The interpretation of dream meaning: Resolving ambiguity using Latent Semantic Analysis in a small corpus of text
Autor(a) principal: | |
---|---|
Data de Publicação: | 2017 |
Outros Autores: | , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UFRN |
Texto Completo: | https://repositorio.ufrn.br/jspui/handle/123456789/24164 https://doi.org/10.1016/j.concog.2017.09.004 |
Resumo: | Computer-based dreams content analysis relies on word frequencies within predefined categories in order to identify different elements in text. As a complementary approach, we explored the capabilities and limitations of word-embedding techniques to identify word usage patterns among dream reports. These tools allow us to quantify words associations in text and to identify the meaning of target words. Word-embeddings have been extensively studied in large datasets, but only a few studies analyze semantic representations in small corpora. To fill this gap, we compared Skip-gram and Latent Semantic Analysis (LSA) capabilities to extract semantic associations from dream reports. LSA showed better performance than Skip-gram in small size corpora in two tests. Furthermore, LSA captured relevant word associations in dream collection, even in cases with low-frequency words or small numbers of dreams. Word associations in dreams reports can thus be quantified by LSA, which opens new avenues for dream interpretation and decoding. |
id |
UFRN_ada37cbcc30e49cfbc73300f1899ac88 |
---|---|
oai_identifier_str |
oai:https://repositorio.ufrn.br:123456789/24164 |
network_acronym_str |
UFRN |
network_name_str |
Repositório Institucional da UFRN |
repository_id_str |
|
spelling |
Altszyler, ERibeiro, Sidarta Tollendal GomesSigman, MFernández Slezak, D2017-11-03T12:21:28Z2017-11-03T12:21:28Z2017-09-21https://repositorio.ufrn.br/jspui/handle/123456789/24164https://doi.org/10.1016/j.concog.2017.09.004engDream content analysisWord2vecLatent Semantic AnalysisThe interpretation of dream meaning: Resolving ambiguity using Latent Semantic Analysis in a small corpus of textinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleComputer-based dreams content analysis relies on word frequencies within predefined categories in order to identify different elements in text. As a complementary approach, we explored the capabilities and limitations of word-embedding techniques to identify word usage patterns among dream reports. These tools allow us to quantify words associations in text and to identify the meaning of target words. Word-embeddings have been extensively studied in large datasets, but only a few studies analyze semantic representations in small corpora. To fill this gap, we compared Skip-gram and Latent Semantic Analysis (LSA) capabilities to extract semantic associations from dream reports. LSA showed better performance than Skip-gram in small size corpora in two tests. Furthermore, LSA captured relevant word associations in dream collection, even in cases with low-frequency words or small numbers of dreams. Word associations in dreams reports can thus be quantified by LSA, which opens new avenues for dream interpretation and decoding.reponame:Repositório Institucional da UFRNinstname:Universidade Federal do Rio Grande do Norte (UFRN)instacron:UFRNinfo:eu-repo/semantics/openAccessLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.ufrn.br/bitstream/123456789/24164/2/license.txt8a4605be74aa9ea9d79846c1fba20a33MD52TEXTSidartaRibeiro_Theinterpretationofdream_2017.pdf.txtSidartaRibeiro_Theinterpretationofdream_2017.pdf.txtExtracted texttext/plain48995https://repositorio.ufrn.br/bitstream/123456789/24164/3/SidartaRibeiro_Theinterpretationofdream_2017.pdf.txtfc9119bd026d688c009dece428928d10MD53THUMBNAILSidartaRibeiro_Theinterpretationofdream_2017.pdf.jpgSidartaRibeiro_Theinterpretationofdream_2017.pdf.jpgIM Thumbnailimage/jpeg10471https://repositorio.ufrn.br/bitstream/123456789/24164/4/SidartaRibeiro_Theinterpretationofdream_2017.pdf.jpgde95c47362d5fd2143500ba8be7a29dcMD54123456789/241642023-02-02 16:32:06.13oai:https://repositorio.ufrn.br:123456789/24164Tk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=Repositório de PublicaçõesPUBhttp://repositorio.ufrn.br/oai/opendoar:2023-02-02T19:32:06Repositório Institucional da UFRN - Universidade Federal do Rio Grande do Norte (UFRN)false |
dc.title.pt_BR.fl_str_mv |
The interpretation of dream meaning: Resolving ambiguity using Latent Semantic Analysis in a small corpus of text |
title |
The interpretation of dream meaning: Resolving ambiguity using Latent Semantic Analysis in a small corpus of text |
spellingShingle |
The interpretation of dream meaning: Resolving ambiguity using Latent Semantic Analysis in a small corpus of text Altszyler, E Dream content analysis Word2vec Latent Semantic Analysis |
title_short |
The interpretation of dream meaning: Resolving ambiguity using Latent Semantic Analysis in a small corpus of text |
title_full |
The interpretation of dream meaning: Resolving ambiguity using Latent Semantic Analysis in a small corpus of text |
title_fullStr |
The interpretation of dream meaning: Resolving ambiguity using Latent Semantic Analysis in a small corpus of text |
title_full_unstemmed |
The interpretation of dream meaning: Resolving ambiguity using Latent Semantic Analysis in a small corpus of text |
title_sort |
The interpretation of dream meaning: Resolving ambiguity using Latent Semantic Analysis in a small corpus of text |
author |
Altszyler, E |
author_facet |
Altszyler, E Ribeiro, Sidarta Tollendal Gomes Sigman, M Fernández Slezak, D |
author_role |
author |
author2 |
Ribeiro, Sidarta Tollendal Gomes Sigman, M Fernández Slezak, D |
author2_role |
author author author |
dc.contributor.author.fl_str_mv |
Altszyler, E Ribeiro, Sidarta Tollendal Gomes Sigman, M Fernández Slezak, D |
dc.subject.por.fl_str_mv |
Dream content analysis Word2vec Latent Semantic Analysis |
topic |
Dream content analysis Word2vec Latent Semantic Analysis |
description |
Computer-based dreams content analysis relies on word frequencies within predefined categories in order to identify different elements in text. As a complementary approach, we explored the capabilities and limitations of word-embedding techniques to identify word usage patterns among dream reports. These tools allow us to quantify words associations in text and to identify the meaning of target words. Word-embeddings have been extensively studied in large datasets, but only a few studies analyze semantic representations in small corpora. To fill this gap, we compared Skip-gram and Latent Semantic Analysis (LSA) capabilities to extract semantic associations from dream reports. LSA showed better performance than Skip-gram in small size corpora in two tests. Furthermore, LSA captured relevant word associations in dream collection, even in cases with low-frequency words or small numbers of dreams. Word associations in dreams reports can thus be quantified by LSA, which opens new avenues for dream interpretation and decoding. |
publishDate |
2017 |
dc.date.accessioned.fl_str_mv |
2017-11-03T12:21:28Z |
dc.date.available.fl_str_mv |
2017-11-03T12:21:28Z |
dc.date.issued.fl_str_mv |
2017-09-21 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://repositorio.ufrn.br/jspui/handle/123456789/24164 |
dc.identifier.doi.none.fl_str_mv |
https://doi.org/10.1016/j.concog.2017.09.004 |
url |
https://repositorio.ufrn.br/jspui/handle/123456789/24164 https://doi.org/10.1016/j.concog.2017.09.004 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFRN instname:Universidade Federal do Rio Grande do Norte (UFRN) instacron:UFRN |
instname_str |
Universidade Federal do Rio Grande do Norte (UFRN) |
instacron_str |
UFRN |
institution |
UFRN |
reponame_str |
Repositório Institucional da UFRN |
collection |
Repositório Institucional da UFRN |
bitstream.url.fl_str_mv |
https://repositorio.ufrn.br/bitstream/123456789/24164/2/license.txt https://repositorio.ufrn.br/bitstream/123456789/24164/3/SidartaRibeiro_Theinterpretationofdream_2017.pdf.txt https://repositorio.ufrn.br/bitstream/123456789/24164/4/SidartaRibeiro_Theinterpretationofdream_2017.pdf.jpg |
bitstream.checksum.fl_str_mv |
8a4605be74aa9ea9d79846c1fba20a33 fc9119bd026d688c009dece428928d10 de95c47362d5fd2143500ba8be7a29dc |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional da UFRN - Universidade Federal do Rio Grande do Norte (UFRN) |
repository.mail.fl_str_mv |
|
_version_ |
1814833051489796096 |