Teorias f(R) de gravidade na formulação de Palatini

Detalhes bibliográficos
Autor(a) principal: Oliveira, Thiago Bruno Rafael de Freiras
Data de Publicação: 2010
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Repositório Institucional da UFRN
Texto Completo: https://repositorio.ufrn.br/jspui/handle/123456789/18587
Resumo: In this dissertation, after a brief review on the Einstein s General Relativity Theory and its application to the Friedmann-Lemaitre-Robertson-Walker (FLRW) cosmological models, we present and discuss the alternative theories of gravity dubbed f(R) gravity. These theories come about when one substitute in the Einstein-Hilbert action the Ricci curvature R by some well behaved nonlinear function f(R). They provide an alternative way to explain the current cosmic acceleration with no need of invoking neither a dark energy component, nor the existence of extra spatial dimensions. In dealing with f(R) gravity, two different variational approaches may be followed, namely the metric and the Palatini formalisms, which lead to very different equations of motion. We briefly describe the metric formalism and then concentrate on the Palatini variational approach to the gravity action. We make a systematic and detailed derivation of the field equations for Palatini f(R) gravity, which generalize the Einsteins equations of General Relativity, and obtain also the generalized Friedmann equations, which can be used for cosmological tests. As an example, using recent compilations of type Ia Supernovae observations, we show how the f(R) = R − fi/Rn class of gravity theories explain the recent observed acceleration of the universe by placing reasonable constraints on the free parameters fi and n. We also examine the question as to whether Palatini f(R) gravity theories permit space-times in which causality, a fundamental issue in any physical theory [22], is violated. As is well known, in General Relativity there are solutions to the viii field equations that have causal anomalies in the form of closed time-like curves, the renowned Gödel model being the best known example of such a solution. Here we show that every perfect-fluid Gödel-type solution of Palatini f(R) gravity with density and pressure p that satisfy the weak energy condition + p 0 is necessarily isometric to the Gödel geometry, demonstrating, therefore, that these theories present causal anomalies in the form of closed time-like curves. This result extends a theorem on Gödel-type models to the framework of Palatini f(R) gravity theory. We derive an expression for a critical radius rc (beyond which causality is violated) for an arbitrary Palatini f(R) theory. The expression makes apparent that the violation of causality depends on the form of f(R) and on the matter content components. We concretely examine the Gödel-type perfect-fluid solutions in the f(R) = R−fi/Rn class of Palatini gravity theories, and show that for positive matter density and for fi and n in the range permitted by the observations, these theories do not admit the Gödel geometry as a perfect-fluid solution of its field equations. In this sense, f(R) gravity theory remedies the causal pathology in the form of closed timelike curves which is allowed in General Relativity. We also examine the violation of causality of Gödel-type by considering a single scalar field as the matter content. For this source, we show that Palatini f(R) gravity gives rise to a unique Gödeltype solution with no violation of causality. Finally, we show that by combining a perfect fluid plus a scalar field as sources of Gödel-type geometries, we obtain both solutions in the form of closed time-like curves, as well as solutions with no violation of causality
id UFRN_6f404d666ff3b8ec16114dd94f29bef2
oai_identifier_str oai:https://repositorio.ufrn.br:123456789/18587
network_acronym_str UFRN
network_name_str Repositório Institucional da UFRN
repository_id_str
spelling Oliveira, Thiago Bruno Rafael de Freirashttp://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4763288H3Maia, Márcio Roberto Garciahttp://lattes.cnpq.br/4770731765905643Pires, Nilzahttp://lattes.cnpq.br/2463198529477607Santos, Janilo2015-03-03T15:15:24Z2015-02-252015-03-03T15:15:24Z2010-07-01OLIVEIRA, Thiago Bruno Rafael de Freiras. Teorias f(R) de gravidade na formulação de Palatini. 2010. 103 f. Dissertação (Mestrado em Física da Matéria Condensada; Astrofísica e Cosmologia; Física da Ionosfera) - Universidade Federal do Rio Grande do Norte, Natal, 2010.https://repositorio.ufrn.br/jspui/handle/123456789/18587In this dissertation, after a brief review on the Einstein s General Relativity Theory and its application to the Friedmann-Lemaitre-Robertson-Walker (FLRW) cosmological models, we present and discuss the alternative theories of gravity dubbed f(R) gravity. These theories come about when one substitute in the Einstein-Hilbert action the Ricci curvature R by some well behaved nonlinear function f(R). They provide an alternative way to explain the current cosmic acceleration with no need of invoking neither a dark energy component, nor the existence of extra spatial dimensions. In dealing with f(R) gravity, two different variational approaches may be followed, namely the metric and the Palatini formalisms, which lead to very different equations of motion. We briefly describe the metric formalism and then concentrate on the Palatini variational approach to the gravity action. We make a systematic and detailed derivation of the field equations for Palatini f(R) gravity, which generalize the Einsteins equations of General Relativity, and obtain also the generalized Friedmann equations, which can be used for cosmological tests. As an example, using recent compilations of type Ia Supernovae observations, we show how the f(R) = R − fi/Rn class of gravity theories explain the recent observed acceleration of the universe by placing reasonable constraints on the free parameters fi and n. We also examine the question as to whether Palatini f(R) gravity theories permit space-times in which causality, a fundamental issue in any physical theory [22], is violated. As is well known, in General Relativity there are solutions to the viii field equations that have causal anomalies in the form of closed time-like curves, the renowned Gödel model being the best known example of such a solution. Here we show that every perfect-fluid Gödel-type solution of Palatini f(R) gravity with density and pressure p that satisfy the weak energy condition + p 0 is necessarily isometric to the Gödel geometry, demonstrating, therefore, that these theories present causal anomalies in the form of closed time-like curves. This result extends a theorem on Gödel-type models to the framework of Palatini f(R) gravity theory. We derive an expression for a critical radius rc (beyond which causality is violated) for an arbitrary Palatini f(R) theory. The expression makes apparent that the violation of causality depends on the form of f(R) and on the matter content components. We concretely examine the Gödel-type perfect-fluid solutions in the f(R) = R−fi/Rn class of Palatini gravity theories, and show that for positive matter density and for fi and n in the range permitted by the observations, these theories do not admit the Gödel geometry as a perfect-fluid solution of its field equations. In this sense, f(R) gravity theory remedies the causal pathology in the form of closed timelike curves which is allowed in General Relativity. We also examine the violation of causality of Gödel-type by considering a single scalar field as the matter content. For this source, we show that Palatini f(R) gravity gives rise to a unique Gödeltype solution with no violation of causality. Finally, we show that by combining a perfect fluid plus a scalar field as sources of Gödel-type geometries, we obtain both solutions in the form of closed time-like curves, as well as solutions with no violation of causalityNesta dissertação, após uma breve revisão sobre a Teoria da Relatividade Geral de Einstein e suas aplicações para os modelos cosmológicos de Friedmann-Lemaitre- Robertson-Walker (FLRW), apresentamos e discutimos as teorias alternativas de gravidade denominadas de gravidade f(R). Estas teorias surgem quando substituímos na ação de Einstein-Hilbert o escalar de curvatura de Ricci R por qualquer função f(R) não-linear bem comportada. Elas fornecem uma maneira alternativa para explicar a aceleração cósmica atual sem necessitar envolver qualquer componente de energia escura ou a existência de dimensões espaciais extras. Quando lidamos com gravidade f(R), dois diferentes princípios variacionais podem ser seguidos, a saber, o formalismo métrico e o de Palatini, os quais levam a equações de movimento muito diferentes. Descrevemos brevemente o formalismo métrico e então nos concentramos no princípio variacional de Palatini para a ação da gravidade. Fazemos uma derivação sistemática e detalhada das equações de campo para a gravidade f(R) de Palatini, as quais generalizam as equações de Einstein da Relatividade Geral. Em seguida obtemos as equações de Friedmann generalizadas, que podem ser usadas para testes cosmológicos. Para exemplificar, usamos compilações recentes de observações de supernovas do tipo Ia e mostramos como a classe de teorias de gravidade f(R) = R − /Rn explica a recente aceleração observada do universo quando colocamos vínculos razoáveis sobre os parâmetros livres e n. Examinamos também a questão de como teorias f(R) de gravidade em Palatini permitem espaços-tempos em que a causalidade, um resultado fundamental em qualquer teoria física [22], é violada. Como é bem conhecido, na Relatividade Geral existem soluções para as equações de campo que possuem anomalias causais na forma de curvas tipo-tempo fechadas, sendo o modelo de Gödel o exemplo mais bem conhecido de tais soluções. Aqui mostramos que toda solução do tipo-Gödel de gravidade f(R) em Palatini com fluido perfeito, caracterizado por densidade e pressão p, satisfazendo a condição de energia fraca + p 0, é necessariamente isométrica à geometria de Gödel, demonstrando, portanto, que essas teorias apresentam anomalias causais na forma de curvas tipo-tempo fechadas. Esses resultados ampliam um teorema sobre modelos tipo-Gödel para a estrutura das teorias de gravidade f(R) de Palatini. Derivamos uma expressão para o raio crítico rc (além do qual a causalidade é violada) para uma teoria arbitrária de gravidade f(R) de Palatini. A expressão encontrada tornou claro que a violação da causalidade depende da forma de f(R) e dos componentes do conteúdo de matéria. Examinamos objetivamente as soluções tipo-Gödel de um fluido perfeito na classe f(R) = R − /Rn das teorias de gravidade de Palatini e mostramos que, para uma densidade de matéria positiva e para e n em um intervalo permitido pelas observações, essas teorias não admitem como soluções de suas equações de campo a geometria de Gödel juntamente com um fluido perfeito. Nesse sentido, teorias de gravidade f(R) remediam a patologia causal na forma de curvas tipotempo fechadas que é permitido na Relatividade Geral. Examinamos também essa violação de causalidade ao considerar um campo escalar como conteúdo material. Para essa fonte, mostramos que a gravidade f(R) em Palatini dá origem a uma única solução do tipo-Gödel sem violação de causalidade. Finalmente, mostramos que a combinação de um fluido perfeito mais um campo escalar como fontes de geometrias tipo-Gödel, levam a soluções na forma de curvas tipo-tempo fechadas como a soluções sem violação de causalidadeCoordenação de Aperfeiçoamento de Pessoal de Nível Superiorapplication/pdfporUniversidade Federal do Rio Grande do NortePrograma de Pós-Graduação em FísicaUFRNBRFísica da Matéria Condensada; Astrofísica e Cosmologia; Física da IonosferaTeoria de EinsteinCampo gravitacionalTeorias f(R)formulação de PalatiniGravityGravitational fieldPalatini f(R) gravityCNPQ::CIENCIAS EXATAS E DA TERRA::FISICATeorias f(R) de gravidade na formulação de Palatiniinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFRNinstname:Universidade Federal do Rio Grande do Norte (UFRN)instacron:UFRNORIGINALThiagoBRFO_DISSERT.pdfapplication/pdf776732https://repositorio.ufrn.br/bitstream/123456789/18587/1/ThiagoBRFO_DISSERT.pdf79a4002c3c2d724d3d1651680816802bMD51TEXTThiagoBRFO_DISSERT.pdf.txtThiagoBRFO_DISSERT.pdf.txtExtracted texttext/plain139697https://repositorio.ufrn.br/bitstream/123456789/18587/6/ThiagoBRFO_DISSERT.pdf.txt3448902cd1ef6daa23d72de057f5fedaMD56THUMBNAILThiagoBRFO_DISSERT.pdf.jpgThiagoBRFO_DISSERT.pdf.jpgIM Thumbnailimage/jpeg4132https://repositorio.ufrn.br/bitstream/123456789/18587/7/ThiagoBRFO_DISSERT.pdf.jpg2a55de5ffa1bb751a08da0aa93b6ab50MD57123456789/185872017-11-02 13:01:11.913oai:https://repositorio.ufrn.br:123456789/18587Repositório de PublicaçõesPUBhttp://repositorio.ufrn.br/oai/opendoar:2017-11-02T16:01:11Repositório Institucional da UFRN - Universidade Federal do Rio Grande do Norte (UFRN)false
dc.title.por.fl_str_mv Teorias f(R) de gravidade na formulação de Palatini
title Teorias f(R) de gravidade na formulação de Palatini
spellingShingle Teorias f(R) de gravidade na formulação de Palatini
Oliveira, Thiago Bruno Rafael de Freiras
Teoria de Einstein
Campo gravitacional
Teorias f(R)
formulação de Palatini
Gravity
Gravitational field
Palatini f(R) gravity
CNPQ::CIENCIAS EXATAS E DA TERRA::FISICA
title_short Teorias f(R) de gravidade na formulação de Palatini
title_full Teorias f(R) de gravidade na formulação de Palatini
title_fullStr Teorias f(R) de gravidade na formulação de Palatini
title_full_unstemmed Teorias f(R) de gravidade na formulação de Palatini
title_sort Teorias f(R) de gravidade na formulação de Palatini
author Oliveira, Thiago Bruno Rafael de Freiras
author_facet Oliveira, Thiago Bruno Rafael de Freiras
author_role author
dc.contributor.authorID.por.fl_str_mv
dc.contributor.advisorID.por.fl_str_mv
dc.contributor.advisorLattes.por.fl_str_mv http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4763288H3
dc.contributor.referees1.pt_BR.fl_str_mv Maia, Márcio Roberto Garcia
dc.contributor.referees1ID.por.fl_str_mv
dc.contributor.referees1Lattes.por.fl_str_mv http://lattes.cnpq.br/4770731765905643
dc.contributor.referees2.pt_BR.fl_str_mv Pires, Nilza
dc.contributor.referees2ID.por.fl_str_mv
dc.contributor.referees2Lattes.por.fl_str_mv http://lattes.cnpq.br/2463198529477607
dc.contributor.author.fl_str_mv Oliveira, Thiago Bruno Rafael de Freiras
dc.contributor.advisor1.fl_str_mv Santos, Janilo
contributor_str_mv Santos, Janilo
dc.subject.por.fl_str_mv Teoria de Einstein
Campo gravitacional
Teorias f(R)
formulação de Palatini
topic Teoria de Einstein
Campo gravitacional
Teorias f(R)
formulação de Palatini
Gravity
Gravitational field
Palatini f(R) gravity
CNPQ::CIENCIAS EXATAS E DA TERRA::FISICA
dc.subject.eng.fl_str_mv Gravity
Gravitational field
Palatini f(R) gravity
dc.subject.cnpq.fl_str_mv CNPQ::CIENCIAS EXATAS E DA TERRA::FISICA
description In this dissertation, after a brief review on the Einstein s General Relativity Theory and its application to the Friedmann-Lemaitre-Robertson-Walker (FLRW) cosmological models, we present and discuss the alternative theories of gravity dubbed f(R) gravity. These theories come about when one substitute in the Einstein-Hilbert action the Ricci curvature R by some well behaved nonlinear function f(R). They provide an alternative way to explain the current cosmic acceleration with no need of invoking neither a dark energy component, nor the existence of extra spatial dimensions. In dealing with f(R) gravity, two different variational approaches may be followed, namely the metric and the Palatini formalisms, which lead to very different equations of motion. We briefly describe the metric formalism and then concentrate on the Palatini variational approach to the gravity action. We make a systematic and detailed derivation of the field equations for Palatini f(R) gravity, which generalize the Einsteins equations of General Relativity, and obtain also the generalized Friedmann equations, which can be used for cosmological tests. As an example, using recent compilations of type Ia Supernovae observations, we show how the f(R) = R − fi/Rn class of gravity theories explain the recent observed acceleration of the universe by placing reasonable constraints on the free parameters fi and n. We also examine the question as to whether Palatini f(R) gravity theories permit space-times in which causality, a fundamental issue in any physical theory [22], is violated. As is well known, in General Relativity there are solutions to the viii field equations that have causal anomalies in the form of closed time-like curves, the renowned Gödel model being the best known example of such a solution. Here we show that every perfect-fluid Gödel-type solution of Palatini f(R) gravity with density and pressure p that satisfy the weak energy condition + p 0 is necessarily isometric to the Gödel geometry, demonstrating, therefore, that these theories present causal anomalies in the form of closed time-like curves. This result extends a theorem on Gödel-type models to the framework of Palatini f(R) gravity theory. We derive an expression for a critical radius rc (beyond which causality is violated) for an arbitrary Palatini f(R) theory. The expression makes apparent that the violation of causality depends on the form of f(R) and on the matter content components. We concretely examine the Gödel-type perfect-fluid solutions in the f(R) = R−fi/Rn class of Palatini gravity theories, and show that for positive matter density and for fi and n in the range permitted by the observations, these theories do not admit the Gödel geometry as a perfect-fluid solution of its field equations. In this sense, f(R) gravity theory remedies the causal pathology in the form of closed timelike curves which is allowed in General Relativity. We also examine the violation of causality of Gödel-type by considering a single scalar field as the matter content. For this source, we show that Palatini f(R) gravity gives rise to a unique Gödeltype solution with no violation of causality. Finally, we show that by combining a perfect fluid plus a scalar field as sources of Gödel-type geometries, we obtain both solutions in the form of closed time-like curves, as well as solutions with no violation of causality
publishDate 2010
dc.date.issued.fl_str_mv 2010-07-01
dc.date.accessioned.fl_str_mv 2015-03-03T15:15:24Z
dc.date.available.fl_str_mv 2015-02-25
2015-03-03T15:15:24Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv OLIVEIRA, Thiago Bruno Rafael de Freiras. Teorias f(R) de gravidade na formulação de Palatini. 2010. 103 f. Dissertação (Mestrado em Física da Matéria Condensada; Astrofísica e Cosmologia; Física da Ionosfera) - Universidade Federal do Rio Grande do Norte, Natal, 2010.
dc.identifier.uri.fl_str_mv https://repositorio.ufrn.br/jspui/handle/123456789/18587
identifier_str_mv OLIVEIRA, Thiago Bruno Rafael de Freiras. Teorias f(R) de gravidade na formulação de Palatini. 2010. 103 f. Dissertação (Mestrado em Física da Matéria Condensada; Astrofísica e Cosmologia; Física da Ionosfera) - Universidade Federal do Rio Grande do Norte, Natal, 2010.
url https://repositorio.ufrn.br/jspui/handle/123456789/18587
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal do Rio Grande do Norte
dc.publisher.program.fl_str_mv Programa de Pós-Graduação em Física
dc.publisher.initials.fl_str_mv UFRN
dc.publisher.country.fl_str_mv BR
dc.publisher.department.fl_str_mv Física da Matéria Condensada; Astrofísica e Cosmologia; Física da Ionosfera
publisher.none.fl_str_mv Universidade Federal do Rio Grande do Norte
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFRN
instname:Universidade Federal do Rio Grande do Norte (UFRN)
instacron:UFRN
instname_str Universidade Federal do Rio Grande do Norte (UFRN)
instacron_str UFRN
institution UFRN
reponame_str Repositório Institucional da UFRN
collection Repositório Institucional da UFRN
bitstream.url.fl_str_mv https://repositorio.ufrn.br/bitstream/123456789/18587/1/ThiagoBRFO_DISSERT.pdf
https://repositorio.ufrn.br/bitstream/123456789/18587/6/ThiagoBRFO_DISSERT.pdf.txt
https://repositorio.ufrn.br/bitstream/123456789/18587/7/ThiagoBRFO_DISSERT.pdf.jpg
bitstream.checksum.fl_str_mv 79a4002c3c2d724d3d1651680816802b
3448902cd1ef6daa23d72de057f5feda
2a55de5ffa1bb751a08da0aa93b6ab50
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFRN - Universidade Federal do Rio Grande do Norte (UFRN)
repository.mail.fl_str_mv
_version_ 1814832831653740544