A semi-parametric statistical test to compare complex networks

Detalhes bibliográficos
Autor(a) principal: Fujita, Andre
Data de Publicação: 2019
Outros Autores: Lira, Eduardo Silva, Santos, Suzana de Siqueira, Bando, Silvia Yumi, Soares, Gabriela Eleuterio, Takahashi, Daniel Yasumasa
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UFRN
Texto Completo: https://repositorio.ufrn.br/jspui/handle/123456789/27629
https://doi.org/10.1093/comnet/cnz028
Resumo: The modelling of real-world data as complex networks is ubiquitous in several scientific fields, for example, in molecular biology, we study gene regulatory networks and protein–protein interaction (PPI)_networks; in neuroscience, we study functional brain networks; and in social science, we analyse social networks. In contrast to theoretical graphs, real-world networks are better modelled as realizations of a random process. Therefore, analyses using methods based on deterministic graphs may be inappropriate. For example, verifying the isomorphism between two graphs is of limited use to decide whether two (or more) real-world networks are generated from the same random process. To overcome this problem, in this article, we introduce a semi-parametric approach similar to the analysis of variance to test the equality of generative models of two or more complex networks. We measure the performance of the proposed statistic using Monte Carlo simulations and illustrate its usefulness by comparing PPI networks of six enteric pathogens.
id UFRN_a1fb524b108a6926c6fee7f8f05dfe1d
oai_identifier_str oai:https://repositorio.ufrn.br:123456789/27629
network_acronym_str UFRN
network_name_str Repositório Institucional da UFRN
repository_id_str
spelling Fujita, AndreLira, Eduardo SilvaSantos, Suzana de SiqueiraBando, Silvia YumiSoares, Gabriela EleuterioTakahashi, Daniel Yasumasa2019-09-04T14:16:47Z2019-09-04T14:16:47Z2019-08-02FUJITA, A.; LIRA, E. S.; SANTOS, S. S.; BANDO, S. Y.; SOARES, G. E.; TAKAHASHI, D. Y. A semi-parametric statistical test to compare complex networks. Journal of Complex Networks, [s. l.], p. 1-17, ago. 2019. DOI: https://doi.org/10.1093/comnet/cnz028. Disponível em: https://academic.oup.com/comnet/advance-article-abstract/doi/10.1093/comnet/cnz028/5543003?redirectedFrom=fulltext. Acesso em: 04 set. 2019.https://repositorio.ufrn.br/jspui/handle/123456789/27629https://doi.org/10.1093/comnet/cnz028Random graphparameter estimationmodel selectionANOVAgraph spectrumisomorphismA semi-parametric statistical test to compare complex networksinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleThe modelling of real-world data as complex networks is ubiquitous in several scientific fields, for example, in molecular biology, we study gene regulatory networks and protein–protein interaction (PPI)_networks; in neuroscience, we study functional brain networks; and in social science, we analyse social networks. In contrast to theoretical graphs, real-world networks are better modelled as realizations of a random process. Therefore, analyses using methods based on deterministic graphs may be inappropriate. For example, verifying the isomorphism between two graphs is of limited use to decide whether two (or more) real-world networks are generated from the same random process. To overcome this problem, in this article, we introduce a semi-parametric approach similar to the analysis of variance to test the equality of generative models of two or more complex networks. We measure the performance of the proposed statistic using Monte Carlo simulations and illustrate its usefulness by comparing PPI networks of six enteric pathogens.engreponame:Repositório Institucional da UFRNinstname:Universidade Federal do Rio Grande do Norte (UFRN)instacron:UFRNinfo:eu-repo/semantics/openAccessORIGINALDanielTakahashi_ICe_2019_A semi-parametric statistical.pdfDanielTakahashi_ICe_2019_A semi-parametric statistical.pdfDanielTakahashi_ICe_2019_A semi-parametric statisticalapplication/pdf1602897https://repositorio.ufrn.br/bitstream/123456789/27629/1/DanielTakahashi_ICe_2019_A%20semi-parametric%20statistical.pdf050f130a30f974b57db03ee3b0926111MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81484https://repositorio.ufrn.br/bitstream/123456789/27629/2/license.txte9597aa2854d128fd968be5edc8a28d9MD52TEXTDanielTakahashi_ICe_2019_A semi-parametric statistical.pdf.txtDanielTakahashi_ICe_2019_A semi-parametric statistical.pdf.txtExtracted texttext/plain46774https://repositorio.ufrn.br/bitstream/123456789/27629/3/DanielTakahashi_ICe_2019_A%20semi-parametric%20statistical.pdf.txt37c7ef8d55e07dc7423e4e6171b38011MD53THUMBNAILDanielTakahashi_ICe_2019_A semi-parametric statistical.pdf.jpgDanielTakahashi_ICe_2019_A semi-parametric statistical.pdf.jpgGenerated Thumbnailimage/jpeg1633https://repositorio.ufrn.br/bitstream/123456789/27629/4/DanielTakahashi_ICe_2019_A%20semi-parametric%20statistical.pdf.jpgc2077611c18d87a07b7e43cea3e382d1MD54123456789/276292019-09-08 02:16:45.907oai:https://repositorio.ufrn.br:123456789/27629Tk9OLUVYQ0xVU0lWRSBESVNUUklCVVRJT04gTElDRU5TRQoKCkJ5IHNpZ25pbmcgYW5kIGRlbGl2ZXJpbmcgdGhpcyBsaWNlbnNlLCBNci4gKGF1dGhvciBvciBjb3B5cmlnaHQgaG9sZGVyKToKCgphKSBHcmFudHMgdGhlIFVuaXZlcnNpZGFkZSBGZWRlcmFsIFJpbyBHcmFuZGUgZG8gTm9ydGUgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgb2YKcmVwcm9kdWNlLCBjb252ZXJ0IChhcyBkZWZpbmVkIGJlbG93KSwgY29tbXVuaWNhdGUgYW5kIC8gb3IKZGlzdHJpYnV0ZSB0aGUgZGVsaXZlcmVkIGRvY3VtZW50IChpbmNsdWRpbmcgYWJzdHJhY3QgLyBhYnN0cmFjdCkgaW4KZGlnaXRhbCBvciBwcmludGVkIGZvcm1hdCBhbmQgaW4gYW55IG1lZGl1bS4KCmIpIERlY2xhcmVzIHRoYXQgdGhlIGRvY3VtZW50IHN1Ym1pdHRlZCBpcyBpdHMgb3JpZ2luYWwgd29yaywgYW5kIHRoYXQKeW91IGhhdmUgdGhlIHJpZ2h0IHRvIGdyYW50IHRoZSByaWdodHMgY29udGFpbmVkIGluIHRoaXMgbGljZW5zZS4gRGVjbGFyZXMKdGhhdCB0aGUgZGVsaXZlcnkgb2YgdGhlIGRvY3VtZW50IGRvZXMgbm90IGluZnJpbmdlLCBhcyBmYXIgYXMgaXQgaXMKdGhlIHJpZ2h0cyBvZiBhbnkgb3RoZXIgcGVyc29uIG9yIGVudGl0eS4KCmMpIElmIHRoZSBkb2N1bWVudCBkZWxpdmVyZWQgY29udGFpbnMgbWF0ZXJpYWwgd2hpY2ggZG9lcyBub3QKcmlnaHRzLCBkZWNsYXJlcyB0aGF0IGl0IGhhcyBvYnRhaW5lZCBhdXRob3JpemF0aW9uIGZyb20gdGhlIGhvbGRlciBvZiB0aGUKY29weXJpZ2h0IHRvIGdyYW50IHRoZSBVbml2ZXJzaWRhZGUgRmVkZXJhbCBkbyBSaW8gR3JhbmRlIGRvIE5vcnRlIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdCB0aGlzIG1hdGVyaWFsIHdob3NlIHJpZ2h0cyBhcmUgb2YKdGhpcmQgcGFydGllcyBpcyBjbGVhcmx5IGlkZW50aWZpZWQgYW5kIHJlY29nbml6ZWQgaW4gdGhlIHRleHQgb3IKY29udGVudCBvZiB0aGUgZG9jdW1lbnQgZGVsaXZlcmVkLgoKSWYgdGhlIGRvY3VtZW50IHN1Ym1pdHRlZCBpcyBiYXNlZCBvbiBmdW5kZWQgb3Igc3VwcG9ydGVkIHdvcmsKYnkgYW5vdGhlciBpbnN0aXR1dGlvbiBvdGhlciB0aGFuIHRoZSBVbml2ZXJzaWRhZGUgRmVkZXJhbCBkbyBSaW8gR3JhbmRlIGRvIE5vcnRlLCBkZWNsYXJlcyB0aGF0IGl0IGhhcyBmdWxmaWxsZWQgYW55IG9ibGlnYXRpb25zIHJlcXVpcmVkIGJ5IHRoZSByZXNwZWN0aXZlIGFncmVlbWVudCBvciBhZ3JlZW1lbnQuCgpUaGUgVW5pdmVyc2lkYWRlIEZlZGVyYWwgZG8gUmlvIEdyYW5kZSBkbyBOb3J0ZSB3aWxsIGNsZWFybHkgaWRlbnRpZnkgaXRzIG5hbWUgKHMpIGFzIHRoZSBhdXRob3IgKHMpIG9yIGhvbGRlciAocykgb2YgdGhlIGRvY3VtZW50J3MgcmlnaHRzCmRlbGl2ZXJlZCwgYW5kIHdpbGwgbm90IG1ha2UgYW55IGNoYW5nZXMsIG90aGVyIHRoYW4gdGhvc2UgcGVybWl0dGVkIGJ5CnRoaXMgbGljZW5zZQo=Repositório de PublicaçõesPUBhttp://repositorio.ufrn.br/oai/opendoar:2019-09-08T05:16:45Repositório Institucional da UFRN - Universidade Federal do Rio Grande do Norte (UFRN)false
dc.title.pt_BR.fl_str_mv A semi-parametric statistical test to compare complex networks
title A semi-parametric statistical test to compare complex networks
spellingShingle A semi-parametric statistical test to compare complex networks
Fujita, Andre
Random graph
parameter estimation
model selection
ANOVA
graph spectrum
isomorphism
title_short A semi-parametric statistical test to compare complex networks
title_full A semi-parametric statistical test to compare complex networks
title_fullStr A semi-parametric statistical test to compare complex networks
title_full_unstemmed A semi-parametric statistical test to compare complex networks
title_sort A semi-parametric statistical test to compare complex networks
author Fujita, Andre
author_facet Fujita, Andre
Lira, Eduardo Silva
Santos, Suzana de Siqueira
Bando, Silvia Yumi
Soares, Gabriela Eleuterio
Takahashi, Daniel Yasumasa
author_role author
author2 Lira, Eduardo Silva
Santos, Suzana de Siqueira
Bando, Silvia Yumi
Soares, Gabriela Eleuterio
Takahashi, Daniel Yasumasa
author2_role author
author
author
author
author
dc.contributor.author.fl_str_mv Fujita, Andre
Lira, Eduardo Silva
Santos, Suzana de Siqueira
Bando, Silvia Yumi
Soares, Gabriela Eleuterio
Takahashi, Daniel Yasumasa
dc.subject.por.fl_str_mv Random graph
parameter estimation
model selection
ANOVA
graph spectrum
isomorphism
topic Random graph
parameter estimation
model selection
ANOVA
graph spectrum
isomorphism
description The modelling of real-world data as complex networks is ubiquitous in several scientific fields, for example, in molecular biology, we study gene regulatory networks and protein–protein interaction (PPI)_networks; in neuroscience, we study functional brain networks; and in social science, we analyse social networks. In contrast to theoretical graphs, real-world networks are better modelled as realizations of a random process. Therefore, analyses using methods based on deterministic graphs may be inappropriate. For example, verifying the isomorphism between two graphs is of limited use to decide whether two (or more) real-world networks are generated from the same random process. To overcome this problem, in this article, we introduce a semi-parametric approach similar to the analysis of variance to test the equality of generative models of two or more complex networks. We measure the performance of the proposed statistic using Monte Carlo simulations and illustrate its usefulness by comparing PPI networks of six enteric pathogens.
publishDate 2019
dc.date.accessioned.fl_str_mv 2019-09-04T14:16:47Z
dc.date.available.fl_str_mv 2019-09-04T14:16:47Z
dc.date.issued.fl_str_mv 2019-08-02
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.citation.fl_str_mv FUJITA, A.; LIRA, E. S.; SANTOS, S. S.; BANDO, S. Y.; SOARES, G. E.; TAKAHASHI, D. Y. A semi-parametric statistical test to compare complex networks. Journal of Complex Networks, [s. l.], p. 1-17, ago. 2019. DOI: https://doi.org/10.1093/comnet/cnz028. Disponível em: https://academic.oup.com/comnet/advance-article-abstract/doi/10.1093/comnet/cnz028/5543003?redirectedFrom=fulltext. Acesso em: 04 set. 2019.
dc.identifier.uri.fl_str_mv https://repositorio.ufrn.br/jspui/handle/123456789/27629
dc.identifier.doi.none.fl_str_mv https://doi.org/10.1093/comnet/cnz028
identifier_str_mv FUJITA, A.; LIRA, E. S.; SANTOS, S. S.; BANDO, S. Y.; SOARES, G. E.; TAKAHASHI, D. Y. A semi-parametric statistical test to compare complex networks. Journal of Complex Networks, [s. l.], p. 1-17, ago. 2019. DOI: https://doi.org/10.1093/comnet/cnz028. Disponível em: https://academic.oup.com/comnet/advance-article-abstract/doi/10.1093/comnet/cnz028/5543003?redirectedFrom=fulltext. Acesso em: 04 set. 2019.
url https://repositorio.ufrn.br/jspui/handle/123456789/27629
https://doi.org/10.1093/comnet/cnz028
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFRN
instname:Universidade Federal do Rio Grande do Norte (UFRN)
instacron:UFRN
instname_str Universidade Federal do Rio Grande do Norte (UFRN)
instacron_str UFRN
institution UFRN
reponame_str Repositório Institucional da UFRN
collection Repositório Institucional da UFRN
bitstream.url.fl_str_mv https://repositorio.ufrn.br/bitstream/123456789/27629/1/DanielTakahashi_ICe_2019_A%20semi-parametric%20statistical.pdf
https://repositorio.ufrn.br/bitstream/123456789/27629/2/license.txt
https://repositorio.ufrn.br/bitstream/123456789/27629/3/DanielTakahashi_ICe_2019_A%20semi-parametric%20statistical.pdf.txt
https://repositorio.ufrn.br/bitstream/123456789/27629/4/DanielTakahashi_ICe_2019_A%20semi-parametric%20statistical.pdf.jpg
bitstream.checksum.fl_str_mv 050f130a30f974b57db03ee3b0926111
e9597aa2854d128fd968be5edc8a28d9
37c7ef8d55e07dc7423e4e6171b38011
c2077611c18d87a07b7e43cea3e382d1
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFRN - Universidade Federal do Rio Grande do Norte (UFRN)
repository.mail.fl_str_mv
_version_ 1814832836526473216