Prediction of rhamnolipid breakthrough curves on activated carbon and amberlite XAD-2 using artificial neural network and group method data handling models
Autor(a) principal: | |
---|---|
Data de Publicação: | 2015 |
Outros Autores: | , , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UFRN |
Texto Completo: | https://repositorio.ufrn.br/handle/123456789/45196 |
Resumo: | Artificial Neural Network (ANN) and Group Method Data Handling (GMDH) models, a kind of polynomial neural network, were used to predict the breakthrough curves of rhamnolipids onto activated carbon and Amberlite XAD-2 adsorbents. Rhamnolipids were produced by Pseudomonas aeruginosa and were previously purified using acidic precipitation coupled to petroleum ether extraction. Network training was carried out by changing operational conditions such as linear flow velocity, packed bed height as well as the initial rhamnolipid concentration. Predicted data were compared to experimental ones in order to evaluate the two models' (ANN and GDMH) performance. The percentage of absolute average deviation (% AAD) obtained to ANN was 10.10% when the activated carbon data were used and 11.34% for the Amberlite XAD-2 data. When the GMDH model was used the % AAD was 32.54% and 35.98%, for the data of activated carbon and Amberlite XAD-2, respectively. Therefore ANN model showed a better performance to predict the breakthrough curves of rhamnolipids onto the two adsorbents than GMDH |
id |
UFRN_c36e7d857a1a6da054c1ef7aa976a0fa |
---|---|
oai_identifier_str |
oai:https://repositorio.ufrn.br:123456789/45196 |
network_acronym_str |
UFRN |
network_name_str |
Repositório Institucional da UFRN |
repository_id_str |
|
spelling |
Souza, Domingos Fabiano de SantanaPadilha, Carlos Eduardo de AraújoPadilha, Carlos Alberto de AraújoOliveira, Jackson Araújo deMacedo, Gorete Ribeiro deSantos, Everaldo Silvino dos2021-12-06T18:34:26Z2021-12-06T18:34:26Z2015-06PADILHA, Carlos Eduardo de Araújo; PADILHA, Carlos Alberto de Araújo; SOUZA, Domingos Fabiano de Santana; OLIVEIRA, Jackson Araújo de; MACEDO, Gorete Ribeiro de; SANTOS, Everaldo Silvino dos. Prediction of rhamnolipid breakthrough curves on activated carbon and Amberlite XAD-2 using Artificial Neural Network and Group Method Data Handling models. Journal Of Molecular Liquids, [S.L.], v. 206, p. 293-299, jun. 2015. Elsevier BV. http://dx.doi.org/10.1016/j.molliq.2015.02.030. Disponível em: https://www.sciencedirect.com/science/article/pii/S0167732215001208?via%3Dihub. Acesso em: 05 nov. 2021.0167-7322https://repositorio.ufrn.br/handle/123456789/4519610.1016/j.molliq.2015.02.030ElsevierRhamnolipidsAdsorptionBreakthrough curvesANN modelGMDH modelPrediction of rhamnolipid breakthrough curves on activated carbon and amberlite XAD-2 using artificial neural network and group method data handling modelsinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleArtificial Neural Network (ANN) and Group Method Data Handling (GMDH) models, a kind of polynomial neural network, were used to predict the breakthrough curves of rhamnolipids onto activated carbon and Amberlite XAD-2 adsorbents. Rhamnolipids were produced by Pseudomonas aeruginosa and were previously purified using acidic precipitation coupled to petroleum ether extraction. Network training was carried out by changing operational conditions such as linear flow velocity, packed bed height as well as the initial rhamnolipid concentration. Predicted data were compared to experimental ones in order to evaluate the two models' (ANN and GDMH) performance. The percentage of absolute average deviation (% AAD) obtained to ANN was 10.10% when the activated carbon data were used and 11.34% for the Amberlite XAD-2 data. When the GMDH model was used the % AAD was 32.54% and 35.98%, for the data of activated carbon and Amberlite XAD-2, respectively. Therefore ANN model showed a better performance to predict the breakthrough curves of rhamnolipids onto the two adsorbents than GMDHengreponame:Repositório Institucional da UFRNinstname:Universidade Federal do Rio Grande do Norte (UFRN)instacron:UFRNinfo:eu-repo/semantics/openAccessCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8914https://repositorio.ufrn.br/bitstream/123456789/45196/2/license_rdf4d2950bda3d176f570a9f8b328dfbbefMD52LICENSElicense.txtlicense.txttext/plain; charset=utf-81484https://repositorio.ufrn.br/bitstream/123456789/45196/3/license.txte9597aa2854d128fd968be5edc8a28d9MD53123456789/451962023-02-14 16:52:19.682oai:https://repositorio.ufrn.br:123456789/45196Tk9OLUVYQ0xVU0lWRSBESVNUUklCVVRJT04gTElDRU5TRQoKCkJ5IHNpZ25pbmcgYW5kIGRlbGl2ZXJpbmcgdGhpcyBsaWNlbnNlLCBNci4gKGF1dGhvciBvciBjb3B5cmlnaHQgaG9sZGVyKToKCgphKSBHcmFudHMgdGhlIFVuaXZlcnNpZGFkZSBGZWRlcmFsIFJpbyBHcmFuZGUgZG8gTm9ydGUgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgb2YKcmVwcm9kdWNlLCBjb252ZXJ0IChhcyBkZWZpbmVkIGJlbG93KSwgY29tbXVuaWNhdGUgYW5kIC8gb3IKZGlzdHJpYnV0ZSB0aGUgZGVsaXZlcmVkIGRvY3VtZW50IChpbmNsdWRpbmcgYWJzdHJhY3QgLyBhYnN0cmFjdCkgaW4KZGlnaXRhbCBvciBwcmludGVkIGZvcm1hdCBhbmQgaW4gYW55IG1lZGl1bS4KCmIpIERlY2xhcmVzIHRoYXQgdGhlIGRvY3VtZW50IHN1Ym1pdHRlZCBpcyBpdHMgb3JpZ2luYWwgd29yaywgYW5kIHRoYXQKeW91IGhhdmUgdGhlIHJpZ2h0IHRvIGdyYW50IHRoZSByaWdodHMgY29udGFpbmVkIGluIHRoaXMgbGljZW5zZS4gRGVjbGFyZXMKdGhhdCB0aGUgZGVsaXZlcnkgb2YgdGhlIGRvY3VtZW50IGRvZXMgbm90IGluZnJpbmdlLCBhcyBmYXIgYXMgaXQgaXMKdGhlIHJpZ2h0cyBvZiBhbnkgb3RoZXIgcGVyc29uIG9yIGVudGl0eS4KCmMpIElmIHRoZSBkb2N1bWVudCBkZWxpdmVyZWQgY29udGFpbnMgbWF0ZXJpYWwgd2hpY2ggZG9lcyBub3QKcmlnaHRzLCBkZWNsYXJlcyB0aGF0IGl0IGhhcyBvYnRhaW5lZCBhdXRob3JpemF0aW9uIGZyb20gdGhlIGhvbGRlciBvZiB0aGUKY29weXJpZ2h0IHRvIGdyYW50IHRoZSBVbml2ZXJzaWRhZGUgRmVkZXJhbCBkbyBSaW8gR3JhbmRlIGRvIE5vcnRlIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdCB0aGlzIG1hdGVyaWFsIHdob3NlIHJpZ2h0cyBhcmUgb2YKdGhpcmQgcGFydGllcyBpcyBjbGVhcmx5IGlkZW50aWZpZWQgYW5kIHJlY29nbml6ZWQgaW4gdGhlIHRleHQgb3IKY29udGVudCBvZiB0aGUgZG9jdW1lbnQgZGVsaXZlcmVkLgoKSWYgdGhlIGRvY3VtZW50IHN1Ym1pdHRlZCBpcyBiYXNlZCBvbiBmdW5kZWQgb3Igc3VwcG9ydGVkIHdvcmsKYnkgYW5vdGhlciBpbnN0aXR1dGlvbiBvdGhlciB0aGFuIHRoZSBVbml2ZXJzaWRhZGUgRmVkZXJhbCBkbyBSaW8gR3JhbmRlIGRvIE5vcnRlLCBkZWNsYXJlcyB0aGF0IGl0IGhhcyBmdWxmaWxsZWQgYW55IG9ibGlnYXRpb25zIHJlcXVpcmVkIGJ5IHRoZSByZXNwZWN0aXZlIGFncmVlbWVudCBvciBhZ3JlZW1lbnQuCgpUaGUgVW5pdmVyc2lkYWRlIEZlZGVyYWwgZG8gUmlvIEdyYW5kZSBkbyBOb3J0ZSB3aWxsIGNsZWFybHkgaWRlbnRpZnkgaXRzIG5hbWUgKHMpIGFzIHRoZSBhdXRob3IgKHMpIG9yIGhvbGRlciAocykgb2YgdGhlIGRvY3VtZW50J3MgcmlnaHRzCmRlbGl2ZXJlZCwgYW5kIHdpbGwgbm90IG1ha2UgYW55IGNoYW5nZXMsIG90aGVyIHRoYW4gdGhvc2UgcGVybWl0dGVkIGJ5CnRoaXMgbGljZW5zZQo=Repositório de PublicaçõesPUBhttp://repositorio.ufrn.br/oai/opendoar:2023-02-14T19:52:19Repositório Institucional da UFRN - Universidade Federal do Rio Grande do Norte (UFRN)false |
dc.title.pt_BR.fl_str_mv |
Prediction of rhamnolipid breakthrough curves on activated carbon and amberlite XAD-2 using artificial neural network and group method data handling models |
title |
Prediction of rhamnolipid breakthrough curves on activated carbon and amberlite XAD-2 using artificial neural network and group method data handling models |
spellingShingle |
Prediction of rhamnolipid breakthrough curves on activated carbon and amberlite XAD-2 using artificial neural network and group method data handling models Souza, Domingos Fabiano de Santana Rhamnolipids Adsorption Breakthrough curves ANN model GMDH model |
title_short |
Prediction of rhamnolipid breakthrough curves on activated carbon and amberlite XAD-2 using artificial neural network and group method data handling models |
title_full |
Prediction of rhamnolipid breakthrough curves on activated carbon and amberlite XAD-2 using artificial neural network and group method data handling models |
title_fullStr |
Prediction of rhamnolipid breakthrough curves on activated carbon and amberlite XAD-2 using artificial neural network and group method data handling models |
title_full_unstemmed |
Prediction of rhamnolipid breakthrough curves on activated carbon and amberlite XAD-2 using artificial neural network and group method data handling models |
title_sort |
Prediction of rhamnolipid breakthrough curves on activated carbon and amberlite XAD-2 using artificial neural network and group method data handling models |
author |
Souza, Domingos Fabiano de Santana |
author_facet |
Souza, Domingos Fabiano de Santana Padilha, Carlos Eduardo de Araújo Padilha, Carlos Alberto de Araújo Oliveira, Jackson Araújo de Macedo, Gorete Ribeiro de Santos, Everaldo Silvino dos |
author_role |
author |
author2 |
Padilha, Carlos Eduardo de Araújo Padilha, Carlos Alberto de Araújo Oliveira, Jackson Araújo de Macedo, Gorete Ribeiro de Santos, Everaldo Silvino dos |
author2_role |
author author author author author |
dc.contributor.author.fl_str_mv |
Souza, Domingos Fabiano de Santana Padilha, Carlos Eduardo de Araújo Padilha, Carlos Alberto de Araújo Oliveira, Jackson Araújo de Macedo, Gorete Ribeiro de Santos, Everaldo Silvino dos |
dc.subject.por.fl_str_mv |
Rhamnolipids Adsorption Breakthrough curves ANN model GMDH model |
topic |
Rhamnolipids Adsorption Breakthrough curves ANN model GMDH model |
description |
Artificial Neural Network (ANN) and Group Method Data Handling (GMDH) models, a kind of polynomial neural network, were used to predict the breakthrough curves of rhamnolipids onto activated carbon and Amberlite XAD-2 adsorbents. Rhamnolipids were produced by Pseudomonas aeruginosa and were previously purified using acidic precipitation coupled to petroleum ether extraction. Network training was carried out by changing operational conditions such as linear flow velocity, packed bed height as well as the initial rhamnolipid concentration. Predicted data were compared to experimental ones in order to evaluate the two models' (ANN and GDMH) performance. The percentage of absolute average deviation (% AAD) obtained to ANN was 10.10% when the activated carbon data were used and 11.34% for the Amberlite XAD-2 data. When the GMDH model was used the % AAD was 32.54% and 35.98%, for the data of activated carbon and Amberlite XAD-2, respectively. Therefore ANN model showed a better performance to predict the breakthrough curves of rhamnolipids onto the two adsorbents than GMDH |
publishDate |
2015 |
dc.date.issued.fl_str_mv |
2015-06 |
dc.date.accessioned.fl_str_mv |
2021-12-06T18:34:26Z |
dc.date.available.fl_str_mv |
2021-12-06T18:34:26Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.citation.fl_str_mv |
PADILHA, Carlos Eduardo de Araújo; PADILHA, Carlos Alberto de Araújo; SOUZA, Domingos Fabiano de Santana; OLIVEIRA, Jackson Araújo de; MACEDO, Gorete Ribeiro de; SANTOS, Everaldo Silvino dos. Prediction of rhamnolipid breakthrough curves on activated carbon and Amberlite XAD-2 using Artificial Neural Network and Group Method Data Handling models. Journal Of Molecular Liquids, [S.L.], v. 206, p. 293-299, jun. 2015. Elsevier BV. http://dx.doi.org/10.1016/j.molliq.2015.02.030. Disponível em: https://www.sciencedirect.com/science/article/pii/S0167732215001208?via%3Dihub. Acesso em: 05 nov. 2021. |
dc.identifier.uri.fl_str_mv |
https://repositorio.ufrn.br/handle/123456789/45196 |
dc.identifier.issn.none.fl_str_mv |
0167-7322 |
dc.identifier.doi.none.fl_str_mv |
10.1016/j.molliq.2015.02.030 |
identifier_str_mv |
PADILHA, Carlos Eduardo de Araújo; PADILHA, Carlos Alberto de Araújo; SOUZA, Domingos Fabiano de Santana; OLIVEIRA, Jackson Araújo de; MACEDO, Gorete Ribeiro de; SANTOS, Everaldo Silvino dos. Prediction of rhamnolipid breakthrough curves on activated carbon and Amberlite XAD-2 using Artificial Neural Network and Group Method Data Handling models. Journal Of Molecular Liquids, [S.L.], v. 206, p. 293-299, jun. 2015. Elsevier BV. http://dx.doi.org/10.1016/j.molliq.2015.02.030. Disponível em: https://www.sciencedirect.com/science/article/pii/S0167732215001208?via%3Dihub. Acesso em: 05 nov. 2021. 0167-7322 10.1016/j.molliq.2015.02.030 |
url |
https://repositorio.ufrn.br/handle/123456789/45196 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
Elsevier |
publisher.none.fl_str_mv |
Elsevier |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFRN instname:Universidade Federal do Rio Grande do Norte (UFRN) instacron:UFRN |
instname_str |
Universidade Federal do Rio Grande do Norte (UFRN) |
instacron_str |
UFRN |
institution |
UFRN |
reponame_str |
Repositório Institucional da UFRN |
collection |
Repositório Institucional da UFRN |
bitstream.url.fl_str_mv |
https://repositorio.ufrn.br/bitstream/123456789/45196/2/license_rdf https://repositorio.ufrn.br/bitstream/123456789/45196/3/license.txt |
bitstream.checksum.fl_str_mv |
4d2950bda3d176f570a9f8b328dfbbef e9597aa2854d128fd968be5edc8a28d9 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional da UFRN - Universidade Federal do Rio Grande do Norte (UFRN) |
repository.mail.fl_str_mv |
|
_version_ |
1814833008210870272 |