Rapid mineralization rate of acetylsalicylic acid in a tubular photochemical reactor: the role of the optimized excess of H2O2

Detalhes bibliográficos
Autor(a) principal: Silva, Douglas do Nascimento
Data de Publicação: 2019
Outros Autores: Cunha Filho, Fernando José Vieira da, Lima, Andressa Mota, Ratkievicius, Luciana Avelino, Silva, Danielle Jaiane, Chiavone Filho, Osvaldo, Nascimento, Claudio Augusto Oller do
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UFRN
Texto Completo: https://repositorio.ufrn.br/handle/123456789/30977
Resumo: Acetylsalicylic acid (ASA) is a model pollutant and a representative of the emerging pharmaceutical micro- pollutants whose mineralization across several advanced oxidative processes takes hours to complete. This work devotes to optimize and understand the kinetic conditions to mineralize ASA using Photo-Fenton process with UVA radiation in a tubular photochemical reactor. The optimization employs a statistical tool termed factorial design (FD) that studies how the concentrations of ASA, Fe2+ and H2O2 affects the mineralization over a larger interval of concentrations. The factorial design indicates that the initial concentration of H2O2 is a crucial variable to achieve a fast rate of ASA mineralization. Using optimized contents of both H2O2 and Fe2+ (45 Mm and 1.5 mM, respectively) in the Photo-Fenton process (H2O2/Fe2+/UVA), mineralization around 90% is reached in about 10 min, the fastest rate ever observed, enabling to treat 0.012 m3 h−1 per tubular reactor. The underlying reason for such outstanding performance is attributed to the optimized 4.5-folds excess of [H2O2], i.e.the ratio of H2O2 concentration used at the initial time to that required for complete mineralization of the theoretic TOC. Measurements of the remaining concentration of H2O2 strongly indicates that excess of [H2O2] optimizes the instantaneous concentration of radical % OH. As a conclusion, the stoichiometric excess of [H2O2] is an important parameter to be optimized for achieving the highest degree of mineralization at the shortest time when using the photochemical reactor, in turn, decreasing costs related to the total energy consumed both by the lamp and by the recirculation pump
id UFRN_c1e1e22b02035bd52bcedfa61bd828d3
oai_identifier_str oai:https://repositorio.ufrn.br:123456789/30977
network_acronym_str UFRN
network_name_str Repositório Institucional da UFRN
repository_id_str
spelling Silva, Douglas do NascimentoCunha Filho, Fernando José Vieira daLima, Andressa MotaRatkievicius, Luciana AvelinoSilva, Danielle JaianeChiavone Filho, OsvaldoNascimento, Claudio Augusto Oller do2020-12-14T20:37:29Z2020-12-14T20:37:29Z2019-10CUNHA FILHO, Fernando J.V.; LIMA, Andressa Mota; RATKIEVICIUS, Luciana A.; SILVA, Danielle J.; SILVA, Douglas N.; CHIAVONE FILHO, Osvaldo; NASCIMENTO, Claudio A. Oller do. Rapid mineralization rate of acetylsalicylic acid in a tubular photochemical reactor: the role of the optimized excess of h2o2. Journal of Water Process Engineering, [S.L.], v. 31, p. 100856-100856, out. 2019. Disponível em: https://www.sciencedirect.com/science/article/abs/pii/S2214714418308626?via%3Dihub. Acesso em: 06 out. 2020. http://dx.doi.org/10.1016/j.jwpe.2019.100856.2214-7144https://repositorio.ufrn.br/handle/123456789/3097710.1016/j.jwpe.2019.100856ElsevierAttribution 3.0 Brazilhttp://creativecommons.org/licenses/by/3.0/br/info:eu-repo/semantics/openAccessPharmaceutical pollutantsEmerging pollutantsExperimental designPhoto-FentonPhotocatalysisRapid mineralization rate of acetylsalicylic acid in a tubular photochemical reactor: the role of the optimized excess of H2O2info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleAcetylsalicylic acid (ASA) is a model pollutant and a representative of the emerging pharmaceutical micro- pollutants whose mineralization across several advanced oxidative processes takes hours to complete. This work devotes to optimize and understand the kinetic conditions to mineralize ASA using Photo-Fenton process with UVA radiation in a tubular photochemical reactor. The optimization employs a statistical tool termed factorial design (FD) that studies how the concentrations of ASA, Fe2+ and H2O2 affects the mineralization over a larger interval of concentrations. The factorial design indicates that the initial concentration of H2O2 is a crucial variable to achieve a fast rate of ASA mineralization. Using optimized contents of both H2O2 and Fe2+ (45 Mm and 1.5 mM, respectively) in the Photo-Fenton process (H2O2/Fe2+/UVA), mineralization around 90% is reached in about 10 min, the fastest rate ever observed, enabling to treat 0.012 m3 h−1 per tubular reactor. The underlying reason for such outstanding performance is attributed to the optimized 4.5-folds excess of [H2O2], i.e.the ratio of H2O2 concentration used at the initial time to that required for complete mineralization of the theoretic TOC. Measurements of the remaining concentration of H2O2 strongly indicates that excess of [H2O2] optimizes the instantaneous concentration of radical % OH. As a conclusion, the stoichiometric excess of [H2O2] is an important parameter to be optimized for achieving the highest degree of mineralization at the shortest time when using the photochemical reactor, in turn, decreasing costs related to the total energy consumed both by the lamp and by the recirculation pumpengreponame:Repositório Institucional da UFRNinstname:Universidade Federal do Rio Grande do Norte (UFRN)instacron:UFRNORIGINALRapidMineralizationRate_SILVA_2019.pdfRapidMineralizationRate_SILVA_2019.pdfapplication/pdf3925238https://repositorio.ufrn.br/bitstream/123456789/30977/1/RapidMineralizationRate_SILVA_2019.pdf3051188cf87ff73b212ac25748f7e56aMD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8914https://repositorio.ufrn.br/bitstream/123456789/30977/2/license_rdf4d2950bda3d176f570a9f8b328dfbbefMD52LICENSElicense.txtlicense.txttext/plain; charset=utf-81484https://repositorio.ufrn.br/bitstream/123456789/30977/3/license.txte9597aa2854d128fd968be5edc8a28d9MD53TEXTRapidMineralizationRate_SILVA_2019.pdf.txtRapidMineralizationRate_SILVA_2019.pdf.txtExtracted texttext/plain57016https://repositorio.ufrn.br/bitstream/123456789/30977/4/RapidMineralizationRate_SILVA_2019.pdf.txt547a0e752f476f9ca1f43fd452cc5bcbMD54THUMBNAILRapidMineralizationRate_SILVA_2019.pdf.jpgRapidMineralizationRate_SILVA_2019.pdf.jpgGenerated Thumbnailimage/jpeg1719https://repositorio.ufrn.br/bitstream/123456789/30977/5/RapidMineralizationRate_SILVA_2019.pdf.jpg71d68088be5a86b6a50611e986ed0032MD55123456789/309772020-12-20 04:59:35.919oai:https://repositorio.ufrn.br:123456789/30977Tk9OLUVYQ0xVU0lWRSBESVNUUklCVVRJT04gTElDRU5TRQoKCkJ5IHNpZ25pbmcgYW5kIGRlbGl2ZXJpbmcgdGhpcyBsaWNlbnNlLCBNci4gKGF1dGhvciBvciBjb3B5cmlnaHQgaG9sZGVyKToKCgphKSBHcmFudHMgdGhlIFVuaXZlcnNpZGFkZSBGZWRlcmFsIFJpbyBHcmFuZGUgZG8gTm9ydGUgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgb2YKcmVwcm9kdWNlLCBjb252ZXJ0IChhcyBkZWZpbmVkIGJlbG93KSwgY29tbXVuaWNhdGUgYW5kIC8gb3IKZGlzdHJpYnV0ZSB0aGUgZGVsaXZlcmVkIGRvY3VtZW50IChpbmNsdWRpbmcgYWJzdHJhY3QgLyBhYnN0cmFjdCkgaW4KZGlnaXRhbCBvciBwcmludGVkIGZvcm1hdCBhbmQgaW4gYW55IG1lZGl1bS4KCmIpIERlY2xhcmVzIHRoYXQgdGhlIGRvY3VtZW50IHN1Ym1pdHRlZCBpcyBpdHMgb3JpZ2luYWwgd29yaywgYW5kIHRoYXQKeW91IGhhdmUgdGhlIHJpZ2h0IHRvIGdyYW50IHRoZSByaWdodHMgY29udGFpbmVkIGluIHRoaXMgbGljZW5zZS4gRGVjbGFyZXMKdGhhdCB0aGUgZGVsaXZlcnkgb2YgdGhlIGRvY3VtZW50IGRvZXMgbm90IGluZnJpbmdlLCBhcyBmYXIgYXMgaXQgaXMKdGhlIHJpZ2h0cyBvZiBhbnkgb3RoZXIgcGVyc29uIG9yIGVudGl0eS4KCmMpIElmIHRoZSBkb2N1bWVudCBkZWxpdmVyZWQgY29udGFpbnMgbWF0ZXJpYWwgd2hpY2ggZG9lcyBub3QKcmlnaHRzLCBkZWNsYXJlcyB0aGF0IGl0IGhhcyBvYnRhaW5lZCBhdXRob3JpemF0aW9uIGZyb20gdGhlIGhvbGRlciBvZiB0aGUKY29weXJpZ2h0IHRvIGdyYW50IHRoZSBVbml2ZXJzaWRhZGUgRmVkZXJhbCBkbyBSaW8gR3JhbmRlIGRvIE5vcnRlIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdCB0aGlzIG1hdGVyaWFsIHdob3NlIHJpZ2h0cyBhcmUgb2YKdGhpcmQgcGFydGllcyBpcyBjbGVhcmx5IGlkZW50aWZpZWQgYW5kIHJlY29nbml6ZWQgaW4gdGhlIHRleHQgb3IKY29udGVudCBvZiB0aGUgZG9jdW1lbnQgZGVsaXZlcmVkLgoKSWYgdGhlIGRvY3VtZW50IHN1Ym1pdHRlZCBpcyBiYXNlZCBvbiBmdW5kZWQgb3Igc3VwcG9ydGVkIHdvcmsKYnkgYW5vdGhlciBpbnN0aXR1dGlvbiBvdGhlciB0aGFuIHRoZSBVbml2ZXJzaWRhZGUgRmVkZXJhbCBkbyBSaW8gR3JhbmRlIGRvIE5vcnRlLCBkZWNsYXJlcyB0aGF0IGl0IGhhcyBmdWxmaWxsZWQgYW55IG9ibGlnYXRpb25zIHJlcXVpcmVkIGJ5IHRoZSByZXNwZWN0aXZlIGFncmVlbWVudCBvciBhZ3JlZW1lbnQuCgpUaGUgVW5pdmVyc2lkYWRlIEZlZGVyYWwgZG8gUmlvIEdyYW5kZSBkbyBOb3J0ZSB3aWxsIGNsZWFybHkgaWRlbnRpZnkgaXRzIG5hbWUgKHMpIGFzIHRoZSBhdXRob3IgKHMpIG9yIGhvbGRlciAocykgb2YgdGhlIGRvY3VtZW50J3MgcmlnaHRzCmRlbGl2ZXJlZCwgYW5kIHdpbGwgbm90IG1ha2UgYW55IGNoYW5nZXMsIG90aGVyIHRoYW4gdGhvc2UgcGVybWl0dGVkIGJ5CnRoaXMgbGljZW5zZQo=Repositório de PublicaçõesPUBhttp://repositorio.ufrn.br/oai/opendoar:2020-12-20T07:59:35Repositório Institucional da UFRN - Universidade Federal do Rio Grande do Norte (UFRN)false
dc.title.pt_BR.fl_str_mv Rapid mineralization rate of acetylsalicylic acid in a tubular photochemical reactor: the role of the optimized excess of H2O2
title Rapid mineralization rate of acetylsalicylic acid in a tubular photochemical reactor: the role of the optimized excess of H2O2
spellingShingle Rapid mineralization rate of acetylsalicylic acid in a tubular photochemical reactor: the role of the optimized excess of H2O2
Silva, Douglas do Nascimento
Pharmaceutical pollutants
Emerging pollutants
Experimental design
Photo-Fenton
Photocatalysis
title_short Rapid mineralization rate of acetylsalicylic acid in a tubular photochemical reactor: the role of the optimized excess of H2O2
title_full Rapid mineralization rate of acetylsalicylic acid in a tubular photochemical reactor: the role of the optimized excess of H2O2
title_fullStr Rapid mineralization rate of acetylsalicylic acid in a tubular photochemical reactor: the role of the optimized excess of H2O2
title_full_unstemmed Rapid mineralization rate of acetylsalicylic acid in a tubular photochemical reactor: the role of the optimized excess of H2O2
title_sort Rapid mineralization rate of acetylsalicylic acid in a tubular photochemical reactor: the role of the optimized excess of H2O2
author Silva, Douglas do Nascimento
author_facet Silva, Douglas do Nascimento
Cunha Filho, Fernando José Vieira da
Lima, Andressa Mota
Ratkievicius, Luciana Avelino
Silva, Danielle Jaiane
Chiavone Filho, Osvaldo
Nascimento, Claudio Augusto Oller do
author_role author
author2 Cunha Filho, Fernando José Vieira da
Lima, Andressa Mota
Ratkievicius, Luciana Avelino
Silva, Danielle Jaiane
Chiavone Filho, Osvaldo
Nascimento, Claudio Augusto Oller do
author2_role author
author
author
author
author
author
dc.contributor.author.fl_str_mv Silva, Douglas do Nascimento
Cunha Filho, Fernando José Vieira da
Lima, Andressa Mota
Ratkievicius, Luciana Avelino
Silva, Danielle Jaiane
Chiavone Filho, Osvaldo
Nascimento, Claudio Augusto Oller do
dc.subject.por.fl_str_mv Pharmaceutical pollutants
Emerging pollutants
Experimental design
Photo-Fenton
Photocatalysis
topic Pharmaceutical pollutants
Emerging pollutants
Experimental design
Photo-Fenton
Photocatalysis
description Acetylsalicylic acid (ASA) is a model pollutant and a representative of the emerging pharmaceutical micro- pollutants whose mineralization across several advanced oxidative processes takes hours to complete. This work devotes to optimize and understand the kinetic conditions to mineralize ASA using Photo-Fenton process with UVA radiation in a tubular photochemical reactor. The optimization employs a statistical tool termed factorial design (FD) that studies how the concentrations of ASA, Fe2+ and H2O2 affects the mineralization over a larger interval of concentrations. The factorial design indicates that the initial concentration of H2O2 is a crucial variable to achieve a fast rate of ASA mineralization. Using optimized contents of both H2O2 and Fe2+ (45 Mm and 1.5 mM, respectively) in the Photo-Fenton process (H2O2/Fe2+/UVA), mineralization around 90% is reached in about 10 min, the fastest rate ever observed, enabling to treat 0.012 m3 h−1 per tubular reactor. The underlying reason for such outstanding performance is attributed to the optimized 4.5-folds excess of [H2O2], i.e.the ratio of H2O2 concentration used at the initial time to that required for complete mineralization of the theoretic TOC. Measurements of the remaining concentration of H2O2 strongly indicates that excess of [H2O2] optimizes the instantaneous concentration of radical % OH. As a conclusion, the stoichiometric excess of [H2O2] is an important parameter to be optimized for achieving the highest degree of mineralization at the shortest time when using the photochemical reactor, in turn, decreasing costs related to the total energy consumed both by the lamp and by the recirculation pump
publishDate 2019
dc.date.issued.fl_str_mv 2019-10
dc.date.accessioned.fl_str_mv 2020-12-14T20:37:29Z
dc.date.available.fl_str_mv 2020-12-14T20:37:29Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.citation.fl_str_mv CUNHA FILHO, Fernando J.V.; LIMA, Andressa Mota; RATKIEVICIUS, Luciana A.; SILVA, Danielle J.; SILVA, Douglas N.; CHIAVONE FILHO, Osvaldo; NASCIMENTO, Claudio A. Oller do. Rapid mineralization rate of acetylsalicylic acid in a tubular photochemical reactor: the role of the optimized excess of h2o2. Journal of Water Process Engineering, [S.L.], v. 31, p. 100856-100856, out. 2019. Disponível em: https://www.sciencedirect.com/science/article/abs/pii/S2214714418308626?via%3Dihub. Acesso em: 06 out. 2020. http://dx.doi.org/10.1016/j.jwpe.2019.100856.
dc.identifier.uri.fl_str_mv https://repositorio.ufrn.br/handle/123456789/30977
dc.identifier.issn.none.fl_str_mv 2214-7144
dc.identifier.doi.none.fl_str_mv 10.1016/j.jwpe.2019.100856
identifier_str_mv CUNHA FILHO, Fernando J.V.; LIMA, Andressa Mota; RATKIEVICIUS, Luciana A.; SILVA, Danielle J.; SILVA, Douglas N.; CHIAVONE FILHO, Osvaldo; NASCIMENTO, Claudio A. Oller do. Rapid mineralization rate of acetylsalicylic acid in a tubular photochemical reactor: the role of the optimized excess of h2o2. Journal of Water Process Engineering, [S.L.], v. 31, p. 100856-100856, out. 2019. Disponível em: https://www.sciencedirect.com/science/article/abs/pii/S2214714418308626?via%3Dihub. Acesso em: 06 out. 2020. http://dx.doi.org/10.1016/j.jwpe.2019.100856.
2214-7144
10.1016/j.jwpe.2019.100856
url https://repositorio.ufrn.br/handle/123456789/30977
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv Attribution 3.0 Brazil
http://creativecommons.org/licenses/by/3.0/br/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Attribution 3.0 Brazil
http://creativecommons.org/licenses/by/3.0/br/
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Elsevier
publisher.none.fl_str_mv Elsevier
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFRN
instname:Universidade Federal do Rio Grande do Norte (UFRN)
instacron:UFRN
instname_str Universidade Federal do Rio Grande do Norte (UFRN)
instacron_str UFRN
institution UFRN
reponame_str Repositório Institucional da UFRN
collection Repositório Institucional da UFRN
bitstream.url.fl_str_mv https://repositorio.ufrn.br/bitstream/123456789/30977/1/RapidMineralizationRate_SILVA_2019.pdf
https://repositorio.ufrn.br/bitstream/123456789/30977/2/license_rdf
https://repositorio.ufrn.br/bitstream/123456789/30977/3/license.txt
https://repositorio.ufrn.br/bitstream/123456789/30977/4/RapidMineralizationRate_SILVA_2019.pdf.txt
https://repositorio.ufrn.br/bitstream/123456789/30977/5/RapidMineralizationRate_SILVA_2019.pdf.jpg
bitstream.checksum.fl_str_mv 3051188cf87ff73b212ac25748f7e56a
4d2950bda3d176f570a9f8b328dfbbef
e9597aa2854d128fd968be5edc8a28d9
547a0e752f476f9ca1f43fd452cc5bcb
71d68088be5a86b6a50611e986ed0032
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFRN - Universidade Federal do Rio Grande do Norte (UFRN)
repository.mail.fl_str_mv
_version_ 1802117663459115008