Artificial neural networks and multiple linear regression model using principal components to estimate rainfall over South America
Autor(a) principal: | |
---|---|
Data de Publicação: | 2016 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UFRN |
Texto Completo: | https://repositorio.ufrn.br/jspui/handle/123456789/29096 https://doi.org/10.5194/npg-23-13-2016 |
Resumo: | Several studies have been devoted to dynamic and statistical downscaling for analysis of both climate variability and climate change. This paper introduces an application of artificial neural networks (ANNs) and multiple linear regression (MLR) by principal components to estimate rainfall in South America. This method is proposed for downscaling monthly precipitation time series over South America for three regions: the Amazon; northeastern Brazil; and the La Plata Basin, which is one of the regions of the planet that will be most affected by the climate change projected for the end of the 21st century. The downscaling models were developed and validated using CMIP5 model output and observed monthly precipitation. We used general circulation model (GCM) experiments for the 20th century (RCP historical; 1970–1999) and two scenarios (RCP 2.6 and 8.5; 2070–2100). The model test results indicate that the ANNs significantly outperform the MLR downscaling of monthly precipitation variability |
id |
UFRN_8cd510db986961f7b143af879fe199f0 |
---|---|
oai_identifier_str |
oai:https://repositorio.ufrn.br:123456789/29096 |
network_acronym_str |
UFRN |
network_name_str |
Repositório Institucional da UFRN |
repository_id_str |
|
spelling |
Santos, T. Soares dosMendes, DavidTorres, R. Rodrigues2020-05-30T13:55:04Z2020-05-30T13:55:04Z2016SANTOS, T. Soares dos ; Mendes, D. ; TORRES, R. Rodrigues. Artificial neural networks and multiple linear regression model using principal components to estimate rainfall over South America. Nonlinear processes in Geophysics, v. 23, p. 13-20, 2016. Disponível em: https://www.nonlin-processes-geophys.net/23/13/2016/npg-23-13-2016.pdf. Acesso em: 29 Maio 2020. https://doi.org/10.5194/npg-23-13-2016https://repositorio.ufrn.br/jspui/handle/123456789/29096https://doi.org/10.5194/npg-23-13-2016Nonlinear Processes GeophysicsAttribution 3.0 Brazilhttp://creativecommons.org/licenses/by/3.0/br/info:eu-repo/semantics/openAccessApplication of artificial neural networksArtificial neural networks and multiple linear regression model using principal components to estimate rainfall over South Americainfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleSeveral studies have been devoted to dynamic and statistical downscaling for analysis of both climate variability and climate change. This paper introduces an application of artificial neural networks (ANNs) and multiple linear regression (MLR) by principal components to estimate rainfall in South America. This method is proposed for downscaling monthly precipitation time series over South America for three regions: the Amazon; northeastern Brazil; and the La Plata Basin, which is one of the regions of the planet that will be most affected by the climate change projected for the end of the 21st century. The downscaling models were developed and validated using CMIP5 model output and observed monthly precipitation. We used general circulation model (GCM) experiments for the 20th century (RCP historical; 1970–1999) and two scenarios (RCP 2.6 and 8.5; 2070–2100). The model test results indicate that the ANNs significantly outperform the MLR downscaling of monthly precipitation variabilityengreponame:Repositório Institucional da UFRNinstname:Universidade Federal do Rio Grande do Norte (UFRN)instacron:UFRNORIGINALArtificialNeuralNetworksandMultipleLinearRegression_Mendes_2016.pdfArtificialNeuralNetworksandMultipleLinearRegression_Mendes_2016.pdfapplication/pdf2562159https://repositorio.ufrn.br/bitstream/123456789/29096/1/ArtificialNeuralNetworksandMultipleLinearRegression_Mendes_2016.pdfa2a9e2795decd40bb3f2fe5a25af690eMD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8914https://repositorio.ufrn.br/bitstream/123456789/29096/2/license_rdf4d2950bda3d176f570a9f8b328dfbbefMD52LICENSElicense.txtlicense.txttext/plain; charset=utf-81484https://repositorio.ufrn.br/bitstream/123456789/29096/3/license.txte9597aa2854d128fd968be5edc8a28d9MD53TEXTArtificialNeuralNetworksandMultipleLinearRegression_Mendes_2016.pdf.txtArtificialNeuralNetworksandMultipleLinearRegression_Mendes_2016.pdf.txtExtracted texttext/plain26709https://repositorio.ufrn.br/bitstream/123456789/29096/4/ArtificialNeuralNetworksandMultipleLinearRegression_Mendes_2016.pdf.txt2cf579455e05da8383e53b13bb84c3fdMD54THUMBNAILArtificialNeuralNetworksandMultipleLinearRegression_Mendes_2016.pdf.jpgArtificialNeuralNetworksandMultipleLinearRegression_Mendes_2016.pdf.jpgGenerated Thumbnailimage/jpeg1782https://repositorio.ufrn.br/bitstream/123456789/29096/5/ArtificialNeuralNetworksandMultipleLinearRegression_Mendes_2016.pdf.jpgac15658952a1d9e440e3d2f7a8630d6eMD55123456789/290962020-05-31 04:54:12.989oai:https://repositorio.ufrn.br:123456789/29096Tk9OLUVYQ0xVU0lWRSBESVNUUklCVVRJT04gTElDRU5TRQoKCkJ5IHNpZ25pbmcgYW5kIGRlbGl2ZXJpbmcgdGhpcyBsaWNlbnNlLCBNci4gKGF1dGhvciBvciBjb3B5cmlnaHQgaG9sZGVyKToKCgphKSBHcmFudHMgdGhlIFVuaXZlcnNpZGFkZSBGZWRlcmFsIFJpbyBHcmFuZGUgZG8gTm9ydGUgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgb2YKcmVwcm9kdWNlLCBjb252ZXJ0IChhcyBkZWZpbmVkIGJlbG93KSwgY29tbXVuaWNhdGUgYW5kIC8gb3IKZGlzdHJpYnV0ZSB0aGUgZGVsaXZlcmVkIGRvY3VtZW50IChpbmNsdWRpbmcgYWJzdHJhY3QgLyBhYnN0cmFjdCkgaW4KZGlnaXRhbCBvciBwcmludGVkIGZvcm1hdCBhbmQgaW4gYW55IG1lZGl1bS4KCmIpIERlY2xhcmVzIHRoYXQgdGhlIGRvY3VtZW50IHN1Ym1pdHRlZCBpcyBpdHMgb3JpZ2luYWwgd29yaywgYW5kIHRoYXQKeW91IGhhdmUgdGhlIHJpZ2h0IHRvIGdyYW50IHRoZSByaWdodHMgY29udGFpbmVkIGluIHRoaXMgbGljZW5zZS4gRGVjbGFyZXMKdGhhdCB0aGUgZGVsaXZlcnkgb2YgdGhlIGRvY3VtZW50IGRvZXMgbm90IGluZnJpbmdlLCBhcyBmYXIgYXMgaXQgaXMKdGhlIHJpZ2h0cyBvZiBhbnkgb3RoZXIgcGVyc29uIG9yIGVudGl0eS4KCmMpIElmIHRoZSBkb2N1bWVudCBkZWxpdmVyZWQgY29udGFpbnMgbWF0ZXJpYWwgd2hpY2ggZG9lcyBub3QKcmlnaHRzLCBkZWNsYXJlcyB0aGF0IGl0IGhhcyBvYnRhaW5lZCBhdXRob3JpemF0aW9uIGZyb20gdGhlIGhvbGRlciBvZiB0aGUKY29weXJpZ2h0IHRvIGdyYW50IHRoZSBVbml2ZXJzaWRhZGUgRmVkZXJhbCBkbyBSaW8gR3JhbmRlIGRvIE5vcnRlIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdCB0aGlzIG1hdGVyaWFsIHdob3NlIHJpZ2h0cyBhcmUgb2YKdGhpcmQgcGFydGllcyBpcyBjbGVhcmx5IGlkZW50aWZpZWQgYW5kIHJlY29nbml6ZWQgaW4gdGhlIHRleHQgb3IKY29udGVudCBvZiB0aGUgZG9jdW1lbnQgZGVsaXZlcmVkLgoKSWYgdGhlIGRvY3VtZW50IHN1Ym1pdHRlZCBpcyBiYXNlZCBvbiBmdW5kZWQgb3Igc3VwcG9ydGVkIHdvcmsKYnkgYW5vdGhlciBpbnN0aXR1dGlvbiBvdGhlciB0aGFuIHRoZSBVbml2ZXJzaWRhZGUgRmVkZXJhbCBkbyBSaW8gR3JhbmRlIGRvIE5vcnRlLCBkZWNsYXJlcyB0aGF0IGl0IGhhcyBmdWxmaWxsZWQgYW55IG9ibGlnYXRpb25zIHJlcXVpcmVkIGJ5IHRoZSByZXNwZWN0aXZlIGFncmVlbWVudCBvciBhZ3JlZW1lbnQuCgpUaGUgVW5pdmVyc2lkYWRlIEZlZGVyYWwgZG8gUmlvIEdyYW5kZSBkbyBOb3J0ZSB3aWxsIGNsZWFybHkgaWRlbnRpZnkgaXRzIG5hbWUgKHMpIGFzIHRoZSBhdXRob3IgKHMpIG9yIGhvbGRlciAocykgb2YgdGhlIGRvY3VtZW50J3MgcmlnaHRzCmRlbGl2ZXJlZCwgYW5kIHdpbGwgbm90IG1ha2UgYW55IGNoYW5nZXMsIG90aGVyIHRoYW4gdGhvc2UgcGVybWl0dGVkIGJ5CnRoaXMgbGljZW5zZQo=Repositório de PublicaçõesPUBhttp://repositorio.ufrn.br/oai/opendoar:2020-05-31T07:54:12Repositório Institucional da UFRN - Universidade Federal do Rio Grande do Norte (UFRN)false |
dc.title.pt_BR.fl_str_mv |
Artificial neural networks and multiple linear regression model using principal components to estimate rainfall over South America |
title |
Artificial neural networks and multiple linear regression model using principal components to estimate rainfall over South America |
spellingShingle |
Artificial neural networks and multiple linear regression model using principal components to estimate rainfall over South America Santos, T. Soares dos Application of artificial neural networks |
title_short |
Artificial neural networks and multiple linear regression model using principal components to estimate rainfall over South America |
title_full |
Artificial neural networks and multiple linear regression model using principal components to estimate rainfall over South America |
title_fullStr |
Artificial neural networks and multiple linear regression model using principal components to estimate rainfall over South America |
title_full_unstemmed |
Artificial neural networks and multiple linear regression model using principal components to estimate rainfall over South America |
title_sort |
Artificial neural networks and multiple linear regression model using principal components to estimate rainfall over South America |
author |
Santos, T. Soares dos |
author_facet |
Santos, T. Soares dos Mendes, David Torres, R. Rodrigues |
author_role |
author |
author2 |
Mendes, David Torres, R. Rodrigues |
author2_role |
author author |
dc.contributor.author.fl_str_mv |
Santos, T. Soares dos Mendes, David Torres, R. Rodrigues |
dc.subject.por.fl_str_mv |
Application of artificial neural networks |
topic |
Application of artificial neural networks |
description |
Several studies have been devoted to dynamic and statistical downscaling for analysis of both climate variability and climate change. This paper introduces an application of artificial neural networks (ANNs) and multiple linear regression (MLR) by principal components to estimate rainfall in South America. This method is proposed for downscaling monthly precipitation time series over South America for three regions: the Amazon; northeastern Brazil; and the La Plata Basin, which is one of the regions of the planet that will be most affected by the climate change projected for the end of the 21st century. The downscaling models were developed and validated using CMIP5 model output and observed monthly precipitation. We used general circulation model (GCM) experiments for the 20th century (RCP historical; 1970–1999) and two scenarios (RCP 2.6 and 8.5; 2070–2100). The model test results indicate that the ANNs significantly outperform the MLR downscaling of monthly precipitation variability |
publishDate |
2016 |
dc.date.issued.fl_str_mv |
2016 |
dc.date.accessioned.fl_str_mv |
2020-05-30T13:55:04Z |
dc.date.available.fl_str_mv |
2020-05-30T13:55:04Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.citation.fl_str_mv |
SANTOS, T. Soares dos ; Mendes, D. ; TORRES, R. Rodrigues. Artificial neural networks and multiple linear regression model using principal components to estimate rainfall over South America. Nonlinear processes in Geophysics, v. 23, p. 13-20, 2016. Disponível em: https://www.nonlin-processes-geophys.net/23/13/2016/npg-23-13-2016.pdf. Acesso em: 29 Maio 2020. https://doi.org/10.5194/npg-23-13-2016 |
dc.identifier.uri.fl_str_mv |
https://repositorio.ufrn.br/jspui/handle/123456789/29096 |
dc.identifier.doi.none.fl_str_mv |
https://doi.org/10.5194/npg-23-13-2016 |
identifier_str_mv |
SANTOS, T. Soares dos ; Mendes, D. ; TORRES, R. Rodrigues. Artificial neural networks and multiple linear regression model using principal components to estimate rainfall over South America. Nonlinear processes in Geophysics, v. 23, p. 13-20, 2016. Disponível em: https://www.nonlin-processes-geophys.net/23/13/2016/npg-23-13-2016.pdf. Acesso em: 29 Maio 2020. https://doi.org/10.5194/npg-23-13-2016 |
url |
https://repositorio.ufrn.br/jspui/handle/123456789/29096 https://doi.org/10.5194/npg-23-13-2016 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
Attribution 3.0 Brazil http://creativecommons.org/licenses/by/3.0/br/ info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Attribution 3.0 Brazil http://creativecommons.org/licenses/by/3.0/br/ |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
Nonlinear Processes Geophysics |
publisher.none.fl_str_mv |
Nonlinear Processes Geophysics |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFRN instname:Universidade Federal do Rio Grande do Norte (UFRN) instacron:UFRN |
instname_str |
Universidade Federal do Rio Grande do Norte (UFRN) |
instacron_str |
UFRN |
institution |
UFRN |
reponame_str |
Repositório Institucional da UFRN |
collection |
Repositório Institucional da UFRN |
bitstream.url.fl_str_mv |
https://repositorio.ufrn.br/bitstream/123456789/29096/1/ArtificialNeuralNetworksandMultipleLinearRegression_Mendes_2016.pdf https://repositorio.ufrn.br/bitstream/123456789/29096/2/license_rdf https://repositorio.ufrn.br/bitstream/123456789/29096/3/license.txt https://repositorio.ufrn.br/bitstream/123456789/29096/4/ArtificialNeuralNetworksandMultipleLinearRegression_Mendes_2016.pdf.txt https://repositorio.ufrn.br/bitstream/123456789/29096/5/ArtificialNeuralNetworksandMultipleLinearRegression_Mendes_2016.pdf.jpg |
bitstream.checksum.fl_str_mv |
a2a9e2795decd40bb3f2fe5a25af690e 4d2950bda3d176f570a9f8b328dfbbef e9597aa2854d128fd968be5edc8a28d9 2cf579455e05da8383e53b13bb84c3fd ac15658952a1d9e440e3d2f7a8630d6e |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional da UFRN - Universidade Federal do Rio Grande do Norte (UFRN) |
repository.mail.fl_str_mv |
|
_version_ |
1814832944132390912 |