Polinômio de Taylor com Resto de Lagrange

Detalhes bibliográficos
Autor(a) principal: Ferreira Jr, Francisco Sales de Lima
Data de Publicação: 2017
Tipo de documento: Trabalho de conclusão de curso
Idioma: por
Título da fonte: Repositório Institucional da UFRN
Texto Completo: https://repositorio.ufrn.br/handle/123456789/36682
Resumo: The purpose of this paper is to introduce the Taylor Formulas. Since polynomials are a simpler mathematical tool to work than certain functions, the attempt to approximate these functions through polynomials appears to be a very useful method. From there comes the Taylor Formula. In this work, we present several concepts and basic results necessary to understand how the approximation of functions by polynomials is done.
id UFRN_cbbb7b9115adb57770ffd3d079411267
oai_identifier_str oai:https://repositorio.ufrn.br:123456789/36682
network_acronym_str UFRN
network_name_str Repositório Institucional da UFRN
repository_id_str
spelling Ferreira Jr, Francisco Sales de LimaBernardino, Adriano Thiago Lopes2018-02-21T10:22:55Z2021-09-20T19:12:05Z2018-02-21T10:22:55Z2021-09-20T19:12:05Z2017-12-072014050080FERREIRA JÚNIOR, Francisco Sales de Lima . Polinômio de Taylor com Resto de Lagrange. 2017. 42 f. TCC (Graduação) - Curso de Licenciatura em Matemática, Universidade Federal do Rio Grande do Norte, Caicó,RN, 2018.https://repositorio.ufrn.br/handle/123456789/36682The purpose of this paper is to introduce the Taylor Formulas. Since polynomials are a simpler mathematical tool to work than certain functions, the attempt to approximate these functions through polynomials appears to be a very useful method. From there comes the Taylor Formula. In this work, we present several concepts and basic results necessary to understand how the approximation of functions by polynomials is done.Objetivo deste trabalho é aprensentar as Fórmulas de Taylor. Como os polinômios são uma ferramenta da matemática mais simples de trabalhar do que certas funções, a tentativa de aproximar destas funções através de polinômios aparenta ser um metodo muito útil. A partir daí surge a Fórmula de Taylor. Neste trabalho, apresentamos vários conceitos e resultados básicos necessários para compreender como é feita a aproximação de funções por polinômios.Universidade Federal do Rio Grande do NorteUFRNBrasilLicenciatura em MatemáticaAproximação.Approximation.Fórmula de Taylor.Taylor's Formula.Polinômio de Taylor.Taylor s polynomial.Polinômio de Taylor com Resto de Lagrangeinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/bachelorThesisinfo:eu-repo/semantics/openAccessporreponame:Repositório Institucional da UFRNinstname:Universidade Federal do Rio Grande do Norte (UFRN)instacron:UFRNTEXTPolinômioDeTaylor_FerreiraJunior_2017Extracted textapplication/octet-stream52393https://repositorio.ufrn.br/bitstream/123456789/36682/1/Polin%c3%b4mioDeTaylor_FerreiraJunior_201746e35218181b363addf8474a4056e782MD51PolinômioDeTaylor_FerreiraJunior_2017.txtExtracted texttext/plain52393https://repositorio.ufrn.br/bitstream/123456789/36682/2/Polin%c3%b4mioDeTaylor_FerreiraJunior_2017.txt46e35218181b363addf8474a4056e782MD52ORIGINAL2_PolinômioDeTaylor_FerreiraJunior_2017Trabalho de conclusão de curso de Licenciatura em Matemáticaapplication/octet-stream629484https://repositorio.ufrn.br/bitstream/123456789/36682/3/2_Polin%c3%b4mioDeTaylor_FerreiraJunior_2017d7bf098a61544808699730204fea3f20MD53CC-LICENSElicense_urlapplication/octet-stream49https://repositorio.ufrn.br/bitstream/123456789/36682/4/license_url4afdbb8c545fd630ea7db775da747b2fMD54license_textapplication/octet-stream0https://repositorio.ufrn.br/bitstream/123456789/36682/5/license_textd41d8cd98f00b204e9800998ecf8427eMD55license_rdfapplication/octet-stream0https://repositorio.ufrn.br/bitstream/123456789/36682/6/license_rdfd41d8cd98f00b204e9800998ecf8427eMD56LICENSElicense.txttext/plain756https://repositorio.ufrn.br/bitstream/123456789/36682/7/license.txta80a9cda2756d355b388cc443c3d8a43MD57123456789/366822021-09-20 16:12:05.899oai:https://repositorio.ufrn.br:123456789/36682PGNlbnRlcj48c3Ryb25nPlVOSVZFUlNJREFERSBGRURFUkFMIERPIFJJTyBHUkFOREUgRE8gTk9SVEU8L3N0cm9uZz48L2NlbnRlcj4KPGNlbnRlcj48c3Ryb25nPkJJQkxJT1RFQ0EgRElHSVRBTCBERSBNT05PR1JBRklBUzwvc3Ryb25nPjwvY2VudGVyPgoKPGNlbnRlcj5UZXJtbyBkZSBBdXRvcml6YcOnw6NvIHBhcmEgZGlzcG9uaWJpbGl6YcOnw6NvIGRlIE1vbm9ncmFmaWFzIGRlIEdyYWR1YcOnw6NvIGUgRXNwZWNpYWxpemHDp8OjbyBuYSBCaWJsaW90ZWNhIERpZ2l0YWwgZGUgTW9ub2dyYWZpYXMgKEJETSk8L2NlbnRlcj4KCk5hIHF1YWxpZGFkZSBkZSB0aXR1bGFyIGRvcyBkaXJlaXRvcyBkZSBhdXRvciBkYSBtb25vZ3JhZmlhLCBhdXRvcml6byBhIFVuaXZlcnNpZGFkZSBGZWRlcmFsIGRvIFJpbyBHcmFuZGUgZG8gTm9ydGUgKFVGUk4pIGEgZGlzcG9uaWJpbGl6YXIgYXRyYXbDqXMgZGEgQmlibGlvdGVjYSBEaWdpdGFsIGRlIE1vbm9ncmFmaWFzIGRhIFVGUk4sIHNlbSByZXNzYXJjaW1lbnRvIGRvcyBkaXJlaXRvcyBhdXRvcmFpcywgZGUgYWNvcmRvIGNvbSBhIExlaSBuwrAgOTYxMC85OCwgbyB0ZXh0byBpbnRlZ3JhbCBkYSBvYnJhIHN1Ym1ldGlkYSBwYXJhIGZpbnMgZGUgbGVpdHVyYSwgaW1wcmVzc8OjbyBlL291IGRvd25sb2FkLCBhIHTDrXR1bG8gZGUgZGl2dWxnYcOnw6NvIGRhIHByb2R1w6fDo28gY2llbnTDrWZpY2EgYnJhc2lsZWlyYSwgYSBwYXJ0aXIgZGEgZGF0YSBkZXN0YSBzdWJtaXNzw6NvLiAKRepositório de PublicaçõesPUBhttp://repositorio.ufrn.br/oai/opendoar:2021-09-20T19:12:05Repositório Institucional da UFRN - Universidade Federal do Rio Grande do Norte (UFRN)false
dc.title.pr_BR.fl_str_mv Polinômio de Taylor com Resto de Lagrange
title Polinômio de Taylor com Resto de Lagrange
spellingShingle Polinômio de Taylor com Resto de Lagrange
Ferreira Jr, Francisco Sales de Lima
Aproximação.
Approximation.
Fórmula de Taylor.
Taylor's Formula.
Polinômio de Taylor.
Taylor s polynomial.
title_short Polinômio de Taylor com Resto de Lagrange
title_full Polinômio de Taylor com Resto de Lagrange
title_fullStr Polinômio de Taylor com Resto de Lagrange
title_full_unstemmed Polinômio de Taylor com Resto de Lagrange
title_sort Polinômio de Taylor com Resto de Lagrange
author Ferreira Jr, Francisco Sales de Lima
author_facet Ferreira Jr, Francisco Sales de Lima
author_role author
dc.contributor.author.fl_str_mv Ferreira Jr, Francisco Sales de Lima
dc.contributor.advisor1.fl_str_mv Bernardino, Adriano Thiago Lopes
contributor_str_mv Bernardino, Adriano Thiago Lopes
dc.subject.pr_BR.fl_str_mv Aproximação.
Approximation.
Fórmula de Taylor.
Taylor's Formula.
Polinômio de Taylor.
Taylor s polynomial.
topic Aproximação.
Approximation.
Fórmula de Taylor.
Taylor's Formula.
Polinômio de Taylor.
Taylor s polynomial.
description The purpose of this paper is to introduce the Taylor Formulas. Since polynomials are a simpler mathematical tool to work than certain functions, the attempt to approximate these functions through polynomials appears to be a very useful method. From there comes the Taylor Formula. In this work, we present several concepts and basic results necessary to understand how the approximation of functions by polynomials is done.
publishDate 2017
dc.date.issued.fl_str_mv 2017-12-07
dc.date.accessioned.fl_str_mv 2018-02-21T10:22:55Z
2021-09-20T19:12:05Z
dc.date.available.fl_str_mv 2018-02-21T10:22:55Z
2021-09-20T19:12:05Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/bachelorThesis
format bachelorThesis
status_str publishedVersion
dc.identifier.pr_BR.fl_str_mv 2014050080
dc.identifier.citation.fl_str_mv FERREIRA JÚNIOR, Francisco Sales de Lima . Polinômio de Taylor com Resto de Lagrange. 2017. 42 f. TCC (Graduação) - Curso de Licenciatura em Matemática, Universidade Federal do Rio Grande do Norte, Caicó,RN, 2018.
dc.identifier.uri.fl_str_mv https://repositorio.ufrn.br/handle/123456789/36682
identifier_str_mv 2014050080
FERREIRA JÚNIOR, Francisco Sales de Lima . Polinômio de Taylor com Resto de Lagrange. 2017. 42 f. TCC (Graduação) - Curso de Licenciatura em Matemática, Universidade Federal do Rio Grande do Norte, Caicó,RN, 2018.
url https://repositorio.ufrn.br/handle/123456789/36682
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Universidade Federal do Rio Grande do Norte
dc.publisher.initials.fl_str_mv UFRN
dc.publisher.country.fl_str_mv Brasil
dc.publisher.department.fl_str_mv Licenciatura em Matemática
publisher.none.fl_str_mv Universidade Federal do Rio Grande do Norte
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFRN
instname:Universidade Federal do Rio Grande do Norte (UFRN)
instacron:UFRN
instname_str Universidade Federal do Rio Grande do Norte (UFRN)
instacron_str UFRN
institution UFRN
reponame_str Repositório Institucional da UFRN
collection Repositório Institucional da UFRN
bitstream.url.fl_str_mv https://repositorio.ufrn.br/bitstream/123456789/36682/1/Polin%c3%b4mioDeTaylor_FerreiraJunior_2017
https://repositorio.ufrn.br/bitstream/123456789/36682/2/Polin%c3%b4mioDeTaylor_FerreiraJunior_2017.txt
https://repositorio.ufrn.br/bitstream/123456789/36682/3/2_Polin%c3%b4mioDeTaylor_FerreiraJunior_2017
https://repositorio.ufrn.br/bitstream/123456789/36682/4/license_url
https://repositorio.ufrn.br/bitstream/123456789/36682/5/license_text
https://repositorio.ufrn.br/bitstream/123456789/36682/6/license_rdf
https://repositorio.ufrn.br/bitstream/123456789/36682/7/license.txt
bitstream.checksum.fl_str_mv 46e35218181b363addf8474a4056e782
46e35218181b363addf8474a4056e782
d7bf098a61544808699730204fea3f20
4afdbb8c545fd630ea7db775da747b2f
d41d8cd98f00b204e9800998ecf8427e
d41d8cd98f00b204e9800998ecf8427e
a80a9cda2756d355b388cc443c3d8a43
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFRN - Universidade Federal do Rio Grande do Norte (UFRN)
repository.mail.fl_str_mv
_version_ 1814832661772894208