Choosing between Cox proportional hazards and logistic models for interval-censored data via bootstrap

Detalhes bibliográficos
Autor(a) principal: Corrente, José Eduardo
Data de Publicação: 2003
Outros Autores: Chalita, Liciana V. A. S., Moreira, Jeanete Alves
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UFRN
Texto Completo: https://repositorio.ufrn.br/handle/123456789/51002
Resumo: This work develops a new methodology in order to discriminate models for interval-censored data based on bootstrap residual simulation by observing the deviance difference from one model in relation to another, according to Hinde (1992). Generally, this sort of data can generate a large number of tied observations and, in this case, survival time can be regarded as discrete. Therefore, the Cox proportional hazards model for grouped data (Prentice&Gloeckler, 1978) and the logistic model (Lawless, 1982) can be fitted by means of generalized linear models. Whitehead (1989) considered censoring to be an indicative variable with a binomial distribution and fitted the Cox proportional hazards model using complementary log-log as a link function. In addition, a logistic model can be fitted using logit as a link function. The proposed methodology arises as an alternative to the score tests developed by Colosimo et al. (2000), where such models can be obtained for discrete binary data as particular cases from the Aranda-Ordaz distribution asymmetric family. These tests are thus developed with a basis on link functions to generate such a fit. The example that motivates this study was the dataset from an experiment carried out on a flax cultivar planted on four substrata susceptible to the pathogen Fusarium oxysoprum. The response variable, which is the time until blighting, was observed in intervals during 52 days. The results were compared with the model fit and the AIC values.
id UFRN_5e713e78afd902655ca84502924788b9
oai_identifier_str oai:https://repositorio.ufrn.br:123456789/51002
network_acronym_str UFRN
network_name_str Repositório Institucional da UFRN
repository_id_str
spelling Corrente, José EduardoChalita, Liciana V. A. S.Moreira, Jeanete Alves2023-01-20T18:31:10Z2023-01-20T18:31:10Z2003CORRENTE, J. E. ; CHALITA, L. V. A. S. ; MOREIRA, J. A. Choosing between Cox proportional hazards and logistic models for interval-censored data via bootstrap. Journal of Applied Statistics, Scheffield /Inglaterra, v. 30, n.1, p. 37-47, 2003. Disponível em: https://www.tandfonline.com/doi/abs/10.1080/0266476022000018493. Acesso em: 07 dez. 2017https://repositorio.ufrn.br/handle/123456789/5100210.1080/0266476022000018493Journal of Applied StatisticsModels for interval-censored dataCox proportional hazards modelBootstrappingChoosing between Cox proportional hazards and logistic models for interval-censored data via bootstrapinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleThis work develops a new methodology in order to discriminate models for interval-censored data based on bootstrap residual simulation by observing the deviance difference from one model in relation to another, according to Hinde (1992). Generally, this sort of data can generate a large number of tied observations and, in this case, survival time can be regarded as discrete. Therefore, the Cox proportional hazards model for grouped data (Prentice&Gloeckler, 1978) and the logistic model (Lawless, 1982) can be fitted by means of generalized linear models. Whitehead (1989) considered censoring to be an indicative variable with a binomial distribution and fitted the Cox proportional hazards model using complementary log-log as a link function. In addition, a logistic model can be fitted using logit as a link function. The proposed methodology arises as an alternative to the score tests developed by Colosimo et al. (2000), where such models can be obtained for discrete binary data as particular cases from the Aranda-Ordaz distribution asymmetric family. These tests are thus developed with a basis on link functions to generate such a fit. The example that motivates this study was the dataset from an experiment carried out on a flax cultivar planted on four substrata susceptible to the pathogen Fusarium oxysoprum. The response variable, which is the time until blighting, was observed in intervals during 52 days. The results were compared with the model fit and the AIC values.info:eu-repo/semantics/openAccessengreponame:Repositório Institucional da UFRNinstname:Universidade Federal do Rio Grande do Norte (UFRN)instacron:UFRNLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.ufrn.br/bitstream/123456789/51002/2/license.txt8a4605be74aa9ea9d79846c1fba20a33MD52123456789/510022023-01-20 15:31:55.723oai:https://repositorio.ufrn.br:123456789/51002Tk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=Repositório de PublicaçõesPUBhttp://repositorio.ufrn.br/oai/opendoar:2023-01-20T18:31:55Repositório Institucional da UFRN - Universidade Federal do Rio Grande do Norte (UFRN)false
dc.title.pt_BR.fl_str_mv Choosing between Cox proportional hazards and logistic models for interval-censored data via bootstrap
title Choosing between Cox proportional hazards and logistic models for interval-censored data via bootstrap
spellingShingle Choosing between Cox proportional hazards and logistic models for interval-censored data via bootstrap
Corrente, José Eduardo
Models for interval-censored data
Cox proportional hazards model
Bootstrapping
title_short Choosing between Cox proportional hazards and logistic models for interval-censored data via bootstrap
title_full Choosing between Cox proportional hazards and logistic models for interval-censored data via bootstrap
title_fullStr Choosing between Cox proportional hazards and logistic models for interval-censored data via bootstrap
title_full_unstemmed Choosing between Cox proportional hazards and logistic models for interval-censored data via bootstrap
title_sort Choosing between Cox proportional hazards and logistic models for interval-censored data via bootstrap
author Corrente, José Eduardo
author_facet Corrente, José Eduardo
Chalita, Liciana V. A. S.
Moreira, Jeanete Alves
author_role author
author2 Chalita, Liciana V. A. S.
Moreira, Jeanete Alves
author2_role author
author
dc.contributor.author.fl_str_mv Corrente, José Eduardo
Chalita, Liciana V. A. S.
Moreira, Jeanete Alves
dc.subject.por.fl_str_mv Models for interval-censored data
Cox proportional hazards model
Bootstrapping
topic Models for interval-censored data
Cox proportional hazards model
Bootstrapping
description This work develops a new methodology in order to discriminate models for interval-censored data based on bootstrap residual simulation by observing the deviance difference from one model in relation to another, according to Hinde (1992). Generally, this sort of data can generate a large number of tied observations and, in this case, survival time can be regarded as discrete. Therefore, the Cox proportional hazards model for grouped data (Prentice&Gloeckler, 1978) and the logistic model (Lawless, 1982) can be fitted by means of generalized linear models. Whitehead (1989) considered censoring to be an indicative variable with a binomial distribution and fitted the Cox proportional hazards model using complementary log-log as a link function. In addition, a logistic model can be fitted using logit as a link function. The proposed methodology arises as an alternative to the score tests developed by Colosimo et al. (2000), where such models can be obtained for discrete binary data as particular cases from the Aranda-Ordaz distribution asymmetric family. These tests are thus developed with a basis on link functions to generate such a fit. The example that motivates this study was the dataset from an experiment carried out on a flax cultivar planted on four substrata susceptible to the pathogen Fusarium oxysoprum. The response variable, which is the time until blighting, was observed in intervals during 52 days. The results were compared with the model fit and the AIC values.
publishDate 2003
dc.date.issued.fl_str_mv 2003
dc.date.accessioned.fl_str_mv 2023-01-20T18:31:10Z
dc.date.available.fl_str_mv 2023-01-20T18:31:10Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.citation.fl_str_mv CORRENTE, J. E. ; CHALITA, L. V. A. S. ; MOREIRA, J. A. Choosing between Cox proportional hazards and logistic models for interval-censored data via bootstrap. Journal of Applied Statistics, Scheffield /Inglaterra, v. 30, n.1, p. 37-47, 2003. Disponível em: https://www.tandfonline.com/doi/abs/10.1080/0266476022000018493. Acesso em: 07 dez. 2017
dc.identifier.uri.fl_str_mv https://repositorio.ufrn.br/handle/123456789/51002
dc.identifier.doi.none.fl_str_mv 10.1080/0266476022000018493
identifier_str_mv CORRENTE, J. E. ; CHALITA, L. V. A. S. ; MOREIRA, J. A. Choosing between Cox proportional hazards and logistic models for interval-censored data via bootstrap. Journal of Applied Statistics, Scheffield /Inglaterra, v. 30, n.1, p. 37-47, 2003. Disponível em: https://www.tandfonline.com/doi/abs/10.1080/0266476022000018493. Acesso em: 07 dez. 2017
10.1080/0266476022000018493
url https://repositorio.ufrn.br/handle/123456789/51002
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Journal of Applied Statistics
publisher.none.fl_str_mv Journal of Applied Statistics
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFRN
instname:Universidade Federal do Rio Grande do Norte (UFRN)
instacron:UFRN
instname_str Universidade Federal do Rio Grande do Norte (UFRN)
instacron_str UFRN
institution UFRN
reponame_str Repositório Institucional da UFRN
collection Repositório Institucional da UFRN
bitstream.url.fl_str_mv https://repositorio.ufrn.br/bitstream/123456789/51002/2/license.txt
bitstream.checksum.fl_str_mv 8a4605be74aa9ea9d79846c1fba20a33
bitstream.checksumAlgorithm.fl_str_mv MD5
repository.name.fl_str_mv Repositório Institucional da UFRN - Universidade Federal do Rio Grande do Norte (UFRN)
repository.mail.fl_str_mv
_version_ 1814832820803076096