Projeto de controladores com complexidade reduzida para sistemas lineares sujeitos a restrições usando análise de agrupamentos de dados

Detalhes bibliográficos
Autor(a) principal: Dantas, Amanda Danielle Oliveira da Silva
Data de Publicação: 2018
Tipo de documento: Tese
Idioma: por
Título da fonte: Repositório Institucional da UFRN
Texto Completo: https://repositorio.ufrn.br/jspui/handle/123456789/26387
Resumo: O projeto de controladores para sistemas lineares de tempo discreto sujeitos a restrições pode ser realizado baseado no conceito de conjuntos invariantes, juntamente com a solução de problemas de programação linear multiparamétricos. Esta solução é representada por um conjunto de regiões poliédricas associadas a uma lei de controle do tipo Afim por Partes (PWA, do inglês PieceWise Affine). No entanto, em sistemas de ordem elevada a técnica de programação linear multiparametrica pode resultar em controladores de alta complexidade, que requerem um hardware com grande capacidade de armazenamento na memória e alto poder de processamento para sua implementação em tempo real, devido a um número elevado de regiões poliédricas definindo a lei PWA. Neste trabalho são propostos métodos numéricos que permitem reduzir a complexidade destes controladores. Para este propósito, são usados o conceito de conjuntos invariantes e o algoritmo de análise de agrupamento de dados K q-flat. Primeiramente, mostra-se como o algoritmo K q-flat pode ser usado para estabelecer um número menor de regiões poliédricas associadas a uma lei de controle por realimentação de estado PWA. Em seguida, tal abordagem é estendida para o projeto de c por realimentação de saída estática para sistemas sob restrições e de observadores de estado com limitação no erro. Além disso, problemas de otimização são propostos para calcular uma lei PWA sub-ótima capaz de reduzir ainda mais o número de regiões poliédricas. Os resultados apresentados mostram que as abordagens propostas são capazes de calcular leis PWA com um número muito menor de regiões quando comparadas com a solução multiparamétrica, diminuindo fortemente o custo computacional associado a sua implementação.
id UFRN_5ef8ba228ac87d4ffc38f10d990ba875
oai_identifier_str oai:https://repositorio.ufrn.br:123456789/26387
network_acronym_str UFRN
network_name_str Repositório Institucional da UFRN
repository_id_str
spelling Dantas, Amanda Danielle Oliveira da SilvaDoria Neto, Adrião DuarteMaitelli, André LaurindoCastelan Neto, Eugenio de BonaAraújo, José MárioDorea, Carlos Eduardo Trabuco2018-12-26T21:09:10Z2018-12-26T21:09:10Z2018-10-01DANTAS, Amanda Danielle Oliveira da Silva. Projeto de controladores com complexidade reduzida para sistemas lineares sujeitos a restrições usando análise de agrupamentos de dados. 2018. 159f. Tese (Doutorado em Engenharia Elétrica e de Computação) - Centro de Tecnologia, Universidade Federal do Rio Grande do Norte, Natal, 2018.https://repositorio.ufrn.br/jspui/handle/123456789/26387O projeto de controladores para sistemas lineares de tempo discreto sujeitos a restrições pode ser realizado baseado no conceito de conjuntos invariantes, juntamente com a solução de problemas de programação linear multiparamétricos. Esta solução é representada por um conjunto de regiões poliédricas associadas a uma lei de controle do tipo Afim por Partes (PWA, do inglês PieceWise Affine). No entanto, em sistemas de ordem elevada a técnica de programação linear multiparametrica pode resultar em controladores de alta complexidade, que requerem um hardware com grande capacidade de armazenamento na memória e alto poder de processamento para sua implementação em tempo real, devido a um número elevado de regiões poliédricas definindo a lei PWA. Neste trabalho são propostos métodos numéricos que permitem reduzir a complexidade destes controladores. Para este propósito, são usados o conceito de conjuntos invariantes e o algoritmo de análise de agrupamento de dados K q-flat. Primeiramente, mostra-se como o algoritmo K q-flat pode ser usado para estabelecer um número menor de regiões poliédricas associadas a uma lei de controle por realimentação de estado PWA. Em seguida, tal abordagem é estendida para o projeto de c por realimentação de saída estática para sistemas sob restrições e de observadores de estado com limitação no erro. Além disso, problemas de otimização são propostos para calcular uma lei PWA sub-ótima capaz de reduzir ainda mais o número de regiões poliédricas. Os resultados apresentados mostram que as abordagens propostas são capazes de calcular leis PWA com um número muito menor de regiões quando comparadas com a solução multiparamétrica, diminuindo fortemente o custo computacional associado a sua implementação.Controller design for discrete-time linear systems subject to constraints can be carried out based on the concept of invariant sets, together with the solution of multiparametric programming problems. Such a solution is represented by a set of polyhedral regions associated to a Piecewise Affine (PWA) control law. However, for high-order systems, the multiparametric linear programming technique may result in controllers of high complexity, which require a hardware with great storage capacity in the memory and high processing power due to the a high number of polyhedral regions defining the PWA law. In this work we propose a number of numerical methods which aim to reduce the complexity of such controllers. To this end, the concept of invariant sets and the K q-flat data cluster analysis algorithm are applied. First, we show that the K q-flat algorithm can be used to establish a smaller number of polyhedral regions associated to a PWA state feedback control law. Then, this approach is extended to the design of static output feedback controllers for constrained systems and of state observers with error limitation. In addition, optimization problems are proposed to compute a suboptimal PWA law capable of further reducing the number of polyhedral regions. The results we present show that the proposed approaches are able to compute PWA laws with a smaller number of polyhedral regions when compared with the multiparametric solution, strongly reducing the computational cost associated to their implementation.Conselho Nacional de Desenvolvimento Científico e Tecnológico - CNPqporCNPQ::ENGENHARIAS::ENGENHARIA ELETRICASistemas lineares sujeitos a restriçõesProgramação multiparamétricaAnálise de agrupamentos de dadosConjuntos positivamente invariantesProjeto de controladores com complexidade reduzida para sistemas lineares sujeitos a restrições usando análise de agrupamentos de dadosinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisPROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA E DE COMPUTAÇÃOUFRNBrasilinfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFRNinstname:Universidade Federal do Rio Grande do Norte (UFRN)instacron:UFRNTEXTProjetocontroladorescomplexidade_Dantas_2018.pdf.txtProjetocontroladorescomplexidade_Dantas_2018.pdf.txtExtracted texttext/plain254609https://repositorio.ufrn.br/bitstream/123456789/26387/2/Projetocontroladorescomplexidade_Dantas_2018.pdf.txt200574580aded887d41eeb51fe1ceed4MD52THUMBNAILProjetocontroladorescomplexidade_Dantas_2018.pdf.jpgProjetocontroladorescomplexidade_Dantas_2018.pdf.jpgIM Thumbnailimage/jpeg4462https://repositorio.ufrn.br/bitstream/123456789/26387/3/Projetocontroladorescomplexidade_Dantas_2018.pdf.jpgb8c521ec112806fc16414d6c7106af46MD53TEXTProjetocontroladorescomplexidade_Dantas_2018.pdf.txtProjetocontroladorescomplexidade_Dantas_2018.pdf.txtExtracted texttext/plain254609https://repositorio.ufrn.br/bitstream/123456789/26387/2/Projetocontroladorescomplexidade_Dantas_2018.pdf.txt200574580aded887d41eeb51fe1ceed4MD52THUMBNAILProjetocontroladorescomplexidade_Dantas_2018.pdf.jpgProjetocontroladorescomplexidade_Dantas_2018.pdf.jpgIM Thumbnailimage/jpeg4462https://repositorio.ufrn.br/bitstream/123456789/26387/3/Projetocontroladorescomplexidade_Dantas_2018.pdf.jpgb8c521ec112806fc16414d6c7106af46MD53ORIGINALProjetocontroladorescomplexidade_Dantas_2018.pdfapplication/pdf3574263https://repositorio.ufrn.br/bitstream/123456789/26387/1/Projetocontroladorescomplexidade_Dantas_2018.pdf7bfc4f3e53126c8d97c027bbbc2cfaddMD51123456789/263872019-01-30 11:22:40.536oai:https://repositorio.ufrn.br:123456789/26387Repositório de PublicaçõesPUBhttp://repositorio.ufrn.br/oai/opendoar:2019-01-30T14:22:40Repositório Institucional da UFRN - Universidade Federal do Rio Grande do Norte (UFRN)false
dc.title.pt_BR.fl_str_mv Projeto de controladores com complexidade reduzida para sistemas lineares sujeitos a restrições usando análise de agrupamentos de dados
title Projeto de controladores com complexidade reduzida para sistemas lineares sujeitos a restrições usando análise de agrupamentos de dados
spellingShingle Projeto de controladores com complexidade reduzida para sistemas lineares sujeitos a restrições usando análise de agrupamentos de dados
Dantas, Amanda Danielle Oliveira da Silva
CNPQ::ENGENHARIAS::ENGENHARIA ELETRICA
Sistemas lineares sujeitos a restrições
Programação multiparamétrica
Análise de agrupamentos de dados
Conjuntos positivamente invariantes
title_short Projeto de controladores com complexidade reduzida para sistemas lineares sujeitos a restrições usando análise de agrupamentos de dados
title_full Projeto de controladores com complexidade reduzida para sistemas lineares sujeitos a restrições usando análise de agrupamentos de dados
title_fullStr Projeto de controladores com complexidade reduzida para sistemas lineares sujeitos a restrições usando análise de agrupamentos de dados
title_full_unstemmed Projeto de controladores com complexidade reduzida para sistemas lineares sujeitos a restrições usando análise de agrupamentos de dados
title_sort Projeto de controladores com complexidade reduzida para sistemas lineares sujeitos a restrições usando análise de agrupamentos de dados
author Dantas, Amanda Danielle Oliveira da Silva
author_facet Dantas, Amanda Danielle Oliveira da Silva
author_role author
dc.contributor.authorID.pt_BR.fl_str_mv
dc.contributor.advisorID.pt_BR.fl_str_mv
dc.contributor.referees1.none.fl_str_mv Doria Neto, Adrião Duarte
dc.contributor.referees1ID.pt_BR.fl_str_mv
dc.contributor.referees2.none.fl_str_mv Maitelli, André Laurindo
dc.contributor.referees2ID.pt_BR.fl_str_mv
dc.contributor.referees3.none.fl_str_mv Castelan Neto, Eugenio de Bona
dc.contributor.referees3ID.pt_BR.fl_str_mv
dc.contributor.referees4.none.fl_str_mv Araújo, José Mário
dc.contributor.referees4ID.pt_BR.fl_str_mv
dc.contributor.author.fl_str_mv Dantas, Amanda Danielle Oliveira da Silva
dc.contributor.advisor1.fl_str_mv Dorea, Carlos Eduardo Trabuco
contributor_str_mv Dorea, Carlos Eduardo Trabuco
dc.subject.cnpq.fl_str_mv CNPQ::ENGENHARIAS::ENGENHARIA ELETRICA
topic CNPQ::ENGENHARIAS::ENGENHARIA ELETRICA
Sistemas lineares sujeitos a restrições
Programação multiparamétrica
Análise de agrupamentos de dados
Conjuntos positivamente invariantes
dc.subject.por.fl_str_mv Sistemas lineares sujeitos a restrições
Programação multiparamétrica
Análise de agrupamentos de dados
Conjuntos positivamente invariantes
description O projeto de controladores para sistemas lineares de tempo discreto sujeitos a restrições pode ser realizado baseado no conceito de conjuntos invariantes, juntamente com a solução de problemas de programação linear multiparamétricos. Esta solução é representada por um conjunto de regiões poliédricas associadas a uma lei de controle do tipo Afim por Partes (PWA, do inglês PieceWise Affine). No entanto, em sistemas de ordem elevada a técnica de programação linear multiparametrica pode resultar em controladores de alta complexidade, que requerem um hardware com grande capacidade de armazenamento na memória e alto poder de processamento para sua implementação em tempo real, devido a um número elevado de regiões poliédricas definindo a lei PWA. Neste trabalho são propostos métodos numéricos que permitem reduzir a complexidade destes controladores. Para este propósito, são usados o conceito de conjuntos invariantes e o algoritmo de análise de agrupamento de dados K q-flat. Primeiramente, mostra-se como o algoritmo K q-flat pode ser usado para estabelecer um número menor de regiões poliédricas associadas a uma lei de controle por realimentação de estado PWA. Em seguida, tal abordagem é estendida para o projeto de c por realimentação de saída estática para sistemas sob restrições e de observadores de estado com limitação no erro. Além disso, problemas de otimização são propostos para calcular uma lei PWA sub-ótima capaz de reduzir ainda mais o número de regiões poliédricas. Os resultados apresentados mostram que as abordagens propostas são capazes de calcular leis PWA com um número muito menor de regiões quando comparadas com a solução multiparamétrica, diminuindo fortemente o custo computacional associado a sua implementação.
publishDate 2018
dc.date.accessioned.fl_str_mv 2018-12-26T21:09:10Z
dc.date.available.fl_str_mv 2018-12-26T21:09:10Z
dc.date.issued.fl_str_mv 2018-10-01
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv DANTAS, Amanda Danielle Oliveira da Silva. Projeto de controladores com complexidade reduzida para sistemas lineares sujeitos a restrições usando análise de agrupamentos de dados. 2018. 159f. Tese (Doutorado em Engenharia Elétrica e de Computação) - Centro de Tecnologia, Universidade Federal do Rio Grande do Norte, Natal, 2018.
dc.identifier.uri.fl_str_mv https://repositorio.ufrn.br/jspui/handle/123456789/26387
identifier_str_mv DANTAS, Amanda Danielle Oliveira da Silva. Projeto de controladores com complexidade reduzida para sistemas lineares sujeitos a restrições usando análise de agrupamentos de dados. 2018. 159f. Tese (Doutorado em Engenharia Elétrica e de Computação) - Centro de Tecnologia, Universidade Federal do Rio Grande do Norte, Natal, 2018.
url https://repositorio.ufrn.br/jspui/handle/123456789/26387
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.program.fl_str_mv PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA E DE COMPUTAÇÃO
dc.publisher.initials.fl_str_mv UFRN
dc.publisher.country.fl_str_mv Brasil
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFRN
instname:Universidade Federal do Rio Grande do Norte (UFRN)
instacron:UFRN
instname_str Universidade Federal do Rio Grande do Norte (UFRN)
instacron_str UFRN
institution UFRN
reponame_str Repositório Institucional da UFRN
collection Repositório Institucional da UFRN
bitstream.url.fl_str_mv https://repositorio.ufrn.br/bitstream/123456789/26387/2/Projetocontroladorescomplexidade_Dantas_2018.pdf.txt
https://repositorio.ufrn.br/bitstream/123456789/26387/3/Projetocontroladorescomplexidade_Dantas_2018.pdf.jpg
https://repositorio.ufrn.br/bitstream/123456789/26387/2/Projetocontroladorescomplexidade_Dantas_2018.pdf.txt
https://repositorio.ufrn.br/bitstream/123456789/26387/3/Projetocontroladorescomplexidade_Dantas_2018.pdf.jpg
https://repositorio.ufrn.br/bitstream/123456789/26387/1/Projetocontroladorescomplexidade_Dantas_2018.pdf
bitstream.checksum.fl_str_mv 200574580aded887d41eeb51fe1ceed4
b8c521ec112806fc16414d6c7106af46
200574580aded887d41eeb51fe1ceed4
b8c521ec112806fc16414d6c7106af46
7bfc4f3e53126c8d97c027bbbc2cfadd
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFRN - Universidade Federal do Rio Grande do Norte (UFRN)
repository.mail.fl_str_mv
_version_ 1814833070016036864