A semi-parametric statistical test to compare complex networks
Autor(a) principal: | |
---|---|
Data de Publicação: | 2019 |
Outros Autores: | , , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UFRN |
Texto Completo: | https://repositorio.ufrn.br/jspui/handle/123456789/27629 https://doi.org/10.1093/comnet/cnz028 |
Resumo: | The modelling of real-world data as complex networks is ubiquitous in several scientific fields, for example, in molecular biology, we study gene regulatory networks and protein–protein interaction (PPI)_networks; in neuroscience, we study functional brain networks; and in social science, we analyse social networks. In contrast to theoretical graphs, real-world networks are better modelled as realizations of a random process. Therefore, analyses using methods based on deterministic graphs may be inappropriate. For example, verifying the isomorphism between two graphs is of limited use to decide whether two (or more) real-world networks are generated from the same random process. To overcome this problem, in this article, we introduce a semi-parametric approach similar to the analysis of variance to test the equality of generative models of two or more complex networks. We measure the performance of the proposed statistic using Monte Carlo simulations and illustrate its usefulness by comparing PPI networks of six enteric pathogens. |
id |
UFRN_a1fb524b108a6926c6fee7f8f05dfe1d |
---|---|
oai_identifier_str |
oai:https://repositorio.ufrn.br:123456789/27629 |
network_acronym_str |
UFRN |
network_name_str |
Repositório Institucional da UFRN |
repository_id_str |
|
spelling |
Fujita, AndreLira, Eduardo SilvaSantos, Suzana de SiqueiraBando, Silvia YumiSoares, Gabriela EleuterioTakahashi, Daniel Yasumasa2019-09-04T14:16:47Z2019-09-04T14:16:47Z2019-08-02FUJITA, A.; LIRA, E. S.; SANTOS, S. S.; BANDO, S. Y.; SOARES, G. E.; TAKAHASHI, D. Y. A semi-parametric statistical test to compare complex networks. Journal of Complex Networks, [s. l.], p. 1-17, ago. 2019. DOI: https://doi.org/10.1093/comnet/cnz028. Disponível em: https://academic.oup.com/comnet/advance-article-abstract/doi/10.1093/comnet/cnz028/5543003?redirectedFrom=fulltext. Acesso em: 04 set. 2019.https://repositorio.ufrn.br/jspui/handle/123456789/27629https://doi.org/10.1093/comnet/cnz028Random graphparameter estimationmodel selectionANOVAgraph spectrumisomorphismA semi-parametric statistical test to compare complex networksinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleThe modelling of real-world data as complex networks is ubiquitous in several scientific fields, for example, in molecular biology, we study gene regulatory networks and protein–protein interaction (PPI)_networks; in neuroscience, we study functional brain networks; and in social science, we analyse social networks. In contrast to theoretical graphs, real-world networks are better modelled as realizations of a random process. Therefore, analyses using methods based on deterministic graphs may be inappropriate. For example, verifying the isomorphism between two graphs is of limited use to decide whether two (or more) real-world networks are generated from the same random process. To overcome this problem, in this article, we introduce a semi-parametric approach similar to the analysis of variance to test the equality of generative models of two or more complex networks. We measure the performance of the proposed statistic using Monte Carlo simulations and illustrate its usefulness by comparing PPI networks of six enteric pathogens.engreponame:Repositório Institucional da UFRNinstname:Universidade Federal do Rio Grande do Norte (UFRN)instacron:UFRNinfo:eu-repo/semantics/openAccessORIGINALDanielTakahashi_ICe_2019_A semi-parametric statistical.pdfDanielTakahashi_ICe_2019_A semi-parametric statistical.pdfDanielTakahashi_ICe_2019_A semi-parametric statisticalapplication/pdf1602897https://repositorio.ufrn.br/bitstream/123456789/27629/1/DanielTakahashi_ICe_2019_A%20semi-parametric%20statistical.pdf050f130a30f974b57db03ee3b0926111MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81484https://repositorio.ufrn.br/bitstream/123456789/27629/2/license.txte9597aa2854d128fd968be5edc8a28d9MD52TEXTDanielTakahashi_ICe_2019_A semi-parametric statistical.pdf.txtDanielTakahashi_ICe_2019_A semi-parametric statistical.pdf.txtExtracted texttext/plain46774https://repositorio.ufrn.br/bitstream/123456789/27629/3/DanielTakahashi_ICe_2019_A%20semi-parametric%20statistical.pdf.txt37c7ef8d55e07dc7423e4e6171b38011MD53THUMBNAILDanielTakahashi_ICe_2019_A semi-parametric statistical.pdf.jpgDanielTakahashi_ICe_2019_A semi-parametric statistical.pdf.jpgGenerated Thumbnailimage/jpeg1633https://repositorio.ufrn.br/bitstream/123456789/27629/4/DanielTakahashi_ICe_2019_A%20semi-parametric%20statistical.pdf.jpgc2077611c18d87a07b7e43cea3e382d1MD54123456789/276292019-09-08 02:16:45.907oai:https://repositorio.ufrn.br:123456789/27629Tk9OLUVYQ0xVU0lWRSBESVNUUklCVVRJT04gTElDRU5TRQoKCkJ5IHNpZ25pbmcgYW5kIGRlbGl2ZXJpbmcgdGhpcyBsaWNlbnNlLCBNci4gKGF1dGhvciBvciBjb3B5cmlnaHQgaG9sZGVyKToKCgphKSBHcmFudHMgdGhlIFVuaXZlcnNpZGFkZSBGZWRlcmFsIFJpbyBHcmFuZGUgZG8gTm9ydGUgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgb2YKcmVwcm9kdWNlLCBjb252ZXJ0IChhcyBkZWZpbmVkIGJlbG93KSwgY29tbXVuaWNhdGUgYW5kIC8gb3IKZGlzdHJpYnV0ZSB0aGUgZGVsaXZlcmVkIGRvY3VtZW50IChpbmNsdWRpbmcgYWJzdHJhY3QgLyBhYnN0cmFjdCkgaW4KZGlnaXRhbCBvciBwcmludGVkIGZvcm1hdCBhbmQgaW4gYW55IG1lZGl1bS4KCmIpIERlY2xhcmVzIHRoYXQgdGhlIGRvY3VtZW50IHN1Ym1pdHRlZCBpcyBpdHMgb3JpZ2luYWwgd29yaywgYW5kIHRoYXQKeW91IGhhdmUgdGhlIHJpZ2h0IHRvIGdyYW50IHRoZSByaWdodHMgY29udGFpbmVkIGluIHRoaXMgbGljZW5zZS4gRGVjbGFyZXMKdGhhdCB0aGUgZGVsaXZlcnkgb2YgdGhlIGRvY3VtZW50IGRvZXMgbm90IGluZnJpbmdlLCBhcyBmYXIgYXMgaXQgaXMKdGhlIHJpZ2h0cyBvZiBhbnkgb3RoZXIgcGVyc29uIG9yIGVudGl0eS4KCmMpIElmIHRoZSBkb2N1bWVudCBkZWxpdmVyZWQgY29udGFpbnMgbWF0ZXJpYWwgd2hpY2ggZG9lcyBub3QKcmlnaHRzLCBkZWNsYXJlcyB0aGF0IGl0IGhhcyBvYnRhaW5lZCBhdXRob3JpemF0aW9uIGZyb20gdGhlIGhvbGRlciBvZiB0aGUKY29weXJpZ2h0IHRvIGdyYW50IHRoZSBVbml2ZXJzaWRhZGUgRmVkZXJhbCBkbyBSaW8gR3JhbmRlIGRvIE5vcnRlIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdCB0aGlzIG1hdGVyaWFsIHdob3NlIHJpZ2h0cyBhcmUgb2YKdGhpcmQgcGFydGllcyBpcyBjbGVhcmx5IGlkZW50aWZpZWQgYW5kIHJlY29nbml6ZWQgaW4gdGhlIHRleHQgb3IKY29udGVudCBvZiB0aGUgZG9jdW1lbnQgZGVsaXZlcmVkLgoKSWYgdGhlIGRvY3VtZW50IHN1Ym1pdHRlZCBpcyBiYXNlZCBvbiBmdW5kZWQgb3Igc3VwcG9ydGVkIHdvcmsKYnkgYW5vdGhlciBpbnN0aXR1dGlvbiBvdGhlciB0aGFuIHRoZSBVbml2ZXJzaWRhZGUgRmVkZXJhbCBkbyBSaW8gR3JhbmRlIGRvIE5vcnRlLCBkZWNsYXJlcyB0aGF0IGl0IGhhcyBmdWxmaWxsZWQgYW55IG9ibGlnYXRpb25zIHJlcXVpcmVkIGJ5IHRoZSByZXNwZWN0aXZlIGFncmVlbWVudCBvciBhZ3JlZW1lbnQuCgpUaGUgVW5pdmVyc2lkYWRlIEZlZGVyYWwgZG8gUmlvIEdyYW5kZSBkbyBOb3J0ZSB3aWxsIGNsZWFybHkgaWRlbnRpZnkgaXRzIG5hbWUgKHMpIGFzIHRoZSBhdXRob3IgKHMpIG9yIGhvbGRlciAocykgb2YgdGhlIGRvY3VtZW50J3MgcmlnaHRzCmRlbGl2ZXJlZCwgYW5kIHdpbGwgbm90IG1ha2UgYW55IGNoYW5nZXMsIG90aGVyIHRoYW4gdGhvc2UgcGVybWl0dGVkIGJ5CnRoaXMgbGljZW5zZQo=Repositório de PublicaçõesPUBhttp://repositorio.ufrn.br/oai/opendoar:2019-09-08T05:16:45Repositório Institucional da UFRN - Universidade Federal do Rio Grande do Norte (UFRN)false |
dc.title.pt_BR.fl_str_mv |
A semi-parametric statistical test to compare complex networks |
title |
A semi-parametric statistical test to compare complex networks |
spellingShingle |
A semi-parametric statistical test to compare complex networks Fujita, Andre Random graph parameter estimation model selection ANOVA graph spectrum isomorphism |
title_short |
A semi-parametric statistical test to compare complex networks |
title_full |
A semi-parametric statistical test to compare complex networks |
title_fullStr |
A semi-parametric statistical test to compare complex networks |
title_full_unstemmed |
A semi-parametric statistical test to compare complex networks |
title_sort |
A semi-parametric statistical test to compare complex networks |
author |
Fujita, Andre |
author_facet |
Fujita, Andre Lira, Eduardo Silva Santos, Suzana de Siqueira Bando, Silvia Yumi Soares, Gabriela Eleuterio Takahashi, Daniel Yasumasa |
author_role |
author |
author2 |
Lira, Eduardo Silva Santos, Suzana de Siqueira Bando, Silvia Yumi Soares, Gabriela Eleuterio Takahashi, Daniel Yasumasa |
author2_role |
author author author author author |
dc.contributor.author.fl_str_mv |
Fujita, Andre Lira, Eduardo Silva Santos, Suzana de Siqueira Bando, Silvia Yumi Soares, Gabriela Eleuterio Takahashi, Daniel Yasumasa |
dc.subject.por.fl_str_mv |
Random graph parameter estimation model selection ANOVA graph spectrum isomorphism |
topic |
Random graph parameter estimation model selection ANOVA graph spectrum isomorphism |
description |
The modelling of real-world data as complex networks is ubiquitous in several scientific fields, for example, in molecular biology, we study gene regulatory networks and protein–protein interaction (PPI)_networks; in neuroscience, we study functional brain networks; and in social science, we analyse social networks. In contrast to theoretical graphs, real-world networks are better modelled as realizations of a random process. Therefore, analyses using methods based on deterministic graphs may be inappropriate. For example, verifying the isomorphism between two graphs is of limited use to decide whether two (or more) real-world networks are generated from the same random process. To overcome this problem, in this article, we introduce a semi-parametric approach similar to the analysis of variance to test the equality of generative models of two or more complex networks. We measure the performance of the proposed statistic using Monte Carlo simulations and illustrate its usefulness by comparing PPI networks of six enteric pathogens. |
publishDate |
2019 |
dc.date.accessioned.fl_str_mv |
2019-09-04T14:16:47Z |
dc.date.available.fl_str_mv |
2019-09-04T14:16:47Z |
dc.date.issued.fl_str_mv |
2019-08-02 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.citation.fl_str_mv |
FUJITA, A.; LIRA, E. S.; SANTOS, S. S.; BANDO, S. Y.; SOARES, G. E.; TAKAHASHI, D. Y. A semi-parametric statistical test to compare complex networks. Journal of Complex Networks, [s. l.], p. 1-17, ago. 2019. DOI: https://doi.org/10.1093/comnet/cnz028. Disponível em: https://academic.oup.com/comnet/advance-article-abstract/doi/10.1093/comnet/cnz028/5543003?redirectedFrom=fulltext. Acesso em: 04 set. 2019. |
dc.identifier.uri.fl_str_mv |
https://repositorio.ufrn.br/jspui/handle/123456789/27629 |
dc.identifier.doi.none.fl_str_mv |
https://doi.org/10.1093/comnet/cnz028 |
identifier_str_mv |
FUJITA, A.; LIRA, E. S.; SANTOS, S. S.; BANDO, S. Y.; SOARES, G. E.; TAKAHASHI, D. Y. A semi-parametric statistical test to compare complex networks. Journal of Complex Networks, [s. l.], p. 1-17, ago. 2019. DOI: https://doi.org/10.1093/comnet/cnz028. Disponível em: https://academic.oup.com/comnet/advance-article-abstract/doi/10.1093/comnet/cnz028/5543003?redirectedFrom=fulltext. Acesso em: 04 set. 2019. |
url |
https://repositorio.ufrn.br/jspui/handle/123456789/27629 https://doi.org/10.1093/comnet/cnz028 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFRN instname:Universidade Federal do Rio Grande do Norte (UFRN) instacron:UFRN |
instname_str |
Universidade Federal do Rio Grande do Norte (UFRN) |
instacron_str |
UFRN |
institution |
UFRN |
reponame_str |
Repositório Institucional da UFRN |
collection |
Repositório Institucional da UFRN |
bitstream.url.fl_str_mv |
https://repositorio.ufrn.br/bitstream/123456789/27629/1/DanielTakahashi_ICe_2019_A%20semi-parametric%20statistical.pdf https://repositorio.ufrn.br/bitstream/123456789/27629/2/license.txt https://repositorio.ufrn.br/bitstream/123456789/27629/3/DanielTakahashi_ICe_2019_A%20semi-parametric%20statistical.pdf.txt https://repositorio.ufrn.br/bitstream/123456789/27629/4/DanielTakahashi_ICe_2019_A%20semi-parametric%20statistical.pdf.jpg |
bitstream.checksum.fl_str_mv |
050f130a30f974b57db03ee3b0926111 e9597aa2854d128fd968be5edc8a28d9 37c7ef8d55e07dc7423e4e6171b38011 c2077611c18d87a07b7e43cea3e382d1 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional da UFRN - Universidade Federal do Rio Grande do Norte (UFRN) |
repository.mail.fl_str_mv |
|
_version_ |
1814832836526473216 |