Recuperação e purificação de quitosanases usando adsorção em leito expandido com streamline DEAE com modelagem e simulação usando redes neurais

Detalhes bibliográficos
Autor(a) principal: Padilha, Carlos Eduardo de Araújo
Data de Publicação: 2013
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Repositório Institucional da UFRN
Texto Completo: https://repositorio.ufrn.br/jspui/handle/123456789/15849
Resumo: Expanded Bed Adsorption (EBA) is an integrative process that combines concepts of chromatography and fluidization of solids. The many parameters involved and their synergistic effects complicate the optimization of the process. Fortunately, some mathematical tools have been developed in order to guide the investigation of the EBA system. In this work the application of experimental design, phenomenological modeling and artificial neural networks (ANN) in understanding chitosanases adsorption on ion exchange resin Streamline® DEAE have been investigated. The strain Paenibacillus ehimensis NRRL B-23118 was used for chitosanase production. EBA experiments were carried out using a column of 2.6 cm inner diameter with 30.0 cm in height that was coupled to a peristaltic pump. At the bottom of the column there was a distributor of glass beads having a height of 3.0 cm. Assays for residence time distribution (RTD) revelead a high degree of mixing, however, the Richardson-Zaki coefficients showed that the column was on the threshold of stability. Isotherm models fitted the adsorption equilibrium data in the presence of lyotropic salts. The results of experiment design indicated that the ionic strength and superficial velocity are important to the recovery and purity of chitosanases. The molecular mass of the two chitosanases were approximately 23 kDa and 52 kDa as estimated by SDS-PAGE. The phenomenological modeling was aimed to describe the operations in batch and column chromatography. The simulations were performed in Microsoft Visual Studio. The kinetic rate constant model set to kinetic curves efficiently under conditions of initial enzyme activity 0.232, 0.142 e 0.079 UA/mL. The simulated breakthrough curves showed some differences with experimental data, especially regarding the slope. Sensitivity tests of the model on the surface velocity, axial dispersion and initial concentration showed agreement with the literature. The neural network was constructed in MATLAB and Neural Network Toolbox. The cross-validation was used to improve the ability of generalization. The parameters of ANN were improved to obtain the settings 6-6 (enzyme activity) and 9-6 (total protein), as well as tansig transfer function and Levenberg-Marquardt training algorithm. The neural Carlos Eduardo de Araújo Padilha dezembro/2013 9 networks simulations, including all the steps of cycle, showed good agreement with experimental data, with a correlation coefficient of approximately 0.974. The effects of input variables on profiles of the stages of loading, washing and elution were consistent with the literature
id UFRN_8be148e7a62f204b64b848c9edc99197
oai_identifier_str oai:https://repositorio.ufrn.br:123456789/15849
network_acronym_str UFRN
network_name_str Repositório Institucional da UFRN
repository_id_str
spelling Padilha, Carlos Eduardo de Araújohttp://lattes.cnpq.br/1186888955341616http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4799564Y2Oliveira, Jackson Araújo dehttp://lattes.cnpq.br/5058617634570704Porto, Ana Lúcia Figueiredohttp://lattes.cnpq.br/4989617783837981Souza, Domingos Fabiano de Santanahttp://lattes.cnpq.br/7400460833577257Santos, Everaldo Silvino dos2014-12-17T15:01:34Z2014-06-202014-12-17T15:01:34Z2013-12-18PADILHA, Carlos Eduardo de Araújo. Recovery and Purification of Chitosanases using Expanded Bed Adsorption with Streamline DEAE with Modeling and Simulation using Neural Networks. 2013. 150 f. Dissertação (Mestrado em Pesquisa e Desenvolvimento de Tecnologias Regionais) - Universidade Federal do Rio Grande do Norte, Natal, 2013.https://repositorio.ufrn.br/jspui/handle/123456789/15849Expanded Bed Adsorption (EBA) is an integrative process that combines concepts of chromatography and fluidization of solids. The many parameters involved and their synergistic effects complicate the optimization of the process. Fortunately, some mathematical tools have been developed in order to guide the investigation of the EBA system. In this work the application of experimental design, phenomenological modeling and artificial neural networks (ANN) in understanding chitosanases adsorption on ion exchange resin Streamline® DEAE have been investigated. The strain Paenibacillus ehimensis NRRL B-23118 was used for chitosanase production. EBA experiments were carried out using a column of 2.6 cm inner diameter with 30.0 cm in height that was coupled to a peristaltic pump. At the bottom of the column there was a distributor of glass beads having a height of 3.0 cm. Assays for residence time distribution (RTD) revelead a high degree of mixing, however, the Richardson-Zaki coefficients showed that the column was on the threshold of stability. Isotherm models fitted the adsorption equilibrium data in the presence of lyotropic salts. The results of experiment design indicated that the ionic strength and superficial velocity are important to the recovery and purity of chitosanases. The molecular mass of the two chitosanases were approximately 23 kDa and 52 kDa as estimated by SDS-PAGE. The phenomenological modeling was aimed to describe the operations in batch and column chromatography. The simulations were performed in Microsoft Visual Studio. The kinetic rate constant model set to kinetic curves efficiently under conditions of initial enzyme activity 0.232, 0.142 e 0.079 UA/mL. The simulated breakthrough curves showed some differences with experimental data, especially regarding the slope. Sensitivity tests of the model on the surface velocity, axial dispersion and initial concentration showed agreement with the literature. The neural network was constructed in MATLAB and Neural Network Toolbox. The cross-validation was used to improve the ability of generalization. The parameters of ANN were improved to obtain the settings 6-6 (enzyme activity) and 9-6 (total protein), as well as tansig transfer function and Levenberg-Marquardt training algorithm. The neural Carlos Eduardo de Araújo Padilha dezembro/2013 9 networks simulations, including all the steps of cycle, showed good agreement with experimental data, with a correlation coefficient of approximately 0.974. The effects of input variables on profiles of the stages of loading, washing and elution were consistent with the literatureA adsorção em leito expandido (ALE) é uma técnica integrativa que alia conceitos de cromatografia e fluidização de sólidos. A diversidade de parâmetros envolvidos e seus efeitos sinergéticos dificultam a tarefa de otimização da operação. Felizmente, algumas ferramentas matemáticas foram desenvolvidas de modo a direcionar as investigações do sistema ALE. Assim, o presente trabalho propõe a aplicação do planejamento experimental, modelagem fenomenológica e redes neurais artificiais (RNAs) na compreensão da adsorção de quitosanases na resina de troca iônica Streamline® DEAE. A cepa Paenibacillus ehimensis NRRL B-23118 foi responsável pela produção das quitosanases. Nos ensaios de adsorção usando o leito na forma expandida foi utilizada uma coluna de 2,6 cm de diâmetro por 30,0 cm de altura, acoplada a uma bomba peristáltica. Na base da coluna existia um distribuidor de microesferas de vidro com altura de 3,0 cm. Os ensaios de determinação de tempo de residência (DTR) revelaram elevado grau de mistura, entretanto, os coeficientes de Richardson-Zaki mostraram que a coluna estava no limiar da estabilidade. Pelas regressões das isotermas puderam-se ajustar os dados de equilíbrio de adsorção, na presença de diferentes sais da escala liotrópica. O resultado do planejamento apontou que a força iônica e a velocidade influenciam a recuperação e pureza das quitosanases. As massas moleculares das duas espécies de quitosanases foram estimadas por SDS-PAGE, obtendo-se aproximadamente 23 kDa e 52 kDa. A modelagem fenomenológica foi direcionada para descrever as operações em batelada e na coluna cromatográfica. As simulações foram executadas no Microsoft Visual Studio, usando a linguagem Fortran. O modelo de taxa constante ajustou-se às curvas cinéticas com excelência, nas condições de atividade iniciais 0,232, 0,142 e 0,079 UA/mL. As curvas de ruptura simuladas apresentaram algumas disparidades com os dados experimentais, principalmente quanto à inclinação. Os testes de sensibilidade do modelo sobre a velocidade superficial, dispersão axial e concentração inicial mostraram conformidade com artigos publicados. A rede neural foi construída no ambiente MATLAB, por meio da Neural Network Toolbox. A validação cruzada foi usada para melhorar a capacidade de generalização. Carlos Eduardo de Araújo Padilha dezembro/2013 6 Aperfeiçoaram-se os parâmetros da RNA até se obter as configurações 6-6 (atividade enzimática) e 9-6 (proteínas totais), função de ativação tansig e algoritmo de treinamento Levenberg-Marquardt. As simulações da rede neural, incluindo todo o ciclo da operação, mostraram boa concordância com os dados experimentais, com coeficiente de correlação da ordem de 0,974. Os efeitos das variáveis de entrada sobre os perfis das etapas de carga, lavagem e eluição foram compatíveis com a literaturaCoordenação de Aperfeiçoamento de Pessoal de Nível Superiorapplication/pdfporUniversidade Federal do Rio Grande do NortePrograma de Pós-Graduação em Engenharia QuímicaUFRNBRPesquisa e Desenvolvimento de Tecnologias RegionaisAdsorção em leito expandido. Recuperação de biomoléculas. Quitosanases. Planejamento experimental. Modelo de taxa geral. Redes neuraisExpanded bed adsorption. Recovery of biomolecules. Chitosanases. Experimental design. General rate model. Neural networksCNPQ::ENGENHARIAS::ENGENHARIA QUIMICARecuperação e purificação de quitosanases usando adsorção em leito expandido com streamline DEAE com modelagem e simulação usando redes neuraisRecovery and Purification of Chitosanases using Expanded Bed Adsorption with Streamline DEAE with Modeling and Simulation using Neural Networksinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFRNinstname:Universidade Federal do Rio Grande do Norte (UFRN)instacron:UFRNORIGINALCarlosEAP_DISSERT.pdfapplication/pdf1904684https://repositorio.ufrn.br/bitstream/123456789/15849/1/CarlosEAP_DISSERT.pdf4fd2147b17a381ad69d921436b5c83deMD51TEXTCarlosEAP_DISSERT.pdf.txtCarlosEAP_DISSERT.pdf.txtExtracted texttext/plain282414https://repositorio.ufrn.br/bitstream/123456789/15849/6/CarlosEAP_DISSERT.pdf.txtad0dc499167c4af19e63e90b3059827dMD56THUMBNAILCarlosEAP_DISSERT.pdf.jpgCarlosEAP_DISSERT.pdf.jpgIM Thumbnailimage/jpeg5002https://repositorio.ufrn.br/bitstream/123456789/15849/7/CarlosEAP_DISSERT.pdf.jpg935c46749fd5804ebd1e5b85837c4d4fMD57123456789/158492017-11-02 04:40:21.629oai:https://repositorio.ufrn.br:123456789/15849Repositório de PublicaçõesPUBhttp://repositorio.ufrn.br/oai/opendoar:2017-11-02T07:40:21Repositório Institucional da UFRN - Universidade Federal do Rio Grande do Norte (UFRN)false
dc.title.por.fl_str_mv Recuperação e purificação de quitosanases usando adsorção em leito expandido com streamline DEAE com modelagem e simulação usando redes neurais
dc.title.alternative.eng.fl_str_mv Recovery and Purification of Chitosanases using Expanded Bed Adsorption with Streamline DEAE with Modeling and Simulation using Neural Networks
title Recuperação e purificação de quitosanases usando adsorção em leito expandido com streamline DEAE com modelagem e simulação usando redes neurais
spellingShingle Recuperação e purificação de quitosanases usando adsorção em leito expandido com streamline DEAE com modelagem e simulação usando redes neurais
Padilha, Carlos Eduardo de Araújo
Adsorção em leito expandido. Recuperação de biomoléculas. Quitosanases. Planejamento experimental. Modelo de taxa geral. Redes neurais
Expanded bed adsorption. Recovery of biomolecules. Chitosanases. Experimental design. General rate model. Neural networks
CNPQ::ENGENHARIAS::ENGENHARIA QUIMICA
title_short Recuperação e purificação de quitosanases usando adsorção em leito expandido com streamline DEAE com modelagem e simulação usando redes neurais
title_full Recuperação e purificação de quitosanases usando adsorção em leito expandido com streamline DEAE com modelagem e simulação usando redes neurais
title_fullStr Recuperação e purificação de quitosanases usando adsorção em leito expandido com streamline DEAE com modelagem e simulação usando redes neurais
title_full_unstemmed Recuperação e purificação de quitosanases usando adsorção em leito expandido com streamline DEAE com modelagem e simulação usando redes neurais
title_sort Recuperação e purificação de quitosanases usando adsorção em leito expandido com streamline DEAE com modelagem e simulação usando redes neurais
author Padilha, Carlos Eduardo de Araújo
author_facet Padilha, Carlos Eduardo de Araújo
author_role author
dc.contributor.authorID.por.fl_str_mv
dc.contributor.authorLattes.por.fl_str_mv http://lattes.cnpq.br/1186888955341616
dc.contributor.advisorID.por.fl_str_mv
dc.contributor.advisorLattes.por.fl_str_mv http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4799564Y2
dc.contributor.advisor-co1ID.por.fl_str_mv
dc.contributor.referees1.pt_BR.fl_str_mv Porto, Ana Lúcia Figueiredo
dc.contributor.referees1ID.por.fl_str_mv
dc.contributor.referees1Lattes.por.fl_str_mv http://lattes.cnpq.br/4989617783837981
dc.contributor.referees2.pt_BR.fl_str_mv Souza, Domingos Fabiano de Santana
dc.contributor.referees2ID.por.fl_str_mv
dc.contributor.referees2Lattes.por.fl_str_mv http://lattes.cnpq.br/7400460833577257
dc.contributor.author.fl_str_mv Padilha, Carlos Eduardo de Araújo
dc.contributor.advisor-co1.fl_str_mv Oliveira, Jackson Araújo de
dc.contributor.advisor-co1Lattes.fl_str_mv http://lattes.cnpq.br/5058617634570704
dc.contributor.advisor1.fl_str_mv Santos, Everaldo Silvino dos
contributor_str_mv Oliveira, Jackson Araújo de
Santos, Everaldo Silvino dos
dc.subject.por.fl_str_mv Adsorção em leito expandido. Recuperação de biomoléculas. Quitosanases. Planejamento experimental. Modelo de taxa geral. Redes neurais
topic Adsorção em leito expandido. Recuperação de biomoléculas. Quitosanases. Planejamento experimental. Modelo de taxa geral. Redes neurais
Expanded bed adsorption. Recovery of biomolecules. Chitosanases. Experimental design. General rate model. Neural networks
CNPQ::ENGENHARIAS::ENGENHARIA QUIMICA
dc.subject.eng.fl_str_mv Expanded bed adsorption. Recovery of biomolecules. Chitosanases. Experimental design. General rate model. Neural networks
dc.subject.cnpq.fl_str_mv CNPQ::ENGENHARIAS::ENGENHARIA QUIMICA
description Expanded Bed Adsorption (EBA) is an integrative process that combines concepts of chromatography and fluidization of solids. The many parameters involved and their synergistic effects complicate the optimization of the process. Fortunately, some mathematical tools have been developed in order to guide the investigation of the EBA system. In this work the application of experimental design, phenomenological modeling and artificial neural networks (ANN) in understanding chitosanases adsorption on ion exchange resin Streamline® DEAE have been investigated. The strain Paenibacillus ehimensis NRRL B-23118 was used for chitosanase production. EBA experiments were carried out using a column of 2.6 cm inner diameter with 30.0 cm in height that was coupled to a peristaltic pump. At the bottom of the column there was a distributor of glass beads having a height of 3.0 cm. Assays for residence time distribution (RTD) revelead a high degree of mixing, however, the Richardson-Zaki coefficients showed that the column was on the threshold of stability. Isotherm models fitted the adsorption equilibrium data in the presence of lyotropic salts. The results of experiment design indicated that the ionic strength and superficial velocity are important to the recovery and purity of chitosanases. The molecular mass of the two chitosanases were approximately 23 kDa and 52 kDa as estimated by SDS-PAGE. The phenomenological modeling was aimed to describe the operations in batch and column chromatography. The simulations were performed in Microsoft Visual Studio. The kinetic rate constant model set to kinetic curves efficiently under conditions of initial enzyme activity 0.232, 0.142 e 0.079 UA/mL. The simulated breakthrough curves showed some differences with experimental data, especially regarding the slope. Sensitivity tests of the model on the surface velocity, axial dispersion and initial concentration showed agreement with the literature. The neural network was constructed in MATLAB and Neural Network Toolbox. The cross-validation was used to improve the ability of generalization. The parameters of ANN were improved to obtain the settings 6-6 (enzyme activity) and 9-6 (total protein), as well as tansig transfer function and Levenberg-Marquardt training algorithm. The neural Carlos Eduardo de Araújo Padilha dezembro/2013 9 networks simulations, including all the steps of cycle, showed good agreement with experimental data, with a correlation coefficient of approximately 0.974. The effects of input variables on profiles of the stages of loading, washing and elution were consistent with the literature
publishDate 2013
dc.date.issued.fl_str_mv 2013-12-18
dc.date.accessioned.fl_str_mv 2014-12-17T15:01:34Z
dc.date.available.fl_str_mv 2014-06-20
2014-12-17T15:01:34Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv PADILHA, Carlos Eduardo de Araújo. Recovery and Purification of Chitosanases using Expanded Bed Adsorption with Streamline DEAE with Modeling and Simulation using Neural Networks. 2013. 150 f. Dissertação (Mestrado em Pesquisa e Desenvolvimento de Tecnologias Regionais) - Universidade Federal do Rio Grande do Norte, Natal, 2013.
dc.identifier.uri.fl_str_mv https://repositorio.ufrn.br/jspui/handle/123456789/15849
identifier_str_mv PADILHA, Carlos Eduardo de Araújo. Recovery and Purification of Chitosanases using Expanded Bed Adsorption with Streamline DEAE with Modeling and Simulation using Neural Networks. 2013. 150 f. Dissertação (Mestrado em Pesquisa e Desenvolvimento de Tecnologias Regionais) - Universidade Federal do Rio Grande do Norte, Natal, 2013.
url https://repositorio.ufrn.br/jspui/handle/123456789/15849
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal do Rio Grande do Norte
dc.publisher.program.fl_str_mv Programa de Pós-Graduação em Engenharia Química
dc.publisher.initials.fl_str_mv UFRN
dc.publisher.country.fl_str_mv BR
dc.publisher.department.fl_str_mv Pesquisa e Desenvolvimento de Tecnologias Regionais
publisher.none.fl_str_mv Universidade Federal do Rio Grande do Norte
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFRN
instname:Universidade Federal do Rio Grande do Norte (UFRN)
instacron:UFRN
instname_str Universidade Federal do Rio Grande do Norte (UFRN)
instacron_str UFRN
institution UFRN
reponame_str Repositório Institucional da UFRN
collection Repositório Institucional da UFRN
bitstream.url.fl_str_mv https://repositorio.ufrn.br/bitstream/123456789/15849/1/CarlosEAP_DISSERT.pdf
https://repositorio.ufrn.br/bitstream/123456789/15849/6/CarlosEAP_DISSERT.pdf.txt
https://repositorio.ufrn.br/bitstream/123456789/15849/7/CarlosEAP_DISSERT.pdf.jpg
bitstream.checksum.fl_str_mv 4fd2147b17a381ad69d921436b5c83de
ad0dc499167c4af19e63e90b3059827d
935c46749fd5804ebd1e5b85837c4d4f
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFRN - Universidade Federal do Rio Grande do Norte (UFRN)
repository.mail.fl_str_mv
_version_ 1814832907749949440