Recuperação e purificação de quitosanases usando adsorção em leito expandido com streamline DEAE com modelagem e simulação usando redes neurais
Autor(a) principal: | |
---|---|
Data de Publicação: | 2013 |
Tipo de documento: | Dissertação |
Idioma: | por |
Título da fonte: | Repositório Institucional da UFRN |
Texto Completo: | https://repositorio.ufrn.br/jspui/handle/123456789/15849 |
Resumo: | Expanded Bed Adsorption (EBA) is an integrative process that combines concepts of chromatography and fluidization of solids. The many parameters involved and their synergistic effects complicate the optimization of the process. Fortunately, some mathematical tools have been developed in order to guide the investigation of the EBA system. In this work the application of experimental design, phenomenological modeling and artificial neural networks (ANN) in understanding chitosanases adsorption on ion exchange resin Streamline® DEAE have been investigated. The strain Paenibacillus ehimensis NRRL B-23118 was used for chitosanase production. EBA experiments were carried out using a column of 2.6 cm inner diameter with 30.0 cm in height that was coupled to a peristaltic pump. At the bottom of the column there was a distributor of glass beads having a height of 3.0 cm. Assays for residence time distribution (RTD) revelead a high degree of mixing, however, the Richardson-Zaki coefficients showed that the column was on the threshold of stability. Isotherm models fitted the adsorption equilibrium data in the presence of lyotropic salts. The results of experiment design indicated that the ionic strength and superficial velocity are important to the recovery and purity of chitosanases. The molecular mass of the two chitosanases were approximately 23 kDa and 52 kDa as estimated by SDS-PAGE. The phenomenological modeling was aimed to describe the operations in batch and column chromatography. The simulations were performed in Microsoft Visual Studio. The kinetic rate constant model set to kinetic curves efficiently under conditions of initial enzyme activity 0.232, 0.142 e 0.079 UA/mL. The simulated breakthrough curves showed some differences with experimental data, especially regarding the slope. Sensitivity tests of the model on the surface velocity, axial dispersion and initial concentration showed agreement with the literature. The neural network was constructed in MATLAB and Neural Network Toolbox. The cross-validation was used to improve the ability of generalization. The parameters of ANN were improved to obtain the settings 6-6 (enzyme activity) and 9-6 (total protein), as well as tansig transfer function and Levenberg-Marquardt training algorithm. The neural Carlos Eduardo de Araújo Padilha dezembro/2013 9 networks simulations, including all the steps of cycle, showed good agreement with experimental data, with a correlation coefficient of approximately 0.974. The effects of input variables on profiles of the stages of loading, washing and elution were consistent with the literature |
id |
UFRN_8be148e7a62f204b64b848c9edc99197 |
---|---|
oai_identifier_str |
oai:https://repositorio.ufrn.br:123456789/15849 |
network_acronym_str |
UFRN |
network_name_str |
Repositório Institucional da UFRN |
repository_id_str |
|
spelling |
Padilha, Carlos Eduardo de Araújohttp://lattes.cnpq.br/1186888955341616http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4799564Y2Oliveira, Jackson Araújo dehttp://lattes.cnpq.br/5058617634570704Porto, Ana Lúcia Figueiredohttp://lattes.cnpq.br/4989617783837981Souza, Domingos Fabiano de Santanahttp://lattes.cnpq.br/7400460833577257Santos, Everaldo Silvino dos2014-12-17T15:01:34Z2014-06-202014-12-17T15:01:34Z2013-12-18PADILHA, Carlos Eduardo de Araújo. Recovery and Purification of Chitosanases using Expanded Bed Adsorption with Streamline DEAE with Modeling and Simulation using Neural Networks. 2013. 150 f. Dissertação (Mestrado em Pesquisa e Desenvolvimento de Tecnologias Regionais) - Universidade Federal do Rio Grande do Norte, Natal, 2013.https://repositorio.ufrn.br/jspui/handle/123456789/15849Expanded Bed Adsorption (EBA) is an integrative process that combines concepts of chromatography and fluidization of solids. The many parameters involved and their synergistic effects complicate the optimization of the process. Fortunately, some mathematical tools have been developed in order to guide the investigation of the EBA system. In this work the application of experimental design, phenomenological modeling and artificial neural networks (ANN) in understanding chitosanases adsorption on ion exchange resin Streamline® DEAE have been investigated. The strain Paenibacillus ehimensis NRRL B-23118 was used for chitosanase production. EBA experiments were carried out using a column of 2.6 cm inner diameter with 30.0 cm in height that was coupled to a peristaltic pump. At the bottom of the column there was a distributor of glass beads having a height of 3.0 cm. Assays for residence time distribution (RTD) revelead a high degree of mixing, however, the Richardson-Zaki coefficients showed that the column was on the threshold of stability. Isotherm models fitted the adsorption equilibrium data in the presence of lyotropic salts. The results of experiment design indicated that the ionic strength and superficial velocity are important to the recovery and purity of chitosanases. The molecular mass of the two chitosanases were approximately 23 kDa and 52 kDa as estimated by SDS-PAGE. The phenomenological modeling was aimed to describe the operations in batch and column chromatography. The simulations were performed in Microsoft Visual Studio. The kinetic rate constant model set to kinetic curves efficiently under conditions of initial enzyme activity 0.232, 0.142 e 0.079 UA/mL. The simulated breakthrough curves showed some differences with experimental data, especially regarding the slope. Sensitivity tests of the model on the surface velocity, axial dispersion and initial concentration showed agreement with the literature. The neural network was constructed in MATLAB and Neural Network Toolbox. The cross-validation was used to improve the ability of generalization. The parameters of ANN were improved to obtain the settings 6-6 (enzyme activity) and 9-6 (total protein), as well as tansig transfer function and Levenberg-Marquardt training algorithm. The neural Carlos Eduardo de Araújo Padilha dezembro/2013 9 networks simulations, including all the steps of cycle, showed good agreement with experimental data, with a correlation coefficient of approximately 0.974. The effects of input variables on profiles of the stages of loading, washing and elution were consistent with the literatureA adsorção em leito expandido (ALE) é uma técnica integrativa que alia conceitos de cromatografia e fluidização de sólidos. A diversidade de parâmetros envolvidos e seus efeitos sinergéticos dificultam a tarefa de otimização da operação. Felizmente, algumas ferramentas matemáticas foram desenvolvidas de modo a direcionar as investigações do sistema ALE. Assim, o presente trabalho propõe a aplicação do planejamento experimental, modelagem fenomenológica e redes neurais artificiais (RNAs) na compreensão da adsorção de quitosanases na resina de troca iônica Streamline® DEAE. A cepa Paenibacillus ehimensis NRRL B-23118 foi responsável pela produção das quitosanases. Nos ensaios de adsorção usando o leito na forma expandida foi utilizada uma coluna de 2,6 cm de diâmetro por 30,0 cm de altura, acoplada a uma bomba peristáltica. Na base da coluna existia um distribuidor de microesferas de vidro com altura de 3,0 cm. Os ensaios de determinação de tempo de residência (DTR) revelaram elevado grau de mistura, entretanto, os coeficientes de Richardson-Zaki mostraram que a coluna estava no limiar da estabilidade. Pelas regressões das isotermas puderam-se ajustar os dados de equilíbrio de adsorção, na presença de diferentes sais da escala liotrópica. O resultado do planejamento apontou que a força iônica e a velocidade influenciam a recuperação e pureza das quitosanases. As massas moleculares das duas espécies de quitosanases foram estimadas por SDS-PAGE, obtendo-se aproximadamente 23 kDa e 52 kDa. A modelagem fenomenológica foi direcionada para descrever as operações em batelada e na coluna cromatográfica. As simulações foram executadas no Microsoft Visual Studio, usando a linguagem Fortran. O modelo de taxa constante ajustou-se às curvas cinéticas com excelência, nas condições de atividade iniciais 0,232, 0,142 e 0,079 UA/mL. As curvas de ruptura simuladas apresentaram algumas disparidades com os dados experimentais, principalmente quanto à inclinação. Os testes de sensibilidade do modelo sobre a velocidade superficial, dispersão axial e concentração inicial mostraram conformidade com artigos publicados. A rede neural foi construída no ambiente MATLAB, por meio da Neural Network Toolbox. A validação cruzada foi usada para melhorar a capacidade de generalização. Carlos Eduardo de Araújo Padilha dezembro/2013 6 Aperfeiçoaram-se os parâmetros da RNA até se obter as configurações 6-6 (atividade enzimática) e 9-6 (proteínas totais), função de ativação tansig e algoritmo de treinamento Levenberg-Marquardt. As simulações da rede neural, incluindo todo o ciclo da operação, mostraram boa concordância com os dados experimentais, com coeficiente de correlação da ordem de 0,974. Os efeitos das variáveis de entrada sobre os perfis das etapas de carga, lavagem e eluição foram compatíveis com a literaturaCoordenação de Aperfeiçoamento de Pessoal de Nível Superiorapplication/pdfporUniversidade Federal do Rio Grande do NortePrograma de Pós-Graduação em Engenharia QuímicaUFRNBRPesquisa e Desenvolvimento de Tecnologias RegionaisAdsorção em leito expandido. Recuperação de biomoléculas. Quitosanases. Planejamento experimental. Modelo de taxa geral. Redes neuraisExpanded bed adsorption. Recovery of biomolecules. Chitosanases. Experimental design. General rate model. Neural networksCNPQ::ENGENHARIAS::ENGENHARIA QUIMICARecuperação e purificação de quitosanases usando adsorção em leito expandido com streamline DEAE com modelagem e simulação usando redes neuraisRecovery and Purification of Chitosanases using Expanded Bed Adsorption with Streamline DEAE with Modeling and Simulation using Neural Networksinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFRNinstname:Universidade Federal do Rio Grande do Norte (UFRN)instacron:UFRNORIGINALCarlosEAP_DISSERT.pdfapplication/pdf1904684https://repositorio.ufrn.br/bitstream/123456789/15849/1/CarlosEAP_DISSERT.pdf4fd2147b17a381ad69d921436b5c83deMD51TEXTCarlosEAP_DISSERT.pdf.txtCarlosEAP_DISSERT.pdf.txtExtracted texttext/plain282414https://repositorio.ufrn.br/bitstream/123456789/15849/6/CarlosEAP_DISSERT.pdf.txtad0dc499167c4af19e63e90b3059827dMD56THUMBNAILCarlosEAP_DISSERT.pdf.jpgCarlosEAP_DISSERT.pdf.jpgIM Thumbnailimage/jpeg5002https://repositorio.ufrn.br/bitstream/123456789/15849/7/CarlosEAP_DISSERT.pdf.jpg935c46749fd5804ebd1e5b85837c4d4fMD57123456789/158492017-11-02 04:40:21.629oai:https://repositorio.ufrn.br:123456789/15849Repositório de PublicaçõesPUBhttp://repositorio.ufrn.br/oai/opendoar:2017-11-02T07:40:21Repositório Institucional da UFRN - Universidade Federal do Rio Grande do Norte (UFRN)false |
dc.title.por.fl_str_mv |
Recuperação e purificação de quitosanases usando adsorção em leito expandido com streamline DEAE com modelagem e simulação usando redes neurais |
dc.title.alternative.eng.fl_str_mv |
Recovery and Purification of Chitosanases using Expanded Bed Adsorption with Streamline DEAE with Modeling and Simulation using Neural Networks |
title |
Recuperação e purificação de quitosanases usando adsorção em leito expandido com streamline DEAE com modelagem e simulação usando redes neurais |
spellingShingle |
Recuperação e purificação de quitosanases usando adsorção em leito expandido com streamline DEAE com modelagem e simulação usando redes neurais Padilha, Carlos Eduardo de Araújo Adsorção em leito expandido. Recuperação de biomoléculas. Quitosanases. Planejamento experimental. Modelo de taxa geral. Redes neurais Expanded bed adsorption. Recovery of biomolecules. Chitosanases. Experimental design. General rate model. Neural networks CNPQ::ENGENHARIAS::ENGENHARIA QUIMICA |
title_short |
Recuperação e purificação de quitosanases usando adsorção em leito expandido com streamline DEAE com modelagem e simulação usando redes neurais |
title_full |
Recuperação e purificação de quitosanases usando adsorção em leito expandido com streamline DEAE com modelagem e simulação usando redes neurais |
title_fullStr |
Recuperação e purificação de quitosanases usando adsorção em leito expandido com streamline DEAE com modelagem e simulação usando redes neurais |
title_full_unstemmed |
Recuperação e purificação de quitosanases usando adsorção em leito expandido com streamline DEAE com modelagem e simulação usando redes neurais |
title_sort |
Recuperação e purificação de quitosanases usando adsorção em leito expandido com streamline DEAE com modelagem e simulação usando redes neurais |
author |
Padilha, Carlos Eduardo de Araújo |
author_facet |
Padilha, Carlos Eduardo de Araújo |
author_role |
author |
dc.contributor.authorID.por.fl_str_mv |
|
dc.contributor.authorLattes.por.fl_str_mv |
http://lattes.cnpq.br/1186888955341616 |
dc.contributor.advisorID.por.fl_str_mv |
|
dc.contributor.advisorLattes.por.fl_str_mv |
http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4799564Y2 |
dc.contributor.advisor-co1ID.por.fl_str_mv |
|
dc.contributor.referees1.pt_BR.fl_str_mv |
Porto, Ana Lúcia Figueiredo |
dc.contributor.referees1ID.por.fl_str_mv |
|
dc.contributor.referees1Lattes.por.fl_str_mv |
http://lattes.cnpq.br/4989617783837981 |
dc.contributor.referees2.pt_BR.fl_str_mv |
Souza, Domingos Fabiano de Santana |
dc.contributor.referees2ID.por.fl_str_mv |
|
dc.contributor.referees2Lattes.por.fl_str_mv |
http://lattes.cnpq.br/7400460833577257 |
dc.contributor.author.fl_str_mv |
Padilha, Carlos Eduardo de Araújo |
dc.contributor.advisor-co1.fl_str_mv |
Oliveira, Jackson Araújo de |
dc.contributor.advisor-co1Lattes.fl_str_mv |
http://lattes.cnpq.br/5058617634570704 |
dc.contributor.advisor1.fl_str_mv |
Santos, Everaldo Silvino dos |
contributor_str_mv |
Oliveira, Jackson Araújo de Santos, Everaldo Silvino dos |
dc.subject.por.fl_str_mv |
Adsorção em leito expandido. Recuperação de biomoléculas. Quitosanases. Planejamento experimental. Modelo de taxa geral. Redes neurais |
topic |
Adsorção em leito expandido. Recuperação de biomoléculas. Quitosanases. Planejamento experimental. Modelo de taxa geral. Redes neurais Expanded bed adsorption. Recovery of biomolecules. Chitosanases. Experimental design. General rate model. Neural networks CNPQ::ENGENHARIAS::ENGENHARIA QUIMICA |
dc.subject.eng.fl_str_mv |
Expanded bed adsorption. Recovery of biomolecules. Chitosanases. Experimental design. General rate model. Neural networks |
dc.subject.cnpq.fl_str_mv |
CNPQ::ENGENHARIAS::ENGENHARIA QUIMICA |
description |
Expanded Bed Adsorption (EBA) is an integrative process that combines concepts of chromatography and fluidization of solids. The many parameters involved and their synergistic effects complicate the optimization of the process. Fortunately, some mathematical tools have been developed in order to guide the investigation of the EBA system. In this work the application of experimental design, phenomenological modeling and artificial neural networks (ANN) in understanding chitosanases adsorption on ion exchange resin Streamline® DEAE have been investigated. The strain Paenibacillus ehimensis NRRL B-23118 was used for chitosanase production. EBA experiments were carried out using a column of 2.6 cm inner diameter with 30.0 cm in height that was coupled to a peristaltic pump. At the bottom of the column there was a distributor of glass beads having a height of 3.0 cm. Assays for residence time distribution (RTD) revelead a high degree of mixing, however, the Richardson-Zaki coefficients showed that the column was on the threshold of stability. Isotherm models fitted the adsorption equilibrium data in the presence of lyotropic salts. The results of experiment design indicated that the ionic strength and superficial velocity are important to the recovery and purity of chitosanases. The molecular mass of the two chitosanases were approximately 23 kDa and 52 kDa as estimated by SDS-PAGE. The phenomenological modeling was aimed to describe the operations in batch and column chromatography. The simulations were performed in Microsoft Visual Studio. The kinetic rate constant model set to kinetic curves efficiently under conditions of initial enzyme activity 0.232, 0.142 e 0.079 UA/mL. The simulated breakthrough curves showed some differences with experimental data, especially regarding the slope. Sensitivity tests of the model on the surface velocity, axial dispersion and initial concentration showed agreement with the literature. The neural network was constructed in MATLAB and Neural Network Toolbox. The cross-validation was used to improve the ability of generalization. The parameters of ANN were improved to obtain the settings 6-6 (enzyme activity) and 9-6 (total protein), as well as tansig transfer function and Levenberg-Marquardt training algorithm. The neural Carlos Eduardo de Araújo Padilha dezembro/2013 9 networks simulations, including all the steps of cycle, showed good agreement with experimental data, with a correlation coefficient of approximately 0.974. The effects of input variables on profiles of the stages of loading, washing and elution were consistent with the literature |
publishDate |
2013 |
dc.date.issued.fl_str_mv |
2013-12-18 |
dc.date.accessioned.fl_str_mv |
2014-12-17T15:01:34Z |
dc.date.available.fl_str_mv |
2014-06-20 2014-12-17T15:01:34Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.citation.fl_str_mv |
PADILHA, Carlos Eduardo de Araújo. Recovery and Purification of Chitosanases using Expanded Bed Adsorption with Streamline DEAE with Modeling and Simulation using Neural Networks. 2013. 150 f. Dissertação (Mestrado em Pesquisa e Desenvolvimento de Tecnologias Regionais) - Universidade Federal do Rio Grande do Norte, Natal, 2013. |
dc.identifier.uri.fl_str_mv |
https://repositorio.ufrn.br/jspui/handle/123456789/15849 |
identifier_str_mv |
PADILHA, Carlos Eduardo de Araújo. Recovery and Purification of Chitosanases using Expanded Bed Adsorption with Streamline DEAE with Modeling and Simulation using Neural Networks. 2013. 150 f. Dissertação (Mestrado em Pesquisa e Desenvolvimento de Tecnologias Regionais) - Universidade Federal do Rio Grande do Norte, Natal, 2013. |
url |
https://repositorio.ufrn.br/jspui/handle/123456789/15849 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidade Federal do Rio Grande do Norte |
dc.publisher.program.fl_str_mv |
Programa de Pós-Graduação em Engenharia Química |
dc.publisher.initials.fl_str_mv |
UFRN |
dc.publisher.country.fl_str_mv |
BR |
dc.publisher.department.fl_str_mv |
Pesquisa e Desenvolvimento de Tecnologias Regionais |
publisher.none.fl_str_mv |
Universidade Federal do Rio Grande do Norte |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFRN instname:Universidade Federal do Rio Grande do Norte (UFRN) instacron:UFRN |
instname_str |
Universidade Federal do Rio Grande do Norte (UFRN) |
instacron_str |
UFRN |
institution |
UFRN |
reponame_str |
Repositório Institucional da UFRN |
collection |
Repositório Institucional da UFRN |
bitstream.url.fl_str_mv |
https://repositorio.ufrn.br/bitstream/123456789/15849/1/CarlosEAP_DISSERT.pdf https://repositorio.ufrn.br/bitstream/123456789/15849/6/CarlosEAP_DISSERT.pdf.txt https://repositorio.ufrn.br/bitstream/123456789/15849/7/CarlosEAP_DISSERT.pdf.jpg |
bitstream.checksum.fl_str_mv |
4fd2147b17a381ad69d921436b5c83de ad0dc499167c4af19e63e90b3059827d 935c46749fd5804ebd1e5b85837c4d4f |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional da UFRN - Universidade Federal do Rio Grande do Norte (UFRN) |
repository.mail.fl_str_mv |
|
_version_ |
1814832907749949440 |