Polinômio de Taylor com Resto de Lagrange
Autor(a) principal: | |
---|---|
Data de Publicação: | 2017 |
Tipo de documento: | Trabalho de conclusão de curso |
Idioma: | por |
Título da fonte: | Repositório Institucional da UFRN |
Texto Completo: | https://repositorio.ufrn.br/handle/123456789/36682 |
Resumo: | The purpose of this paper is to introduce the Taylor Formulas. Since polynomials are a simpler mathematical tool to work than certain functions, the attempt to approximate these functions through polynomials appears to be a very useful method. From there comes the Taylor Formula. In this work, we present several concepts and basic results necessary to understand how the approximation of functions by polynomials is done. |
id |
UFRN_cbbb7b9115adb57770ffd3d079411267 |
---|---|
oai_identifier_str |
oai:https://repositorio.ufrn.br:123456789/36682 |
network_acronym_str |
UFRN |
network_name_str |
Repositório Institucional da UFRN |
repository_id_str |
|
spelling |
Ferreira Jr, Francisco Sales de LimaBernardino, Adriano Thiago Lopes2018-02-21T10:22:55Z2021-09-20T19:12:05Z2018-02-21T10:22:55Z2021-09-20T19:12:05Z2017-12-072014050080FERREIRA JÚNIOR, Francisco Sales de Lima . Polinômio de Taylor com Resto de Lagrange. 2017. 42 f. TCC (Graduação) - Curso de Licenciatura em Matemática, Universidade Federal do Rio Grande do Norte, Caicó,RN, 2018.https://repositorio.ufrn.br/handle/123456789/36682The purpose of this paper is to introduce the Taylor Formulas. Since polynomials are a simpler mathematical tool to work than certain functions, the attempt to approximate these functions through polynomials appears to be a very useful method. From there comes the Taylor Formula. In this work, we present several concepts and basic results necessary to understand how the approximation of functions by polynomials is done.Objetivo deste trabalho é aprensentar as Fórmulas de Taylor. Como os polinômios são uma ferramenta da matemática mais simples de trabalhar do que certas funções, a tentativa de aproximar destas funções através de polinômios aparenta ser um metodo muito útil. A partir daí surge a Fórmula de Taylor. Neste trabalho, apresentamos vários conceitos e resultados básicos necessários para compreender como é feita a aproximação de funções por polinômios.Universidade Federal do Rio Grande do NorteUFRNBrasilLicenciatura em MatemáticaAproximação.Approximation.Fórmula de Taylor.Taylor's Formula.Polinômio de Taylor.Taylor s polynomial.Polinômio de Taylor com Resto de Lagrangeinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/bachelorThesisinfo:eu-repo/semantics/openAccessporreponame:Repositório Institucional da UFRNinstname:Universidade Federal do Rio Grande do Norte (UFRN)instacron:UFRNTEXTPolinômioDeTaylor_FerreiraJunior_2017Extracted textapplication/octet-stream52393https://repositorio.ufrn.br/bitstream/123456789/36682/1/Polin%c3%b4mioDeTaylor_FerreiraJunior_201746e35218181b363addf8474a4056e782MD51PolinômioDeTaylor_FerreiraJunior_2017.txtExtracted texttext/plain52393https://repositorio.ufrn.br/bitstream/123456789/36682/2/Polin%c3%b4mioDeTaylor_FerreiraJunior_2017.txt46e35218181b363addf8474a4056e782MD52ORIGINAL2_PolinômioDeTaylor_FerreiraJunior_2017Trabalho de conclusão de curso de Licenciatura em Matemáticaapplication/octet-stream629484https://repositorio.ufrn.br/bitstream/123456789/36682/3/2_Polin%c3%b4mioDeTaylor_FerreiraJunior_2017d7bf098a61544808699730204fea3f20MD53CC-LICENSElicense_urlapplication/octet-stream49https://repositorio.ufrn.br/bitstream/123456789/36682/4/license_url4afdbb8c545fd630ea7db775da747b2fMD54license_textapplication/octet-stream0https://repositorio.ufrn.br/bitstream/123456789/36682/5/license_textd41d8cd98f00b204e9800998ecf8427eMD55license_rdfapplication/octet-stream0https://repositorio.ufrn.br/bitstream/123456789/36682/6/license_rdfd41d8cd98f00b204e9800998ecf8427eMD56LICENSElicense.txttext/plain756https://repositorio.ufrn.br/bitstream/123456789/36682/7/license.txta80a9cda2756d355b388cc443c3d8a43MD57123456789/366822021-09-20 16:12:05.899oai:https://repositorio.ufrn.br:123456789/36682PGNlbnRlcj48c3Ryb25nPlVOSVZFUlNJREFERSBGRURFUkFMIERPIFJJTyBHUkFOREUgRE8gTk9SVEU8L3N0cm9uZz48L2NlbnRlcj4KPGNlbnRlcj48c3Ryb25nPkJJQkxJT1RFQ0EgRElHSVRBTCBERSBNT05PR1JBRklBUzwvc3Ryb25nPjwvY2VudGVyPgoKPGNlbnRlcj5UZXJtbyBkZSBBdXRvcml6YcOnw6NvIHBhcmEgZGlzcG9uaWJpbGl6YcOnw6NvIGRlIE1vbm9ncmFmaWFzIGRlIEdyYWR1YcOnw6NvIGUgRXNwZWNpYWxpemHDp8OjbyBuYSBCaWJsaW90ZWNhIERpZ2l0YWwgZGUgTW9ub2dyYWZpYXMgKEJETSk8L2NlbnRlcj4KCk5hIHF1YWxpZGFkZSBkZSB0aXR1bGFyIGRvcyBkaXJlaXRvcyBkZSBhdXRvciBkYSBtb25vZ3JhZmlhLCBhdXRvcml6byBhIFVuaXZlcnNpZGFkZSBGZWRlcmFsIGRvIFJpbyBHcmFuZGUgZG8gTm9ydGUgKFVGUk4pIGEgZGlzcG9uaWJpbGl6YXIgYXRyYXbDqXMgZGEgQmlibGlvdGVjYSBEaWdpdGFsIGRlIE1vbm9ncmFmaWFzIGRhIFVGUk4sIHNlbSByZXNzYXJjaW1lbnRvIGRvcyBkaXJlaXRvcyBhdXRvcmFpcywgZGUgYWNvcmRvIGNvbSBhIExlaSBuwrAgOTYxMC85OCwgbyB0ZXh0byBpbnRlZ3JhbCBkYSBvYnJhIHN1Ym1ldGlkYSBwYXJhIGZpbnMgZGUgbGVpdHVyYSwgaW1wcmVzc8OjbyBlL291IGRvd25sb2FkLCBhIHTDrXR1bG8gZGUgZGl2dWxnYcOnw6NvIGRhIHByb2R1w6fDo28gY2llbnTDrWZpY2EgYnJhc2lsZWlyYSwgYSBwYXJ0aXIgZGEgZGF0YSBkZXN0YSBzdWJtaXNzw6NvLiAKRepositório de PublicaçõesPUBhttp://repositorio.ufrn.br/oai/opendoar:2021-09-20T19:12:05Repositório Institucional da UFRN - Universidade Federal do Rio Grande do Norte (UFRN)false |
dc.title.pr_BR.fl_str_mv |
Polinômio de Taylor com Resto de Lagrange |
title |
Polinômio de Taylor com Resto de Lagrange |
spellingShingle |
Polinômio de Taylor com Resto de Lagrange Ferreira Jr, Francisco Sales de Lima Aproximação. Approximation. Fórmula de Taylor. Taylor's Formula. Polinômio de Taylor. Taylor s polynomial. |
title_short |
Polinômio de Taylor com Resto de Lagrange |
title_full |
Polinômio de Taylor com Resto de Lagrange |
title_fullStr |
Polinômio de Taylor com Resto de Lagrange |
title_full_unstemmed |
Polinômio de Taylor com Resto de Lagrange |
title_sort |
Polinômio de Taylor com Resto de Lagrange |
author |
Ferreira Jr, Francisco Sales de Lima |
author_facet |
Ferreira Jr, Francisco Sales de Lima |
author_role |
author |
dc.contributor.author.fl_str_mv |
Ferreira Jr, Francisco Sales de Lima |
dc.contributor.advisor1.fl_str_mv |
Bernardino, Adriano Thiago Lopes |
contributor_str_mv |
Bernardino, Adriano Thiago Lopes |
dc.subject.pr_BR.fl_str_mv |
Aproximação. Approximation. Fórmula de Taylor. Taylor's Formula. Polinômio de Taylor. Taylor s polynomial. |
topic |
Aproximação. Approximation. Fórmula de Taylor. Taylor's Formula. Polinômio de Taylor. Taylor s polynomial. |
description |
The purpose of this paper is to introduce the Taylor Formulas. Since polynomials are a simpler mathematical tool to work than certain functions, the attempt to approximate these functions through polynomials appears to be a very useful method. From there comes the Taylor Formula. In this work, we present several concepts and basic results necessary to understand how the approximation of functions by polynomials is done. |
publishDate |
2017 |
dc.date.issued.fl_str_mv |
2017-12-07 |
dc.date.accessioned.fl_str_mv |
2018-02-21T10:22:55Z 2021-09-20T19:12:05Z |
dc.date.available.fl_str_mv |
2018-02-21T10:22:55Z 2021-09-20T19:12:05Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/bachelorThesis |
format |
bachelorThesis |
status_str |
publishedVersion |
dc.identifier.pr_BR.fl_str_mv |
2014050080 |
dc.identifier.citation.fl_str_mv |
FERREIRA JÚNIOR, Francisco Sales de Lima . Polinômio de Taylor com Resto de Lagrange. 2017. 42 f. TCC (Graduação) - Curso de Licenciatura em Matemática, Universidade Federal do Rio Grande do Norte, Caicó,RN, 2018. |
dc.identifier.uri.fl_str_mv |
https://repositorio.ufrn.br/handle/123456789/36682 |
identifier_str_mv |
2014050080 FERREIRA JÚNIOR, Francisco Sales de Lima . Polinômio de Taylor com Resto de Lagrange. 2017. 42 f. TCC (Graduação) - Curso de Licenciatura em Matemática, Universidade Federal do Rio Grande do Norte, Caicó,RN, 2018. |
url |
https://repositorio.ufrn.br/handle/123456789/36682 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
Universidade Federal do Rio Grande do Norte |
dc.publisher.initials.fl_str_mv |
UFRN |
dc.publisher.country.fl_str_mv |
Brasil |
dc.publisher.department.fl_str_mv |
Licenciatura em Matemática |
publisher.none.fl_str_mv |
Universidade Federal do Rio Grande do Norte |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFRN instname:Universidade Federal do Rio Grande do Norte (UFRN) instacron:UFRN |
instname_str |
Universidade Federal do Rio Grande do Norte (UFRN) |
instacron_str |
UFRN |
institution |
UFRN |
reponame_str |
Repositório Institucional da UFRN |
collection |
Repositório Institucional da UFRN |
bitstream.url.fl_str_mv |
https://repositorio.ufrn.br/bitstream/123456789/36682/1/Polin%c3%b4mioDeTaylor_FerreiraJunior_2017 https://repositorio.ufrn.br/bitstream/123456789/36682/2/Polin%c3%b4mioDeTaylor_FerreiraJunior_2017.txt https://repositorio.ufrn.br/bitstream/123456789/36682/3/2_Polin%c3%b4mioDeTaylor_FerreiraJunior_2017 https://repositorio.ufrn.br/bitstream/123456789/36682/4/license_url https://repositorio.ufrn.br/bitstream/123456789/36682/5/license_text https://repositorio.ufrn.br/bitstream/123456789/36682/6/license_rdf https://repositorio.ufrn.br/bitstream/123456789/36682/7/license.txt |
bitstream.checksum.fl_str_mv |
46e35218181b363addf8474a4056e782 46e35218181b363addf8474a4056e782 d7bf098a61544808699730204fea3f20 4afdbb8c545fd630ea7db775da747b2f d41d8cd98f00b204e9800998ecf8427e d41d8cd98f00b204e9800998ecf8427e a80a9cda2756d355b388cc443c3d8a43 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional da UFRN - Universidade Federal do Rio Grande do Norte (UFRN) |
repository.mail.fl_str_mv |
|
_version_ |
1814832661772894208 |