Application of Partial Directed Coherence to the Analysis of Resting-State EEG-fMRI Data

Detalhes bibliográficos
Autor(a) principal: Biazoli Jr., Claudinei E.
Data de Publicação: 2013
Outros Autores: Sturzbecher, Marcio, White, Thomas P., Onias, Heloisa Helena dos Santos, Andrade, Katia Cristine, Araújo, Dráulio Barros de, Sato, João R.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UFRN
Texto Completo: https://repositorio.ufrn.br/jspui/handle/123456789/23293
Resumo: The simultaneous acquisition of electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) data potentially allows measurement of brain signals with both high spatial and temporal resolution. Partial directed coherence (PDC) is a Granger causality measure in the frequency domain, which is often used to infer the intensity of information flow over the brain from EEG data. In the current study, we propose a new approach to investigate functional connectivity in resting-state (RS) EEG-fMRI data by combining time-varying PDC with the analysis of blood oxygenation level-dependent (BOLD) signal fluctuations. Basically, we aim to identify brain circuits that are more active when the information flow is increased between distinct remote neuronal modules. The usefulness of the proposed method is illustrated by application to simultaneously recorded EEG-fMRI data from healthy subjects at rest. Using this approach, we decomposed the nodes of RS networks in fMRI data according to the frequency band and directed flow of information provided from EEG. This approach therefore has the potential to inform our understanding of the regional characteristics of oscillatory processes in the human brain.
id UFRN_c56256c37596f5b5eec5036844947a54
oai_identifier_str oai:https://repositorio.ufrn.br:123456789/23293
network_acronym_str UFRN
network_name_str Repositório Institucional da UFRN
repository_id_str
spelling Biazoli Jr., Claudinei E.Sturzbecher, MarcioWhite, Thomas P.Onias, Heloisa Helena dos SantosAndrade, Katia CristineAraújo, Dráulio Barros deSato, João R.2017-05-31T17:10:48Z2017-05-31T17:10:48Z2013https://repositorio.ufrn.br/jspui/handle/123456789/2329310.1089/brain.2012.0135engdefault mode networkdirected coherenceGranger causalityresting-state networkssimultaneous data acquisitionApplication of Partial Directed Coherence to the Analysis of Resting-State EEG-fMRI Datainfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleThe simultaneous acquisition of electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) data potentially allows measurement of brain signals with both high spatial and temporal resolution. Partial directed coherence (PDC) is a Granger causality measure in the frequency domain, which is often used to infer the intensity of information flow over the brain from EEG data. In the current study, we propose a new approach to investigate functional connectivity in resting-state (RS) EEG-fMRI data by combining time-varying PDC with the analysis of blood oxygenation level-dependent (BOLD) signal fluctuations. Basically, we aim to identify brain circuits that are more active when the information flow is increased between distinct remote neuronal modules. The usefulness of the proposed method is illustrated by application to simultaneously recorded EEG-fMRI data from healthy subjects at rest. Using this approach, we decomposed the nodes of RS networks in fMRI data according to the frequency band and directed flow of information provided from EEG. This approach therefore has the potential to inform our understanding of the regional characteristics of oscillatory processes in the human brain.info:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFRNinstname:Universidade Federal do Rio Grande do Norte (UFRN)instacron:UFRNLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.ufrn.br/bitstream/123456789/23293/2/license.txt8a4605be74aa9ea9d79846c1fba20a33MD52ORIGINALApplication of Partial Directed Coherence.pdfApplication of Partial Directed Coherence.pdfDraulioAraujo_ICe_Application of Partial Directed_2013application/pdf342031https://repositorio.ufrn.br/bitstream/123456789/23293/1/Application%20of%20Partial%20Directed%20Coherence.pdfb1070669ae66a27a821038bbb160b821MD51TEXTApplication of Partial Directed Coherence.pdf.txtApplication of Partial Directed Coherence.pdf.txtExtracted texttext/plain27653https://repositorio.ufrn.br/bitstream/123456789/23293/5/Application%20of%20Partial%20Directed%20Coherence.pdf.txt6b3e66609c9465274e0eeac1b2cd04ecMD55THUMBNAILApplication of Partial Directed Coherence.pdf.jpgApplication of Partial Directed Coherence.pdf.jpgIM Thumbnailimage/jpeg10772https://repositorio.ufrn.br/bitstream/123456789/23293/6/Application%20of%20Partial%20Directed%20Coherence.pdf.jpg6ae88d8b5c8e72eeba6b4156ae6204ebMD56123456789/232932021-07-08 15:37:47.625oai:https://repositorio.ufrn.br:123456789/23293Tk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=Repositório de PublicaçõesPUBhttp://repositorio.ufrn.br/oai/opendoar:2021-07-08T18:37:47Repositório Institucional da UFRN - Universidade Federal do Rio Grande do Norte (UFRN)false
dc.title.pt_BR.fl_str_mv Application of Partial Directed Coherence to the Analysis of Resting-State EEG-fMRI Data
title Application of Partial Directed Coherence to the Analysis of Resting-State EEG-fMRI Data
spellingShingle Application of Partial Directed Coherence to the Analysis of Resting-State EEG-fMRI Data
Biazoli Jr., Claudinei E.
default mode network
directed coherence
Granger causality
resting-state networks
simultaneous data acquisition
title_short Application of Partial Directed Coherence to the Analysis of Resting-State EEG-fMRI Data
title_full Application of Partial Directed Coherence to the Analysis of Resting-State EEG-fMRI Data
title_fullStr Application of Partial Directed Coherence to the Analysis of Resting-State EEG-fMRI Data
title_full_unstemmed Application of Partial Directed Coherence to the Analysis of Resting-State EEG-fMRI Data
title_sort Application of Partial Directed Coherence to the Analysis of Resting-State EEG-fMRI Data
author Biazoli Jr., Claudinei E.
author_facet Biazoli Jr., Claudinei E.
Sturzbecher, Marcio
White, Thomas P.
Onias, Heloisa Helena dos Santos
Andrade, Katia Cristine
Araújo, Dráulio Barros de
Sato, João R.
author_role author
author2 Sturzbecher, Marcio
White, Thomas P.
Onias, Heloisa Helena dos Santos
Andrade, Katia Cristine
Araújo, Dráulio Barros de
Sato, João R.
author2_role author
author
author
author
author
author
dc.contributor.author.fl_str_mv Biazoli Jr., Claudinei E.
Sturzbecher, Marcio
White, Thomas P.
Onias, Heloisa Helena dos Santos
Andrade, Katia Cristine
Araújo, Dráulio Barros de
Sato, João R.
dc.subject.por.fl_str_mv default mode network
directed coherence
Granger causality
resting-state networks
simultaneous data acquisition
topic default mode network
directed coherence
Granger causality
resting-state networks
simultaneous data acquisition
description The simultaneous acquisition of electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) data potentially allows measurement of brain signals with both high spatial and temporal resolution. Partial directed coherence (PDC) is a Granger causality measure in the frequency domain, which is often used to infer the intensity of information flow over the brain from EEG data. In the current study, we propose a new approach to investigate functional connectivity in resting-state (RS) EEG-fMRI data by combining time-varying PDC with the analysis of blood oxygenation level-dependent (BOLD) signal fluctuations. Basically, we aim to identify brain circuits that are more active when the information flow is increased between distinct remote neuronal modules. The usefulness of the proposed method is illustrated by application to simultaneously recorded EEG-fMRI data from healthy subjects at rest. Using this approach, we decomposed the nodes of RS networks in fMRI data according to the frequency band and directed flow of information provided from EEG. This approach therefore has the potential to inform our understanding of the regional characteristics of oscillatory processes in the human brain.
publishDate 2013
dc.date.issued.fl_str_mv 2013
dc.date.accessioned.fl_str_mv 2017-05-31T17:10:48Z
dc.date.available.fl_str_mv 2017-05-31T17:10:48Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://repositorio.ufrn.br/jspui/handle/123456789/23293
dc.identifier.doi.none.fl_str_mv 10.1089/brain.2012.0135
url https://repositorio.ufrn.br/jspui/handle/123456789/23293
identifier_str_mv 10.1089/brain.2012.0135
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFRN
instname:Universidade Federal do Rio Grande do Norte (UFRN)
instacron:UFRN
instname_str Universidade Federal do Rio Grande do Norte (UFRN)
instacron_str UFRN
institution UFRN
reponame_str Repositório Institucional da UFRN
collection Repositório Institucional da UFRN
bitstream.url.fl_str_mv https://repositorio.ufrn.br/bitstream/123456789/23293/2/license.txt
https://repositorio.ufrn.br/bitstream/123456789/23293/1/Application%20of%20Partial%20Directed%20Coherence.pdf
https://repositorio.ufrn.br/bitstream/123456789/23293/5/Application%20of%20Partial%20Directed%20Coherence.pdf.txt
https://repositorio.ufrn.br/bitstream/123456789/23293/6/Application%20of%20Partial%20Directed%20Coherence.pdf.jpg
bitstream.checksum.fl_str_mv 8a4605be74aa9ea9d79846c1fba20a33
b1070669ae66a27a821038bbb160b821
6b3e66609c9465274e0eeac1b2cd04ec
6ae88d8b5c8e72eeba6b4156ae6204eb
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFRN - Universidade Federal do Rio Grande do Norte (UFRN)
repository.mail.fl_str_mv
_version_ 1814833043061342208