Use of a Bayesian hierarchical model to study the allometric scaling of the fetoplacental weight ratio

Detalhes bibliográficos
Autor(a) principal: Morales, Fidel Ernesto Castro
Data de Publicação: 2016
Outros Autores: Medeiros, Anna Cecília Queiroz de
Tipo de documento: Artigo
Idioma: por
Título da fonte: Repositório Institucional da UFRN
Texto Completo: https://repositorio.ufrn.br/jspui/handle/123456789/27096
Resumo: Objectives: to propose the use of a Bayesian hierarchical model to study the allometric scaling of the fetoplacental weight ratio, including possible confounders. Methods: data from 26 singleton pregnancies with gestational age at birth between 37 and 42 weeks were analyzed. The placentas were collected immediately after delivery and stored under refrigeration until the time of analysis, which occurred within up to 12 hours. Maternal data were collected from medical records. A Bayesian hierarchical model was proposed and Markov chain Monte Carlo simulation methods were used to obtain samples from distribution a posteriori. Results: the model developed showed a reasonable fit, even allowing for the incorporation of variables and a priori information on the parameters used. Conclusions: new variables can be added to the modelfrom the available code, allowing many possibilities for data analysis and indicating the potential for use in research on the subject.
id UFRN_c15a6607cbcb2bcb57d21b71b6db2860
oai_identifier_str oai:https://repositorio.ufrn.br:123456789/27096
network_acronym_str UFRN
network_name_str Repositório Institucional da UFRN
repository_id_str
spelling Morales, Fidel Ernesto CastroMedeiros, Anna Cecília Queiroz de2019-05-17T14:41:19Z2019-05-17T14:41:19Z2016-03MORALES, Fidel Ernesto Castro; MEDEIROS, Anna Cecília Queiroz de . Use of a Bayesian hierarchical model to study the allometric scaling of the fetoplacental weight ratio. Revista Brasileira de Saúde Materno Infantil, Recife, v. 16, n.1, p. 67-70, 2016. Disponível em:< http://www.scielo.br/scielo.php?script=sci_arttext&pid=S1519-38292016000100067&lng=en&tlng=en>. Acesso em: 06 dez. 2017.10.1590/1806-93042016000100008https://repositorio.ufrn.br/jspui/handle/123456789/270961806-9304Objectives: to propose the use of a Bayesian hierarchical model to study the allometric scaling of the fetoplacental weight ratio, including possible confounders. Methods: data from 26 singleton pregnancies with gestational age at birth between 37 and 42 weeks were analyzed. The placentas were collected immediately after delivery and stored under refrigeration until the time of analysis, which occurred within up to 12 hours. Maternal data were collected from medical records. A Bayesian hierarchical model was proposed and Markov chain Monte Carlo simulation methods were used to obtain samples from distribution a posteriori. Results: the model developed showed a reasonable fit, even allowing for the incorporation of variables and a priori information on the parameters used. Conclusions: new variables can be added to the modelfrom the available code, allowing many possibilities for data analysis and indicating the potential for use in research on the subject.Objetivos: propor a utilização de um modelo Hierárquico Bayesiano para estudar a relação alométrica existente entre o peso ao nascer e o peso placentário, incluindo possíveis fatores interferentes. Métodos: foram analisados os dados de 26 gestações únicas, com idade gestacional entre 37 e 42 semanas. As placentas foram coletadas imediatamente após o parto e conservadas sob refrigeração até o momento da análise, o que ocorreu em até 12 horas. Os dados maternos foram obtidos de prontuários médicos. Finalmente, foi elaborado um modelo hierárquico bayesiano e, para obter amostras da distribuição a posteriori, foram utilizados métodos de simulação Markov Chain Monte Carlo. Resultados: o modelo obtido apresentou um ajuste razoável, permitindo ainda a incorporação de variáveis e informações a priori, sobre os parâmetros utilizados. Conclusões: a partir da disponibilização do código, novas variáveis podem ser adicionadas ao modelo, permitindo muitas possibilidades para a análise dos dados, mostrando potencial para ser utilizado em pesquisas na área.Instituto de Medicina Integral Prof. Fernando FigueiraBirth weightPlacentaData interpretation statisticsPeso ao nascerAnálise estatística de dadosUse of a Bayesian hierarchical model to study the allometric scaling of the fetoplacental weight ratioUtilização de modelo hierárquico Bayesiano para estudar a relação alométrica entre o peso placentário e peso ao nascerinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleinfo:eu-repo/semantics/openAccessporreponame:Repositório Institucional da UFRNinstname:Universidade Federal do Rio Grande do Norte (UFRN)instacron:UFRNTEXTUseOfaBayesianHierarchaical_2016.pdf.txtUseOfaBayesianHierarchaical_2016.pdf.txtExtracted texttext/plain12685https://repositorio.ufrn.br/bitstream/123456789/27096/3/UseOfaBayesianHierarchaical_2016.pdf.txtd3bdc82d62f18c02cd914087a0c3be45MD53THUMBNAILUseOfaBayesianHierarchaical_2016.pdf.jpgUseOfaBayesianHierarchaical_2016.pdf.jpgGenerated Thumbnailimage/jpeg1558https://repositorio.ufrn.br/bitstream/123456789/27096/4/UseOfaBayesianHierarchaical_2016.pdf.jpg75e8102ada7dfc7728182a2756e14f2bMD54ORIGINALUseOfaBayesianHierarchaical_2016.pdfUseOfaBayesianHierarchaical_2016.pdfapplication/pdf71006https://repositorio.ufrn.br/bitstream/123456789/27096/1/UseOfaBayesianHierarchaical_2016.pdf5ebad3001852098250a625ca3d71f0c0MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.ufrn.br/bitstream/123456789/27096/2/license.txt8a4605be74aa9ea9d79846c1fba20a33MD52123456789/270962019-05-26 03:04:52.333oai:https://repositorio.ufrn.br:123456789/27096Tk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=Repositório de PublicaçõesPUBhttp://repositorio.ufrn.br/oai/opendoar:2019-05-26T06:04:52Repositório Institucional da UFRN - Universidade Federal do Rio Grande do Norte (UFRN)false
dc.title.pt_BR.fl_str_mv Use of a Bayesian hierarchical model to study the allometric scaling of the fetoplacental weight ratio
dc.title.alternative.pt_BR.fl_str_mv Utilização de modelo hierárquico Bayesiano para estudar a relação alométrica entre o peso placentário e peso ao nascer
title Use of a Bayesian hierarchical model to study the allometric scaling of the fetoplacental weight ratio
spellingShingle Use of a Bayesian hierarchical model to study the allometric scaling of the fetoplacental weight ratio
Morales, Fidel Ernesto Castro
Birth weight
Placenta
Data interpretation statistics
Peso ao nascer
Análise estatística de dados
title_short Use of a Bayesian hierarchical model to study the allometric scaling of the fetoplacental weight ratio
title_full Use of a Bayesian hierarchical model to study the allometric scaling of the fetoplacental weight ratio
title_fullStr Use of a Bayesian hierarchical model to study the allometric scaling of the fetoplacental weight ratio
title_full_unstemmed Use of a Bayesian hierarchical model to study the allometric scaling of the fetoplacental weight ratio
title_sort Use of a Bayesian hierarchical model to study the allometric scaling of the fetoplacental weight ratio
author Morales, Fidel Ernesto Castro
author_facet Morales, Fidel Ernesto Castro
Medeiros, Anna Cecília Queiroz de
author_role author
author2 Medeiros, Anna Cecília Queiroz de
author2_role author
dc.contributor.author.fl_str_mv Morales, Fidel Ernesto Castro
Medeiros, Anna Cecília Queiroz de
dc.subject.por.fl_str_mv Birth weight
Placenta
Data interpretation statistics
Peso ao nascer
Análise estatística de dados
topic Birth weight
Placenta
Data interpretation statistics
Peso ao nascer
Análise estatística de dados
description Objectives: to propose the use of a Bayesian hierarchical model to study the allometric scaling of the fetoplacental weight ratio, including possible confounders. Methods: data from 26 singleton pregnancies with gestational age at birth between 37 and 42 weeks were analyzed. The placentas were collected immediately after delivery and stored under refrigeration until the time of analysis, which occurred within up to 12 hours. Maternal data were collected from medical records. A Bayesian hierarchical model was proposed and Markov chain Monte Carlo simulation methods were used to obtain samples from distribution a posteriori. Results: the model developed showed a reasonable fit, even allowing for the incorporation of variables and a priori information on the parameters used. Conclusions: new variables can be added to the modelfrom the available code, allowing many possibilities for data analysis and indicating the potential for use in research on the subject.
publishDate 2016
dc.date.issued.fl_str_mv 2016-03
dc.date.accessioned.fl_str_mv 2019-05-17T14:41:19Z
dc.date.available.fl_str_mv 2019-05-17T14:41:19Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.citation.fl_str_mv MORALES, Fidel Ernesto Castro; MEDEIROS, Anna Cecília Queiroz de . Use of a Bayesian hierarchical model to study the allometric scaling of the fetoplacental weight ratio. Revista Brasileira de Saúde Materno Infantil, Recife, v. 16, n.1, p. 67-70, 2016. Disponível em:< http://www.scielo.br/scielo.php?script=sci_arttext&pid=S1519-38292016000100067&lng=en&tlng=en>. Acesso em: 06 dez. 2017.
dc.identifier.uri.fl_str_mv https://repositorio.ufrn.br/jspui/handle/123456789/27096
dc.identifier.issn.none.fl_str_mv 10.1590/1806-93042016000100008
dc.identifier.doi.none.fl_str_mv 1806-9304
identifier_str_mv MORALES, Fidel Ernesto Castro; MEDEIROS, Anna Cecília Queiroz de . Use of a Bayesian hierarchical model to study the allometric scaling of the fetoplacental weight ratio. Revista Brasileira de Saúde Materno Infantil, Recife, v. 16, n.1, p. 67-70, 2016. Disponível em:< http://www.scielo.br/scielo.php?script=sci_arttext&pid=S1519-38292016000100067&lng=en&tlng=en>. Acesso em: 06 dez. 2017.
10.1590/1806-93042016000100008
1806-9304
url https://repositorio.ufrn.br/jspui/handle/123456789/27096
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Instituto de Medicina Integral Prof. Fernando Figueira
publisher.none.fl_str_mv Instituto de Medicina Integral Prof. Fernando Figueira
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFRN
instname:Universidade Federal do Rio Grande do Norte (UFRN)
instacron:UFRN
instname_str Universidade Federal do Rio Grande do Norte (UFRN)
instacron_str UFRN
institution UFRN
reponame_str Repositório Institucional da UFRN
collection Repositório Institucional da UFRN
bitstream.url.fl_str_mv https://repositorio.ufrn.br/bitstream/123456789/27096/3/UseOfaBayesianHierarchaical_2016.pdf.txt
https://repositorio.ufrn.br/bitstream/123456789/27096/4/UseOfaBayesianHierarchaical_2016.pdf.jpg
https://repositorio.ufrn.br/bitstream/123456789/27096/1/UseOfaBayesianHierarchaical_2016.pdf
https://repositorio.ufrn.br/bitstream/123456789/27096/2/license.txt
bitstream.checksum.fl_str_mv d3bdc82d62f18c02cd914087a0c3be45
75e8102ada7dfc7728182a2756e14f2b
5ebad3001852098250a625ca3d71f0c0
8a4605be74aa9ea9d79846c1fba20a33
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFRN - Universidade Federal do Rio Grande do Norte (UFRN)
repository.mail.fl_str_mv
_version_ 1814832706915139584