYWwgZG8gUmlvIEdyYW5kZSBkbyBOb3J0ZSB3aWxsIGNsZWFybHkgaWRlbnRpZnkgaXRzIG5hbWUgKHMpIGFzIHRoZSBhdXRob3IgKHMpIG9yIGhvbGRlciAocykgb2YgdGhlIGRvY3VtZW50J3MgcmlnaHRzCmRlbGl2ZXJlZCwgYW5kIHdpbGwgbm90IG1ha2UgYW55IGNoYW5nZXMsIG90aGVyIHRoYW4gdGhvc2UgcGVybWl0dGVkIGJ5CnRoaXMgbGljZW5zZQo=Repositório de PublicaçõesPUBhttp://repositorio.ufrn.br/oai/opendoar:2020-05-05T02:40:46Repositório Institucional da UFRN - Universidade Federal do Rio Grande do Norte (UFRN)false |
dc.title.pt_BR.fl_str_mv |
Improving regional dynamic downscaling with multiple linear regression model using components principal analysis: precipitation over Amazon and Northeast Brazil |
title |
Improving regional dynamic downscaling with multiple linear regression model using components principal analysis: precipitation over Amazon and Northeast Brazil |
spellingShingle |
Improving regional dynamic downscaling with multiple linear regression model using components principal analysis: precipitation over Amazon and Northeast Brazil Silva, Aline Gomes da Precipitation Multiple linear regression Dynamic downscaling |
title_short |
Improving regional dynamic downscaling with multiple linear regression model using components principal analysis: precipitation over Amazon and Northeast Brazil |
title_full |
Improving regional dynamic downscaling with multiple linear regression model using components principal analysis: precipitation over Amazon and Northeast Brazil |
title_fullStr |
Improving regional dynamic downscaling with multiple linear regression model using components principal analysis: precipitation over Amazon and Northeast Brazil |
title_full_unstemmed |
Improving regional dynamic downscaling with multiple linear regression model using components principal analysis: precipitation over Amazon and Northeast Brazil |
title_sort |
Improving regional dynamic downscaling with multiple linear regression model using components principal analysis: precipitation over Amazon and Northeast Brazil |
author |
Silva, Aline Gomes da |
author_facet |
Silva, Aline Gomes da Silva, Claudio Moisés Santos e |
author_role |
author |
author2 |
Silva, Claudio Moisés Santos e |
author2_role |
author |
dc.contributor.author.fl_str_mv |
Silva, Aline Gomes da Silva, Claudio Moisés Santos e |
dc.subject.por.fl_str_mv |
Precipitation Multiple linear regression Dynamic downscaling |
topic |
Precipitation Multiple linear regression Dynamic downscaling |
description |
In the current context of climate change discussions, predictions of future scenarios of weather and climate are crucial for the generation of information of interest to the global community. Due to the atmosphere being a chaotic system, errors in predictions of future scenarios are systematically observed. Therefore, numerous techniques have been tested in order to generate more reliable predictions, and two techniques have excelled in science: dynamic downscaling, through regional models, and ensemble prediction,combining different outputs of climate models through the arithmetic average, in other words, a postprocessing of the output data species. Thus, this paper proposes a method of postprocessing outputs of regional climate models. This method consists in using the statistical tool multiple linear regression by principal components for combining different simulations obtained by dynamic downscaling with the regional climate model (RegCM4). Tests for the Amazon and Northeast region of Brazil (South America) showed that the method provided a more realistic prediction in terms of average daily rainfall for the analyzed period prescribed, after comparing with the prediction made by set through the arithmetic averages of the simulations. This method photographed the extreme events (outlier) that the prediction by averaging failed. Data from the Tropical Rainfall Measuring Mission (TRMM) were used to evaluate the method. |
publishDate |
2014 |
dc.date.issued.fl_str_mv |
2014-07-10 |
dc.date.accessioned.fl_str_mv |
2020-04-30T20:01:47Z |
dc.date.available.fl_str_mv |
2020-04-30T20:01:47Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.citation.fl_str_mv |
SILVA, Aline Gomes da; SILVA, Claudio Moises Santos e. Improving Regional Dynamic Downscaling with Multiple Linear Regression Model Using Components Principal Analysis: precipitation over amazon and northeast brazil. Advances In Meteorology, [s. l.], v. 2014, p. 1-9, 2014. ISSN 1687-9317 versão online. DOI http://dx.doi.org/10.1155/2014/928729. Disponível em: https://www.hindawi.com/journals/amete/2014/928729/. Acesso em: 30 abr. 2020. |
dc.identifier.uri.fl_str_mv |
https://repositorio.ufrn.br/jspui/handle/123456789/28862 |
dc.identifier.issn.none.fl_str_mv |
1687-9309 (print), 1687-9317 (online) |
dc.identifier.doi.none.fl_str_mv |
https://doi.org/10.1155/2014/928729 |
identifier_str_mv |
SILVA, Aline Gomes da; SILVA, Claudio Moises Santos e. Improving Regional Dynamic Downscaling with Multiple Linear Regression Model Using Components Principal Analysis: precipitation over amazon and northeast brazil. Advances In Meteorology, [s. l.], v. 2014, p. 1-9, 2014. ISSN 1687-9317 versão online. DOI http://dx.doi.org/10.1155/2014/928729. Disponível em: https://www.hindawi.com/journals/amete/2014/928729/. Acesso em: 30 abr. 2020. 1687-9309 (print), 1687-9317 (online) |
url |
https://repositorio.ufrn.br/jspui/handle/123456789/28862 https://doi.org/10.1155/2014/928729 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
Attribution 3.0 Brazil http://creativecommons.org/licenses/by/3.0/br/ info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Attribution 3.0 Brazil http://creativecommons.org/licenses/by/3.0/br/ |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
Hindawi Limited |
publisher.none.fl_str_mv |
Hindawi Limited |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFRN instname:Universidade Federal do Rio Grande do Norte (UFRN) instacron:UFRN |
instname_str |
Universidade Federal do Rio Grande do Norte (UFRN) |
instacron_str |
UFRN |
institution |
UFRN |
reponame_str |
Repositório Institucional da UFRN |
collection |
Repositório Institucional da UFRN |
bitstream.url.fl_str_mv |
https://repositorio.ufrn.br/bitstream/123456789/28862/2/license_rdf https://repositorio.ufrn.br/bitstream/123456789/28862/3/license.txt https://repositorio.ufrn.br/bitstream/123456789/28862/1/ImprovingRegionalDynamicDownscaling_Silva_2014.pdf https://repositorio.ufrn.br/bitstream/123456789/28862/4/ImprovingRegionalDynamicDownscaling_Silva_2014.pdf.txt https://repositorio.ufrn.br/bitstream/123456789/28862/5/ImprovingRegionalDynamicDownscaling_Silva_2014.pdf.jpg |
bitstream.checksum.fl_str_mv |
4d2950bda3d176f570a9f8b328dfbbef e9597aa2854d128fd968be5edc8a28d9 7aa5b8b1f6d22671a28441a05d024a1a ac13855d6b4f56feda7af4a8c48b89b4 990463a20f7b134f4b04f20ecccc73ca |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional da UFRN - Universidade Federal do Rio Grande do Norte (UFRN) |
repository.mail.fl_str_mv |
|
_version_ |
1814832978968182784 |