Balancing and transposition of maps for location-based games
Autor(a) principal: | |
---|---|
Data de Publicação: | 2019 |
Tipo de documento: | Tese |
Idioma: | eng |
Título da fonte: | Repositório Institucional da Universidade Federal do Ceará (UFC) |
Texto Completo: | http://www.repositorio.ufc.br/handle/riufc/47059 |
Resumo: | Location-Based Games (LBGs) rely on the player’s location to change its game state, usually as the main trait of playability. Thus, developing worldwide LBGs is a challenging task dueto the need to deploy game instances in multiple locations, while maintaining the same game balancing, features, and even correlations between locations of the game and the real world. Since LBGs rely on players’ location, it is virtually impossible to manually design interactions, challenges, and game scenarios for every place a player is at. Therefore, the same LBG is likely to have distinct instances with varying difficulty levels because of differences in terrain, distance, transport availability, etc. As a result, even established game companies struggle to deploy LBGs around the globe, so the current generation of LBGs is not available in many areas, especially small cities and poor neighborhoods of big cities. Additionally, modern LBGs still present huge balancing differences between regions and avoid exploring the competition between players like other game genres. In this thesis, we propose a method for transposing LBGs maps while focusing on maintaining their game balancing. This approach depends on information about Points-of-Interest (POIs) around the players’ location and estimations about the cost to move between POIs. We introduced two measurements to estimate game balancing in modern LBGs and implemented three different algorithms that aim at transposing LBGs’ maps with minimal variations in game balancing. The first measurement, called Internal Balancing Difference, assesses game balancing internally and the second, called Minimum Balancing Difference, compares game balancing between two instances of a game. The transposition algorithms are based on the Monte Carlo tree search, the Ullmann’s algorithm, and Genetic Algorithms. In this case, we convert LBGs into directed weighted graphs and use one of the algorithms to generate an LBG instance according to the player’s location. To validate the proposed approach, we designed four LBGs with distinct features, gameplay, and mechanics, and conducted an experiment that required samples to compare maps generated by these algorithmsin different locations. Results indicate that games with similar game balancing score higher and that the algorithms differ in performance depending on the number of POIs. Finally, we can conclude that this work contributes to improve the development of LBGs by helping to mitigate the challenge of transposing LBGs while maintaining game balancing. |
id |
UFC-7_3a8034cde2f8bf774f8191c68c3c71d6 |
---|---|
oai_identifier_str |
oai:repositorio.ufc.br:riufc/47059 |
network_acronym_str |
UFC-7 |
network_name_str |
Repositório Institucional da Universidade Federal do Ceará (UFC) |
repository_id_str |
|
spelling |
Balancing and transposition of maps for location-based gamesBalancing and transposition of maps for location-based gamesLocation-based GamesProcedural Content GenerationGraph IsomorphismLocation-Based Games (LBGs) rely on the player’s location to change its game state, usually as the main trait of playability. Thus, developing worldwide LBGs is a challenging task dueto the need to deploy game instances in multiple locations, while maintaining the same game balancing, features, and even correlations between locations of the game and the real world. Since LBGs rely on players’ location, it is virtually impossible to manually design interactions, challenges, and game scenarios for every place a player is at. Therefore, the same LBG is likely to have distinct instances with varying difficulty levels because of differences in terrain, distance, transport availability, etc. As a result, even established game companies struggle to deploy LBGs around the globe, so the current generation of LBGs is not available in many areas, especially small cities and poor neighborhoods of big cities. Additionally, modern LBGs still present huge balancing differences between regions and avoid exploring the competition between players like other game genres. In this thesis, we propose a method for transposing LBGs maps while focusing on maintaining their game balancing. This approach depends on information about Points-of-Interest (POIs) around the players’ location and estimations about the cost to move between POIs. We introduced two measurements to estimate game balancing in modern LBGs and implemented three different algorithms that aim at transposing LBGs’ maps with minimal variations in game balancing. The first measurement, called Internal Balancing Difference, assesses game balancing internally and the second, called Minimum Balancing Difference, compares game balancing between two instances of a game. The transposition algorithms are based on the Monte Carlo tree search, the Ullmann’s algorithm, and Genetic Algorithms. In this case, we convert LBGs into directed weighted graphs and use one of the algorithms to generate an LBG instance according to the player’s location. To validate the proposed approach, we designed four LBGs with distinct features, gameplay, and mechanics, and conducted an experiment that required samples to compare maps generated by these algorithmsin different locations. Results indicate that games with similar game balancing score higher and that the algorithms differ in performance depending on the number of POIs. Finally, we can conclude that this work contributes to improve the development of LBGs by helping to mitigate the challenge of transposing LBGs while maintaining game balancing.Jogos-baseados em Localização (JBLs) são aqueles que dependem da localização do jogador como principal traço de jogabilidade para alterar seu estado de jogo. Por isso, desenvolver JBLs que estejam disponíveis em todo o mundo é uma tarefa desafiadora que requer o desenvolvimento de instâncias dos jogos em vários locais, mantendo o mesmo balanceamento, recursos e até mesmo correlações entre os locais do jogo e o mundo real. Logo, é praticamente impossível projetar manualmente interações, desafios e cenários para cada local em que um jogador está.Portanto, geralmente o mesmo jogo apresenta instâncias distintas com níveis de dificuldade variados devido a diferenças de terreno, distância, disponibilidade de transporte etc. Consequentemente, até mesmo empresas estabelecidas no mercado possuem dificuldade para implantar JBLs que estejam disponíveis em todo o mundo. Logo, os atuais JBLs não estão disponíveis em muitas regiões, especialmente cidades pequenas e bairros pobres das grandes cidades. Além disso, estes jogos ainda apresentam enormes diferenças de balanceamento entre localidades e evitam explorar a competição entre jogadores, como em outros gêneros de jogos. Nesta tese,propomos um método de transposição de mapas de JBLs, com foco na manutenção do seu balanceamento. Esta abordagem depende de informações sobre Pontos de Interesse (POIs) em torno da localização dos jogadores e estimativas sobre o custo de movimentação entre estes pontos.Introduzimos duas medidas para estimar o balanceamento em JBLs modernos e implementamos três algoritmos diferentes que visam a transposição de seus mapas com variações mínimas no seu balanceamento. A primeira medida avalia o balanceamento de jogos internamente e a segunda compara o balanceamento entre duas instâncias de um jogo. Neste caso, propomos converter os jogos em grafos ponderados direcionados e utilizar um dos algoritmos para gerar uma instância equivalente, de acordo com a localização do jogador. Para validar a abordagem proposta, projetamos quatro JBLs distintos em termos de recurso, jogabilidade e mecânica, e conduzimos um experimento com usuários para comparar mapas gerados por esses algoritmo sem diferentes locais. Os resultados indicam que os jogos com balanceamento semelhante apre-sentaram pontuação mais alta, e que os algoritmos apresentam diferente desempenho conforme o número de POIs. Finalmente, podemos concluir que este trabalho contribui para melhorar o desenvolvimento de JBLs, ajudando a mitigar o desafio da transposição balanceada.Trinta, Fernando Antonio MotaCarvalho, Windson Viana deSilva, Luís Fernando Maia Santos2019-10-24T13:49:13Z2019-10-24T13:49:13Z2019info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfSILVA, Luís Fernando Maia Santos. Balancing and transposition of maps for location-based games. 2019. 155 f. Tese (Doutorado em Ciência da Computação) - Universidade Federal do Ceará, Fortaleza, 2019.http://www.repositorio.ufc.br/handle/riufc/47059engreponame:Repositório Institucional da Universidade Federal do Ceará (UFC)instname:Universidade Federal do Ceará (UFC)instacron:UFCinfo:eu-repo/semantics/openAccess2019-10-24T13:49:13Zoai:repositorio.ufc.br:riufc/47059Repositório InstitucionalPUBhttp://www.repositorio.ufc.br/ri-oai/requestbu@ufc.br || repositorio@ufc.bropendoar:2024-09-11T18:18:45.156658Repositório Institucional da Universidade Federal do Ceará (UFC) - Universidade Federal do Ceará (UFC)false |
dc.title.none.fl_str_mv |
Balancing and transposition of maps for location-based games Balancing and transposition of maps for location-based games |
title |
Balancing and transposition of maps for location-based games |
spellingShingle |
Balancing and transposition of maps for location-based games Silva, Luís Fernando Maia Santos Location-based Games Procedural Content Generation Graph Isomorphism |
title_short |
Balancing and transposition of maps for location-based games |
title_full |
Balancing and transposition of maps for location-based games |
title_fullStr |
Balancing and transposition of maps for location-based games |
title_full_unstemmed |
Balancing and transposition of maps for location-based games |
title_sort |
Balancing and transposition of maps for location-based games |
author |
Silva, Luís Fernando Maia Santos |
author_facet |
Silva, Luís Fernando Maia Santos |
author_role |
author |
dc.contributor.none.fl_str_mv |
Trinta, Fernando Antonio Mota Carvalho, Windson Viana de |
dc.contributor.author.fl_str_mv |
Silva, Luís Fernando Maia Santos |
dc.subject.por.fl_str_mv |
Location-based Games Procedural Content Generation Graph Isomorphism |
topic |
Location-based Games Procedural Content Generation Graph Isomorphism |
description |
Location-Based Games (LBGs) rely on the player’s location to change its game state, usually as the main trait of playability. Thus, developing worldwide LBGs is a challenging task dueto the need to deploy game instances in multiple locations, while maintaining the same game balancing, features, and even correlations between locations of the game and the real world. Since LBGs rely on players’ location, it is virtually impossible to manually design interactions, challenges, and game scenarios for every place a player is at. Therefore, the same LBG is likely to have distinct instances with varying difficulty levels because of differences in terrain, distance, transport availability, etc. As a result, even established game companies struggle to deploy LBGs around the globe, so the current generation of LBGs is not available in many areas, especially small cities and poor neighborhoods of big cities. Additionally, modern LBGs still present huge balancing differences between regions and avoid exploring the competition between players like other game genres. In this thesis, we propose a method for transposing LBGs maps while focusing on maintaining their game balancing. This approach depends on information about Points-of-Interest (POIs) around the players’ location and estimations about the cost to move between POIs. We introduced two measurements to estimate game balancing in modern LBGs and implemented three different algorithms that aim at transposing LBGs’ maps with minimal variations in game balancing. The first measurement, called Internal Balancing Difference, assesses game balancing internally and the second, called Minimum Balancing Difference, compares game balancing between two instances of a game. The transposition algorithms are based on the Monte Carlo tree search, the Ullmann’s algorithm, and Genetic Algorithms. In this case, we convert LBGs into directed weighted graphs and use one of the algorithms to generate an LBG instance according to the player’s location. To validate the proposed approach, we designed four LBGs with distinct features, gameplay, and mechanics, and conducted an experiment that required samples to compare maps generated by these algorithmsin different locations. Results indicate that games with similar game balancing score higher and that the algorithms differ in performance depending on the number of POIs. Finally, we can conclude that this work contributes to improve the development of LBGs by helping to mitigate the challenge of transposing LBGs while maintaining game balancing. |
publishDate |
2019 |
dc.date.none.fl_str_mv |
2019-10-24T13:49:13Z 2019-10-24T13:49:13Z 2019 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
format |
doctoralThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
SILVA, Luís Fernando Maia Santos. Balancing and transposition of maps for location-based games. 2019. 155 f. Tese (Doutorado em Ciência da Computação) - Universidade Federal do Ceará, Fortaleza, 2019. http://www.repositorio.ufc.br/handle/riufc/47059 |
identifier_str_mv |
SILVA, Luís Fernando Maia Santos. Balancing and transposition of maps for location-based games. 2019. 155 f. Tese (Doutorado em Ciência da Computação) - Universidade Federal do Ceará, Fortaleza, 2019. |
url |
http://www.repositorio.ufc.br/handle/riufc/47059 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da Universidade Federal do Ceará (UFC) instname:Universidade Federal do Ceará (UFC) instacron:UFC |
instname_str |
Universidade Federal do Ceará (UFC) |
instacron_str |
UFC |
institution |
UFC |
reponame_str |
Repositório Institucional da Universidade Federal do Ceará (UFC) |
collection |
Repositório Institucional da Universidade Federal do Ceará (UFC) |
repository.name.fl_str_mv |
Repositório Institucional da Universidade Federal do Ceará (UFC) - Universidade Federal do Ceará (UFC) |
repository.mail.fl_str_mv |
bu@ufc.br || repositorio@ufc.br |
_version_ |
1813028750561902592 |