Prediction of rhamnolipid breakthrough curves on activated carbon and amberlite XAD-2 using artificial neural network and group method data handling models

Detalhes bibliográficos
Autor(a) principal: Souza, Domingos Fabiano de Santana
Data de Publicação: 2015
Outros Autores: Padilha, Carlos Eduardo de Araújo, Padilha, Carlos Alberto de Araújo, Oliveira, Jackson Araújo de, Macedo, Gorete Ribeiro de, Santos, Everaldo Silvino dos
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UFRN
Texto Completo: https://repositorio.ufrn.br/handle/123456789/45196
Resumo: Artificial Neural Network (ANN) and Group Method Data Handling (GMDH) models, a kind of polynomial neural network, were used to predict the breakthrough curves of rhamnolipids onto activated carbon and Amberlite XAD-2 adsorbents. Rhamnolipids were produced by Pseudomonas aeruginosa and were previously purified using acidic precipitation coupled to petroleum ether extraction. Network training was carried out by changing operational conditions such as linear flow velocity, packed bed height as well as the initial rhamnolipid concentration. Predicted data were compared to experimental ones in order to evaluate the two models' (ANN and GDMH) performance. The percentage of absolute average deviation (% AAD) obtained to ANN was 10.10% when the activated carbon data were used and 11.34% for the Amberlite XAD-2 data. When the GMDH model was used the % AAD was 32.54% and 35.98%, for the data of activated carbon and Amberlite XAD-2, respectively. Therefore ANN model showed a better performance to predict the breakthrough curves of rhamnolipids onto the two adsorbents than GMDH
id UFRN_c36e7d857a1a6da054c1ef7aa976a0fa
oai_identifier_str oai:https://repositorio.ufrn.br:123456789/45196
network_acronym_str UFRN
network_name_str Repositório Institucional da UFRN
repository_id_str
spelling Souza, Domingos Fabiano de SantanaPadilha, Carlos Eduardo de AraújoPadilha, Carlos Alberto de AraújoOliveira, Jackson Araújo deMacedo, Gorete Ribeiro deSantos, Everaldo Silvino dos2021-12-06T18:34:26Z2021-12-06T18:34:26Z2015-06PADILHA, Carlos Eduardo de Araújo; PADILHA, Carlos Alberto de Araújo; SOUZA, Domingos Fabiano de Santana; OLIVEIRA, Jackson Araújo de; MACEDO, Gorete Ribeiro de; SANTOS, Everaldo Silvino dos. Prediction of rhamnolipid breakthrough curves on activated carbon and Amberlite XAD-2 using Artificial Neural Network and Group Method Data Handling models. Journal Of Molecular Liquids, [S.L.], v. 206, p. 293-299, jun. 2015. Elsevier BV. http://dx.doi.org/10.1016/j.molliq.2015.02.030. Disponível em: https://www.sciencedirect.com/science/article/pii/S0167732215001208?via%3Dihub. Acesso em: 05 nov. 2021.0167-7322https://repositorio.ufrn.br/handle/123456789/4519610.1016/j.molliq.2015.02.030ElsevierRhamnolipidsAdsorptionBreakthrough curvesANN modelGMDH modelPrediction of rhamnolipid breakthrough curves on activated carbon and amberlite XAD-2 using artificial neural network and group method data handling modelsinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleArtificial Neural Network (ANN) and Group Method Data Handling (GMDH) models, a kind of polynomial neural network, were used to predict the breakthrough curves of rhamnolipids onto activated carbon and Amberlite XAD-2 adsorbents. Rhamnolipids were produced by Pseudomonas aeruginosa and were previously purified using acidic precipitation coupled to petroleum ether extraction. Network training was carried out by changing operational conditions such as linear flow velocity, packed bed height as well as the initial rhamnolipid concentration. Predicted data were compared to experimental ones in order to evaluate the two models' (ANN and GDMH) performance. The percentage of absolute average deviation (% AAD) obtained to ANN was 10.10% when the activated carbon data were used and 11.34% for the Amberlite XAD-2 data. When the GMDH model was used the % AAD was 32.54% and 35.98%, for the data of activated carbon and Amberlite XAD-2, respectively. Therefore ANN model showed a better performance to predict the breakthrough curves of rhamnolipids onto the two adsorbents than GMDHengreponame:Repositório Institucional da UFRNinstname:Universidade Federal do Rio Grande do Norte (UFRN)instacron:UFRNinfo:eu-repo/semantics/openAccessCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8914https://repositorio.ufrn.br/bitstream/123456789/45196/2/license_rdf4d2950bda3d176f570a9f8b328dfbbefMD52LICENSElicense.txtlicense.txttext/plain; charset=utf-81484https://repositorio.ufrn.br/bitstream/123456789/45196/3/license.txte9597aa2854d128fd968be5edc8a28d9MD53123456789/451962023-02-14 16:52:19.682oai:https://repositorio.ufrn.br:123456789/45196Tk9OLUVYQ0xVU0lWRSBESVNUUklCVVRJT04gTElDRU5TRQoKCkJ5IHNpZ25pbmcgYW5kIGRlbGl2ZXJpbmcgdGhpcyBsaWNlbnNlLCBNci4gKGF1dGhvciBvciBjb3B5cmlnaHQgaG9sZGVyKToKCgphKSBHcmFudHMgdGhlIFVuaXZlcnNpZGFkZSBGZWRlcmFsIFJpbyBHcmFuZGUgZG8gTm9ydGUgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgb2YKcmVwcm9kdWNlLCBjb252ZXJ0IChhcyBkZWZpbmVkIGJlbG93KSwgY29tbXVuaWNhdGUgYW5kIC8gb3IKZGlzdHJpYnV0ZSB0aGUgZGVsaXZlcmVkIGRvY3VtZW50IChpbmNsdWRpbmcgYWJzdHJhY3QgLyBhYnN0cmFjdCkgaW4KZGlnaXRhbCBvciBwcmludGVkIGZvcm1hdCBhbmQgaW4gYW55IG1lZGl1bS4KCmIpIERlY2xhcmVzIHRoYXQgdGhlIGRvY3VtZW50IHN1Ym1pdHRlZCBpcyBpdHMgb3JpZ2luYWwgd29yaywgYW5kIHRoYXQKeW91IGhhdmUgdGhlIHJpZ2h0IHRvIGdyYW50IHRoZSByaWdodHMgY29udGFpbmVkIGluIHRoaXMgbGljZW5zZS4gRGVjbGFyZXMKdGhhdCB0aGUgZGVsaXZlcnkgb2YgdGhlIGRvY3VtZW50IGRvZXMgbm90IGluZnJpbmdlLCBhcyBmYXIgYXMgaXQgaXMKdGhlIHJpZ2h0cyBvZiBhbnkgb3RoZXIgcGVyc29uIG9yIGVudGl0eS4KCmMpIElmIHRoZSBkb2N1bWVudCBkZWxpdmVyZWQgY29udGFpbnMgbWF0ZXJpYWwgd2hpY2ggZG9lcyBub3QKcmlnaHRzLCBkZWNsYXJlcyB0aGF0IGl0IGhhcyBvYnRhaW5lZCBhdXRob3JpemF0aW9uIGZyb20gdGhlIGhvbGRlciBvZiB0aGUKY29weXJpZ2h0IHRvIGdyYW50IHRoZSBVbml2ZXJzaWRhZGUgRmVkZXJhbCBkbyBSaW8gR3JhbmRlIGRvIE5vcnRlIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdCB0aGlzIG1hdGVyaWFsIHdob3NlIHJpZ2h0cyBhcmUgb2YKdGhpcmQgcGFydGllcyBpcyBjbGVhcmx5IGlkZW50aWZpZWQgYW5kIHJlY29nbml6ZWQgaW4gdGhlIHRleHQgb3IKY29udGVudCBvZiB0aGUgZG9jdW1lbnQgZGVsaXZlcmVkLgoKSWYgdGhlIGRvY3VtZW50IHN1Ym1pdHRlZCBpcyBiYXNlZCBvbiBmdW5kZWQgb3Igc3VwcG9ydGVkIHdvcmsKYnkgYW5vdGhlciBpbnN0aXR1dGlvbiBvdGhlciB0aGFuIHRoZSBVbml2ZXJzaWRhZGUgRmVkZXJhbCBkbyBSaW8gR3JhbmRlIGRvIE5vcnRlLCBkZWNsYXJlcyB0aGF0IGl0IGhhcyBmdWxmaWxsZWQgYW55IG9ibGlnYXRpb25zIHJlcXVpcmVkIGJ5IHRoZSByZXNwZWN0aXZlIGFncmVlbWVudCBvciBhZ3JlZW1lbnQuCgpUaGUgVW5pdmVyc2lkYWRlIEZlZGVyYWwgZG8gUmlvIEdyYW5kZSBkbyBOb3J0ZSB3aWxsIGNsZWFybHkgaWRlbnRpZnkgaXRzIG5hbWUgKHMpIGFzIHRoZSBhdXRob3IgKHMpIG9yIGhvbGRlciAocykgb2YgdGhlIGRvY3VtZW50J3MgcmlnaHRzCmRlbGl2ZXJlZCwgYW5kIHdpbGwgbm90IG1ha2UgYW55IGNoYW5nZXMsIG90aGVyIHRoYW4gdGhvc2UgcGVybWl0dGVkIGJ5CnRoaXMgbGljZW5zZQo=Repositório de PublicaçõesPUBhttp://repositorio.ufrn.br/oai/opendoar:2023-02-14T19:52:19Repositório Institucional da UFRN - Universidade Federal do Rio Grande do Norte (UFRN)false
dc.title.pt_BR.fl_str_mv Prediction of rhamnolipid breakthrough curves on activated carbon and amberlite XAD-2 using artificial neural network and group method data handling models
title Prediction of rhamnolipid breakthrough curves on activated carbon and amberlite XAD-2 using artificial neural network and group method data handling models
spellingShingle Prediction of rhamnolipid breakthrough curves on activated carbon and amberlite XAD-2 using artificial neural network and group method data handling models
Souza, Domingos Fabiano de Santana
Rhamnolipids
Adsorption
Breakthrough curves
ANN model
GMDH model
title_short Prediction of rhamnolipid breakthrough curves on activated carbon and amberlite XAD-2 using artificial neural network and group method data handling models
title_full Prediction of rhamnolipid breakthrough curves on activated carbon and amberlite XAD-2 using artificial neural network and group method data handling models
title_fullStr Prediction of rhamnolipid breakthrough curves on activated carbon and amberlite XAD-2 using artificial neural network and group method data handling models
title_full_unstemmed Prediction of rhamnolipid breakthrough curves on activated carbon and amberlite XAD-2 using artificial neural network and group method data handling models
title_sort Prediction of rhamnolipid breakthrough curves on activated carbon and amberlite XAD-2 using artificial neural network and group method data handling models
author Souza, Domingos Fabiano de Santana
author_facet Souza, Domingos Fabiano de Santana
Padilha, Carlos Eduardo de Araújo
Padilha, Carlos Alberto de Araújo
Oliveira, Jackson Araújo de
Macedo, Gorete Ribeiro de
Santos, Everaldo Silvino dos
author_role author
author2 Padilha, Carlos Eduardo de Araújo
Padilha, Carlos Alberto de Araújo
Oliveira, Jackson Araújo de
Macedo, Gorete Ribeiro de
Santos, Everaldo Silvino dos
author2_role author
author
author
author
author
dc.contributor.author.fl_str_mv Souza, Domingos Fabiano de Santana
Padilha, Carlos Eduardo de Araújo
Padilha, Carlos Alberto de Araújo
Oliveira, Jackson Araújo de
Macedo, Gorete Ribeiro de
Santos, Everaldo Silvino dos
dc.subject.por.fl_str_mv Rhamnolipids
Adsorption
Breakthrough curves
ANN model
GMDH model
topic Rhamnolipids
Adsorption
Breakthrough curves
ANN model
GMDH model
description Artificial Neural Network (ANN) and Group Method Data Handling (GMDH) models, a kind of polynomial neural network, were used to predict the breakthrough curves of rhamnolipids onto activated carbon and Amberlite XAD-2 adsorbents. Rhamnolipids were produced by Pseudomonas aeruginosa and were previously purified using acidic precipitation coupled to petroleum ether extraction. Network training was carried out by changing operational conditions such as linear flow velocity, packed bed height as well as the initial rhamnolipid concentration. Predicted data were compared to experimental ones in order to evaluate the two models' (ANN and GDMH) performance. The percentage of absolute average deviation (% AAD) obtained to ANN was 10.10% when the activated carbon data were used and 11.34% for the Amberlite XAD-2 data. When the GMDH model was used the % AAD was 32.54% and 35.98%, for the data of activated carbon and Amberlite XAD-2, respectively. Therefore ANN model showed a better performance to predict the breakthrough curves of rhamnolipids onto the two adsorbents than GMDH
publishDate 2015
dc.date.issued.fl_str_mv 2015-06
dc.date.accessioned.fl_str_mv 2021-12-06T18:34:26Z
dc.date.available.fl_str_mv 2021-12-06T18:34:26Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.citation.fl_str_mv PADILHA, Carlos Eduardo de Araújo; PADILHA, Carlos Alberto de Araújo; SOUZA, Domingos Fabiano de Santana; OLIVEIRA, Jackson Araújo de; MACEDO, Gorete Ribeiro de; SANTOS, Everaldo Silvino dos. Prediction of rhamnolipid breakthrough curves on activated carbon and Amberlite XAD-2 using Artificial Neural Network and Group Method Data Handling models. Journal Of Molecular Liquids, [S.L.], v. 206, p. 293-299, jun. 2015. Elsevier BV. http://dx.doi.org/10.1016/j.molliq.2015.02.030. Disponível em: https://www.sciencedirect.com/science/article/pii/S0167732215001208?via%3Dihub. Acesso em: 05 nov. 2021.
dc.identifier.uri.fl_str_mv https://repositorio.ufrn.br/handle/123456789/45196
dc.identifier.issn.none.fl_str_mv 0167-7322
dc.identifier.doi.none.fl_str_mv 10.1016/j.molliq.2015.02.030
identifier_str_mv PADILHA, Carlos Eduardo de Araújo; PADILHA, Carlos Alberto de Araújo; SOUZA, Domingos Fabiano de Santana; OLIVEIRA, Jackson Araújo de; MACEDO, Gorete Ribeiro de; SANTOS, Everaldo Silvino dos. Prediction of rhamnolipid breakthrough curves on activated carbon and Amberlite XAD-2 using Artificial Neural Network and Group Method Data Handling models. Journal Of Molecular Liquids, [S.L.], v. 206, p. 293-299, jun. 2015. Elsevier BV. http://dx.doi.org/10.1016/j.molliq.2015.02.030. Disponível em: https://www.sciencedirect.com/science/article/pii/S0167732215001208?via%3Dihub. Acesso em: 05 nov. 2021.
0167-7322
10.1016/j.molliq.2015.02.030
url https://repositorio.ufrn.br/handle/123456789/45196
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Elsevier
publisher.none.fl_str_mv Elsevier
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFRN
instname:Universidade Federal do Rio Grande do Norte (UFRN)
instacron:UFRN
instname_str Universidade Federal do Rio Grande do Norte (UFRN)
instacron_str UFRN
institution UFRN
reponame_str Repositório Institucional da UFRN
collection Repositório Institucional da UFRN
bitstream.url.fl_str_mv https://repositorio.ufrn.br/bitstream/123456789/45196/2/license_rdf
https://repositorio.ufrn.br/bitstream/123456789/45196/3/license.txt
bitstream.checksum.fl_str_mv 4d2950bda3d176f570a9f8b328dfbbef
e9597aa2854d128fd968be5edc8a28d9
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFRN - Universidade Federal do Rio Grande do Norte (UFRN)
repository.mail.fl_str_mv
_version_ 1814833008210870272