Computational models of memory consolidation and long-term synaptic plasticity during sleep
Autor(a) principal: | |
---|---|
Data de Publicação: | 2018 |
Outros Autores: | , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UFRN |
Texto Completo: | https://repositorio.ufrn.br/jspui/handle/123456789/26048 |
Resumo: | The brain stores memories by persistently changing the connectivity between neurons. Sleep is known to be critical for these changes to endure. Research on the neurobiology of sleep and the mechanisms of long-term synaptic plasticity has provided data in support of various theories of how brain activity during sleep affects long-term synaptic plasticity. The experimental findings – and therefore the theories – are apparently quite contradictory, with some evidence pointing to a role of sleep in the forgetting of irrelevant memories, whereas other results indicate that sleep supports the reinforcement of the most valuable recollections. A unified theoretical framework is in need. Computational modeling and simulation provide grounds for the quantitative testing and comparison of theoretical predictions and observed data, and might serve as a strategy to organize the rather complicated and diverse pool of data and methodologies used in sleep research. This review article outlines the emerging progress in the computational modeling and simulation of the main theories on the role of sleep in memory consolidation |
id |
UFRN_852cd05b3493ce0a3a2bf242ca0dbf9a |
---|---|
oai_identifier_str |
oai:https://repositorio.ufrn.br:123456789/26048 |
network_acronym_str |
UFRN |
network_name_str |
Repositório Institucional da UFRN |
repository_id_str |
|
spelling |
Rennó-Costa, CésarSilva, Ana Cláudia Costa daBlanco, WilfredoRibeiro, Sidarta Tollendal Gomes2018-10-23T14:00:17Z2018-10-23T14:00:17Z2018-10-11https://repositorio.ufrn.br/jspui/handle/123456789/26048doi.org/10.1016/j.nlm.2018.10.003engHomeostasisSequentialReplayActive consolidationEmbossingDown-scalingUp-scalinSimulationLTPLTDComputational models of memory consolidation and long-term synaptic plasticity during sleepinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleThe brain stores memories by persistently changing the connectivity between neurons. Sleep is known to be critical for these changes to endure. Research on the neurobiology of sleep and the mechanisms of long-term synaptic plasticity has provided data in support of various theories of how brain activity during sleep affects long-term synaptic plasticity. The experimental findings – and therefore the theories – are apparently quite contradictory, with some evidence pointing to a role of sleep in the forgetting of irrelevant memories, whereas other results indicate that sleep supports the reinforcement of the most valuable recollections. A unified theoretical framework is in need. Computational modeling and simulation provide grounds for the quantitative testing and comparison of theoretical predictions and observed data, and might serve as a strategy to organize the rather complicated and diverse pool of data and methodologies used in sleep research. This review article outlines the emerging progress in the computational modeling and simulation of the main theories on the role of sleep in memory consolidationinfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFRNinstname:Universidade Federal do Rio Grande do Norte (UFRN)instacron:UFRNTEXTSidartaRibeiro_ICe_2018_Computacionalmodelsofmemory.pdf.txtSidartaRibeiro_ICe_2018_Computacionalmodelsofmemory.pdf.txtExtracted texttext/plain139652https://repositorio.ufrn.br/bitstream/123456789/26048/3/SidartaRibeiro_ICe_2018_Computacionalmodelsofmemory.pdf.txtb963e1ef0e25283e478dec149ef25c9bMD53THUMBNAILSidartaRibeiro_ICe_2018_Computacionalmodelsofmemory.pdf.jpgSidartaRibeiro_ICe_2018_Computacionalmodelsofmemory.pdf.jpgIM Thumbnailimage/jpeg12019https://repositorio.ufrn.br/bitstream/123456789/26048/4/SidartaRibeiro_ICe_2018_Computacionalmodelsofmemory.pdf.jpg46fe68b176d62c5958e4d03c60669e8bMD54ORIGINALSidartaRibeiro_ICe_2018_Computacionalmodelsofmemory.pdfSidartaRibeiro_ICe_2018_Computacionalmodelsofmemory.pdfapplication/pdf551498https://repositorio.ufrn.br/bitstream/123456789/26048/1/SidartaRibeiro_ICe_2018_Computacionalmodelsofmemory.pdfaef8b8c4e8ac0e5cd2702e49a8048f1dMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.ufrn.br/bitstream/123456789/26048/2/license.txt8a4605be74aa9ea9d79846c1fba20a33MD52123456789/260482021-07-10 18:46:45.654oai:https://repositorio.ufrn.br:123456789/26048Tk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=Repositório de PublicaçõesPUBhttp://repositorio.ufrn.br/oai/opendoar:2021-07-10T21:46:45Repositório Institucional da UFRN - Universidade Federal do Rio Grande do Norte (UFRN)false |
dc.title.pt_BR.fl_str_mv |
Computational models of memory consolidation and long-term synaptic plasticity during sleep |
title |
Computational models of memory consolidation and long-term synaptic plasticity during sleep |
spellingShingle |
Computational models of memory consolidation and long-term synaptic plasticity during sleep Rennó-Costa, César Homeostasis Sequential Replay Active consolidation Embossing Down-scaling Up-scalin Simulation LTP LTD |
title_short |
Computational models of memory consolidation and long-term synaptic plasticity during sleep |
title_full |
Computational models of memory consolidation and long-term synaptic plasticity during sleep |
title_fullStr |
Computational models of memory consolidation and long-term synaptic plasticity during sleep |
title_full_unstemmed |
Computational models of memory consolidation and long-term synaptic plasticity during sleep |
title_sort |
Computational models of memory consolidation and long-term synaptic plasticity during sleep |
author |
Rennó-Costa, César |
author_facet |
Rennó-Costa, César Silva, Ana Cláudia Costa da Blanco, Wilfredo Ribeiro, Sidarta Tollendal Gomes |
author_role |
author |
author2 |
Silva, Ana Cláudia Costa da Blanco, Wilfredo Ribeiro, Sidarta Tollendal Gomes |
author2_role |
author author author |
dc.contributor.author.fl_str_mv |
Rennó-Costa, César Silva, Ana Cláudia Costa da Blanco, Wilfredo Ribeiro, Sidarta Tollendal Gomes |
dc.subject.por.fl_str_mv |
Homeostasis Sequential Replay Active consolidation Embossing Down-scaling Up-scalin Simulation LTP LTD |
topic |
Homeostasis Sequential Replay Active consolidation Embossing Down-scaling Up-scalin Simulation LTP LTD |
description |
The brain stores memories by persistently changing the connectivity between neurons. Sleep is known to be critical for these changes to endure. Research on the neurobiology of sleep and the mechanisms of long-term synaptic plasticity has provided data in support of various theories of how brain activity during sleep affects long-term synaptic plasticity. The experimental findings – and therefore the theories – are apparently quite contradictory, with some evidence pointing to a role of sleep in the forgetting of irrelevant memories, whereas other results indicate that sleep supports the reinforcement of the most valuable recollections. A unified theoretical framework is in need. Computational modeling and simulation provide grounds for the quantitative testing and comparison of theoretical predictions and observed data, and might serve as a strategy to organize the rather complicated and diverse pool of data and methodologies used in sleep research. This review article outlines the emerging progress in the computational modeling and simulation of the main theories on the role of sleep in memory consolidation |
publishDate |
2018 |
dc.date.accessioned.fl_str_mv |
2018-10-23T14:00:17Z |
dc.date.available.fl_str_mv |
2018-10-23T14:00:17Z |
dc.date.issued.fl_str_mv |
2018-10-11 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://repositorio.ufrn.br/jspui/handle/123456789/26048 |
dc.identifier.doi.none.fl_str_mv |
doi.org/10.1016/j.nlm.2018.10.003 |
url |
https://repositorio.ufrn.br/jspui/handle/123456789/26048 |
identifier_str_mv |
doi.org/10.1016/j.nlm.2018.10.003 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFRN instname:Universidade Federal do Rio Grande do Norte (UFRN) instacron:UFRN |
instname_str |
Universidade Federal do Rio Grande do Norte (UFRN) |
instacron_str |
UFRN |
institution |
UFRN |
reponame_str |
Repositório Institucional da UFRN |
collection |
Repositório Institucional da UFRN |
bitstream.url.fl_str_mv |
https://repositorio.ufrn.br/bitstream/123456789/26048/3/SidartaRibeiro_ICe_2018_Computacionalmodelsofmemory.pdf.txt https://repositorio.ufrn.br/bitstream/123456789/26048/4/SidartaRibeiro_ICe_2018_Computacionalmodelsofmemory.pdf.jpg https://repositorio.ufrn.br/bitstream/123456789/26048/1/SidartaRibeiro_ICe_2018_Computacionalmodelsofmemory.pdf https://repositorio.ufrn.br/bitstream/123456789/26048/2/license.txt |
bitstream.checksum.fl_str_mv |
b963e1ef0e25283e478dec149ef25c9b 46fe68b176d62c5958e4d03c60669e8b aef8b8c4e8ac0e5cd2702e49a8048f1d 8a4605be74aa9ea9d79846c1fba20a33 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional da UFRN - Universidade Federal do Rio Grande do Norte (UFRN) |
repository.mail.fl_str_mv |
|
_version_ |
1814832878707539968 |