Galvanic vestibular stimulator for fMRI studies
Autor(a) principal: | |
---|---|
Data de Publicação: | 2014 |
Outros Autores: | , , , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UFRN |
Texto Completo: | https://repositorio.ufrn.br/jspui/handle/123456789/23221 http://dx.doi.org/10.4322/rbeb.2013.046 |
Resumo: | INTRODUCTION: Areas of the brain that are associated with the vestibular system can be activated using galvanic vestibular stimulation. These areas can be studied through a combination of galvanic vestibular stimulation with functional magnetic resonance imaging (fMRI). In order to provide an appropriate sequence of galvanic stimulation synchronous with the MRI pulse sequence, a specific electronic device that was built and assessed is presented. METHODS: The electronic project of the GVS is divided in analog and digital circuits. The analog circuits are mounted in an aluminum case, supplied by sealed batteries, and goes inside the MRI room near to the feet of the subject. The digital circuits are placed in the MRI control room. Those circuits communicate through each other by an optical fiber. Tests to verify the GVS-MRI compatibility were conducted. Silicone (in-house) and Ag/AgCl (commercial) electrodes were evaluated for maximum balance and minimal pain sensations. fMRI experiments were conducted in eight human volunteers. RESULTS: GVS-MRI compatibility experiments demonstrate that the GVS did not interfere with the MRI scanner functionality and vice versa. The circular silicone electrode was considered the most suitable to apply the galvanic vestibular stimulation. The 1 Hz stimulation sinusoid frequency produced the biggest balance and the less pain sensations when compared to 2 Hz. The GVS was capable of eliciting activation in the precentral and postcentral gyri, in the central sulcus, in the supplementary motor area, in the middle and inferior frontal gyri, in the inferior parietal lobule, in the insula, in the superior temporal gyrus, in the middle cingulate cortex, and in the cerebellum. CONCLUSION: This study shows the development and description of a neurovestibular stimulator that can be safely used inside the MRI scanner room without interfering on its operation and vice versa. The developed GVS could successfully activate the major areas involved with multimodal functions of the vestibular system, demonstrating its validity as a stimulator for neurovestibular research. To the best of our knowledge, this is the first work that shows the development and the construction of a galvanic vestibular stimulator that could be safely used inside the MRI room. |
id |
UFRN_792920c054096f89df9943f75ba171e3 |
---|---|
oai_identifier_str |
oai:https://repositorio.ufrn.br:123456789/23221 |
network_acronym_str |
UFRN |
network_name_str |
Repositório Institucional da UFRN |
repository_id_str |
|
spelling |
Della-Justina, Hellen MatheiManczak, TiagoWinkler, Anderson MarceloAraújo, Dráulio Barros deSouza, Mauren Abreu deAmaro Junior, EdsonGamba, Humberto Remigio2017-05-30T14:57:39Z2017-05-30T14:57:39Z2014https://repositorio.ufrn.br/jspui/handle/123456789/23221http://dx.doi.org/10.4322/rbeb.2013.046engDevicesfMRIVestibular apparatusElectrical stimulationGalvanic vestibular stimulator for fMRI studiesinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleINTRODUCTION: Areas of the brain that are associated with the vestibular system can be activated using galvanic vestibular stimulation. These areas can be studied through a combination of galvanic vestibular stimulation with functional magnetic resonance imaging (fMRI). In order to provide an appropriate sequence of galvanic stimulation synchronous with the MRI pulse sequence, a specific electronic device that was built and assessed is presented. METHODS: The electronic project of the GVS is divided in analog and digital circuits. The analog circuits are mounted in an aluminum case, supplied by sealed batteries, and goes inside the MRI room near to the feet of the subject. The digital circuits are placed in the MRI control room. Those circuits communicate through each other by an optical fiber. Tests to verify the GVS-MRI compatibility were conducted. Silicone (in-house) and Ag/AgCl (commercial) electrodes were evaluated for maximum balance and minimal pain sensations. fMRI experiments were conducted in eight human volunteers. RESULTS: GVS-MRI compatibility experiments demonstrate that the GVS did not interfere with the MRI scanner functionality and vice versa. The circular silicone electrode was considered the most suitable to apply the galvanic vestibular stimulation. The 1 Hz stimulation sinusoid frequency produced the biggest balance and the less pain sensations when compared to 2 Hz. The GVS was capable of eliciting activation in the precentral and postcentral gyri, in the central sulcus, in the supplementary motor area, in the middle and inferior frontal gyri, in the inferior parietal lobule, in the insula, in the superior temporal gyrus, in the middle cingulate cortex, and in the cerebellum. CONCLUSION: This study shows the development and description of a neurovestibular stimulator that can be safely used inside the MRI scanner room without interfering on its operation and vice versa. The developed GVS could successfully activate the major areas involved with multimodal functions of the vestibular system, demonstrating its validity as a stimulator for neurovestibular research. To the best of our knowledge, this is the first work that shows the development and the construction of a galvanic vestibular stimulator that could be safely used inside the MRI room.info:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFRNinstname:Universidade Federal do Rio Grande do Norte (UFRN)instacron:UFRNLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.ufrn.br/bitstream/123456789/23221/2/license.txt8a4605be74aa9ea9d79846c1fba20a33MD52ORIGINALGalvanic vestibular stimulator for fMRI studies.pdfGalvanic vestibular stimulator for fMRI studies.pdfDraulioAraujo_ICe_Galvanic vestibular stimulator_2014application/pdf3754983https://repositorio.ufrn.br/bitstream/123456789/23221/1/Galvanic%20vestibular%20stimulator%20for%20fMRI%20studies.pdf4e08bae3178a9606388b0387ea7e6840MD51TEXTGalvanic vestibular stimulator for fMRI studies.pdf.txtGalvanic vestibular stimulator for fMRI studies.pdf.txtExtracted texttext/plain46972https://repositorio.ufrn.br/bitstream/123456789/23221/5/Galvanic%20vestibular%20stimulator%20for%20fMRI%20studies.pdf.txt09f32df8a48a9656a8d5169877f706c3MD55THUMBNAILGalvanic vestibular stimulator for fMRI studies.pdf.jpgGalvanic vestibular stimulator for fMRI studies.pdf.jpgIM Thumbnailimage/jpeg11381https://repositorio.ufrn.br/bitstream/123456789/23221/6/Galvanic%20vestibular%20stimulator%20for%20fMRI%20studies.pdf.jpg63681974cd0c41d7c85e0dfe889bac74MD56123456789/232212017-11-04 19:49:19.107oai:https://repositorio.ufrn.br:123456789/23221Tk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=Repositório de PublicaçõesPUBhttp://repositorio.ufrn.br/oai/opendoar:2017-11-04T22:49:19Repositório Institucional da UFRN - Universidade Federal do Rio Grande do Norte (UFRN)false |
dc.title.pt_BR.fl_str_mv |
Galvanic vestibular stimulator for fMRI studies |
title |
Galvanic vestibular stimulator for fMRI studies |
spellingShingle |
Galvanic vestibular stimulator for fMRI studies Della-Justina, Hellen Mathei Devices fMRI Vestibular apparatus Electrical stimulation |
title_short |
Galvanic vestibular stimulator for fMRI studies |
title_full |
Galvanic vestibular stimulator for fMRI studies |
title_fullStr |
Galvanic vestibular stimulator for fMRI studies |
title_full_unstemmed |
Galvanic vestibular stimulator for fMRI studies |
title_sort |
Galvanic vestibular stimulator for fMRI studies |
author |
Della-Justina, Hellen Mathei |
author_facet |
Della-Justina, Hellen Mathei Manczak, Tiago Winkler, Anderson Marcelo Araújo, Dráulio Barros de Souza, Mauren Abreu de Amaro Junior, Edson Gamba, Humberto Remigio |
author_role |
author |
author2 |
Manczak, Tiago Winkler, Anderson Marcelo Araújo, Dráulio Barros de Souza, Mauren Abreu de Amaro Junior, Edson Gamba, Humberto Remigio |
author2_role |
author author author author author author |
dc.contributor.author.fl_str_mv |
Della-Justina, Hellen Mathei Manczak, Tiago Winkler, Anderson Marcelo Araújo, Dráulio Barros de Souza, Mauren Abreu de Amaro Junior, Edson Gamba, Humberto Remigio |
dc.subject.por.fl_str_mv |
Devices fMRI Vestibular apparatus Electrical stimulation |
topic |
Devices fMRI Vestibular apparatus Electrical stimulation |
description |
INTRODUCTION: Areas of the brain that are associated with the vestibular system can be activated using galvanic vestibular stimulation. These areas can be studied through a combination of galvanic vestibular stimulation with functional magnetic resonance imaging (fMRI). In order to provide an appropriate sequence of galvanic stimulation synchronous with the MRI pulse sequence, a specific electronic device that was built and assessed is presented. METHODS: The electronic project of the GVS is divided in analog and digital circuits. The analog circuits are mounted in an aluminum case, supplied by sealed batteries, and goes inside the MRI room near to the feet of the subject. The digital circuits are placed in the MRI control room. Those circuits communicate through each other by an optical fiber. Tests to verify the GVS-MRI compatibility were conducted. Silicone (in-house) and Ag/AgCl (commercial) electrodes were evaluated for maximum balance and minimal pain sensations. fMRI experiments were conducted in eight human volunteers. RESULTS: GVS-MRI compatibility experiments demonstrate that the GVS did not interfere with the MRI scanner functionality and vice versa. The circular silicone electrode was considered the most suitable to apply the galvanic vestibular stimulation. The 1 Hz stimulation sinusoid frequency produced the biggest balance and the less pain sensations when compared to 2 Hz. The GVS was capable of eliciting activation in the precentral and postcentral gyri, in the central sulcus, in the supplementary motor area, in the middle and inferior frontal gyri, in the inferior parietal lobule, in the insula, in the superior temporal gyrus, in the middle cingulate cortex, and in the cerebellum. CONCLUSION: This study shows the development and description of a neurovestibular stimulator that can be safely used inside the MRI scanner room without interfering on its operation and vice versa. The developed GVS could successfully activate the major areas involved with multimodal functions of the vestibular system, demonstrating its validity as a stimulator for neurovestibular research. To the best of our knowledge, this is the first work that shows the development and the construction of a galvanic vestibular stimulator that could be safely used inside the MRI room. |
publishDate |
2014 |
dc.date.issued.fl_str_mv |
2014 |
dc.date.accessioned.fl_str_mv |
2017-05-30T14:57:39Z |
dc.date.available.fl_str_mv |
2017-05-30T14:57:39Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://repositorio.ufrn.br/jspui/handle/123456789/23221 |
dc.identifier.doi.none.fl_str_mv |
http://dx.doi.org/10.4322/rbeb.2013.046 |
url |
https://repositorio.ufrn.br/jspui/handle/123456789/23221 http://dx.doi.org/10.4322/rbeb.2013.046 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFRN instname:Universidade Federal do Rio Grande do Norte (UFRN) instacron:UFRN |
instname_str |
Universidade Federal do Rio Grande do Norte (UFRN) |
instacron_str |
UFRN |
institution |
UFRN |
reponame_str |
Repositório Institucional da UFRN |
collection |
Repositório Institucional da UFRN |
bitstream.url.fl_str_mv |
https://repositorio.ufrn.br/bitstream/123456789/23221/2/license.txt https://repositorio.ufrn.br/bitstream/123456789/23221/1/Galvanic%20vestibular%20stimulator%20for%20fMRI%20studies.pdf https://repositorio.ufrn.br/bitstream/123456789/23221/5/Galvanic%20vestibular%20stimulator%20for%20fMRI%20studies.pdf.txt https://repositorio.ufrn.br/bitstream/123456789/23221/6/Galvanic%20vestibular%20stimulator%20for%20fMRI%20studies.pdf.jpg |
bitstream.checksum.fl_str_mv |
8a4605be74aa9ea9d79846c1fba20a33 4e08bae3178a9606388b0387ea7e6840 09f32df8a48a9656a8d5169877f706c3 63681974cd0c41d7c85e0dfe889bac74 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional da UFRN - Universidade Federal do Rio Grande do Norte (UFRN) |
repository.mail.fl_str_mv |
|
_version_ |
1814832847518695424 |