Estudo teórico das reações de abstração e adição do radical hidroxila com o 2,5-dimetilfurano

Detalhes bibliográficos
Autor(a) principal: Santos, Thanízia Ferraz
Data de Publicação: 2015
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Biblioteca Digital de Teses e Dissertações da UFRRJ
Texto Completo: https://rima.ufrrj.br/jspui/handle/20.500.14407/14641
Resumo: Neste trabalho, as superfícies de energia potencial para as reações do radical hidroxila (OH) com o 2,5-dimetilfurano (DMF) foram estudadas em detalhes, utilizando a Teoria do Funcional de Densidade. Pontos estacionários como reagentes, complexos pré-barreira, estados de transição e produtos foram localizados por procedimentos de otimização de geometria, acompanhado do cálculo das frequências vibracionais, em níveis BHandHLYP/aug-cc-pVDZ e M06-2X/aug-cc-pVDZ. Cálculos single point a partir da metodologia coupled-cluster com simples e duplas excitações com tratamento perturbativo das triplas conectadas, CCSD(T), também foi explorado. Propriedades termodinâmicas de entalpia, entropia e energia livre de Gibbs foram calculadas a 298,15 K através das equações da Termodinâmica Estatística. Os resultados sugerem mecanismos de adição diferentes, já que uma análise da superfície de energia potencial (SEP) em BHandHLYP/aug-cc-pVDZ aponta para caminhos passando por um intermediário do tipo pi, enquanto em M06-2X/aug-cc-pVDZ o intermediário seria do tipo sigma. Na abstração, apenas a SEP obtida em M06-2X/aug-cc-pVDZ aponta para a formação de um intermediário pré-barreira. Coeficientes de velocidade foram determinados com base na Teoria do Estado de Transição Variacional, com auxílio do programa kcvt. O coeficiente CCSD(T)/aug-cc-pVDZ//BHandHLYP/aug-cc-pVDZ para o mecanismo que inclui a participação do -PC é de =48,4×10−11 cm³ molec-1 s-1, superestimado em relação ao coeficiente experimental em aproximadamente 4 vezes. Desvios dessa magnitude são esperados em cálculos teóricos, especialmente quando envolvem moléculas volumosas. Pode-se constatar que a adição de OH deve ser a principal rota de degradação para o furano e seus derivados durante o dia. Além disso, foi possível esclarecer o efeito da formação de intermediários pré-barreira nas reações entre DMF e o radical OH.
id UFRRJ-1_07a76f6df85321e2bc8b74b06ef11522
oai_identifier_str oai:rima.ufrrj.br:20.500.14407/14641
network_acronym_str UFRRJ-1
network_name_str Repositório Institucional da UFRRJ
repository_id_str
spelling Santos, Thanízia FerrazBauerfeldt, Glauco Favilla6902348723http://lattes.cnpq.br/1876040291299143Silva, Clarissa Oliveira daRocha, Alexandre Braga da12624431721http://lattes.cnpq.br/56052435318413992023-12-22T03:03:53Z2023-12-22T03:03:53Z2015-08-28SANTOS, Thanízia Ferraz. Estudo teórico das reações de abstração e adição do radical hidroxila com o 2,5-dimetilfurano. 2015. 61 f. Dissertação (Mestrado em Química) - Instituto de Ciências Exatas, Universidade Federal Rural do Rio de Janeiro, Seropédica - RJ, 2015.https://rima.ufrrj.br/jspui/handle/20.500.14407/14641Neste trabalho, as superfícies de energia potencial para as reações do radical hidroxila (OH) com o 2,5-dimetilfurano (DMF) foram estudadas em detalhes, utilizando a Teoria do Funcional de Densidade. Pontos estacionários como reagentes, complexos pré-barreira, estados de transição e produtos foram localizados por procedimentos de otimização de geometria, acompanhado do cálculo das frequências vibracionais, em níveis BHandHLYP/aug-cc-pVDZ e M06-2X/aug-cc-pVDZ. Cálculos single point a partir da metodologia coupled-cluster com simples e duplas excitações com tratamento perturbativo das triplas conectadas, CCSD(T), também foi explorado. Propriedades termodinâmicas de entalpia, entropia e energia livre de Gibbs foram calculadas a 298,15 K através das equações da Termodinâmica Estatística. Os resultados sugerem mecanismos de adição diferentes, já que uma análise da superfície de energia potencial (SEP) em BHandHLYP/aug-cc-pVDZ aponta para caminhos passando por um intermediário do tipo pi, enquanto em M06-2X/aug-cc-pVDZ o intermediário seria do tipo sigma. Na abstração, apenas a SEP obtida em M06-2X/aug-cc-pVDZ aponta para a formação de um intermediário pré-barreira. Coeficientes de velocidade foram determinados com base na Teoria do Estado de Transição Variacional, com auxílio do programa kcvt. O coeficiente CCSD(T)/aug-cc-pVDZ//BHandHLYP/aug-cc-pVDZ para o mecanismo que inclui a participação do -PC é de =48,4×10−11 cm³ molec-1 s-1, superestimado em relação ao coeficiente experimental em aproximadamente 4 vezes. Desvios dessa magnitude são esperados em cálculos teóricos, especialmente quando envolvem moléculas volumosas. Pode-se constatar que a adição de OH deve ser a principal rota de degradação para o furano e seus derivados durante o dia. Além disso, foi possível esclarecer o efeito da formação de intermediários pré-barreira nas reações entre DMF e o radical OH.Conselho Nacional de Desenvolvimento Científico e Tecnológico - CNPqIn this work, potential energy surfaces for the reactions of hydroxyl radical and 2,5-dimethylfuran were studied using the Density Functional Theory. The stationary points, such as reactants, pre-barrier complex, transition states and products were located at BHandHLYP/aug-cc-pVDZ and M06-2X-cc-pVDZ levels by geometry optimization, followed by the calculations of vibrational frequencies. Single point calculations using CCSD(T) were also explored. Thermodynamics properties of enthalpy, entrophy and Gibbs free energies have been determinated at 298,15 K within the conventional equations of Statistical Thermodynamics. The results suggest different addition mechanisms, since an analysis of the potential energy surface (PES) in BHandHLYP/ aug-cc-pVDZ points to paths going through a pi-type intermediary, while in M06-2X/aug-cc-pVDZ the intermediary would have a sigma-type interaction. About the abstraction reactions, only the PES obtained in M06-2X/aug-cc-pVDZ level points to the formation of a pre-barrier complex. The rate coefficients have been determined on the basis of the Variational Transition State Theory, with the kcvt program. The coefficient obtained at CCSD(T)/aug-cc-pVDZ//BHandHLYP/aug-cc-pVDZ for the mechanism which includes the participation of -PC is =48,4×10−11, cm³ molec-1 s-1, approximately 4 times higher than the experimental rate coefficient. Deviations of this magnitude are considered satisfactory in theoretical calculation of kinetic parameters. Addition of OH should be the main degradation pathway for furan and its derivatives, during daytime. Moreover, it was possible to clarify the effect of the formation of pre-barrier complexes in the reactions between DMF and OH radicals and propose rate coefficients in the high temperature region, which can be applied in combustion studiesapplication/pdfporUniversidade Federal Rural do Rio de JaneiroPrograma de Pós-Graduação em QuímicaUFRRJBrasilInstituto de Ciências Exatasiniciation reactionscombustionbiofuelsDMF, , , ,ab initioreações de iniciaçãocombustãobiocombustíveisQuímicaEstudo teórico das reações de abstração e adição do radical hidroxila com o 2,5-dimetilfuranoTheoretical study of abstraction and addiction reactions of hydroxyl radical with 2,5-dimethylfuraninfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisCAPÍTULO IX - REFERÊNCIAS BIBLIOGRÁFICAS ATKINSON, R.; AREY, J. Atmospheric Degradation of Volatile Organic Compounds. J. Chem. Rev., v. 103, p. 4605−4638, 2003. BABOUL, A. G.; SCHLEGEL, H. B. Improved Method for Calculating Projected Frequencies along a Reaction Path. J. Chem. Phys., v. 107, p. 9413-9417, 1997. BAER, T.; HASE, W. L. Unimolecular Reaction Dynamics: Theory and Experiments. New York , Oxford University Press, Inc. 1996. BARBOSA, T. S.; NIETO, J. D.; COMETTO, P. M.; LANE, S. I.; BAUERFELD, G. F.; ARBILLA, G. Theoretical calculations of the kinetics of the OH reaction with 2-methyl-2-propen-1-ol and its alkene analogue. RSC Adv., v. 4, p. 20830-20840, 2014. BIERBACH, A.; BARNES, I.; BECKER, K. H. Rate coefficients for the gas-phase reactions of hydroxyl radicals with furan, 2-methylfuran, 2-ethylfuran and 2,5-dimethylfuran at 300 ± 2 K. Atmos. Environ., v. 26, p. 813-817, 1992. BINDER, J. B.; RAINES, R. T. Simple Chemical Transformation of Lignocellulosic Biomass into Furans for Fuels and Chemicals .J. Am. Chem. Soc., v. 131, p. 1979-1985, 2009. BOZELL, J. J.; PETERSEN, G. R. Technology development for the productionof biobased products from biorefinery carbohydrates – the US Departmentof Energy’s ―Top 10‖ revisited. Green Chem., v. 12, p. 539–554, 2010. CABAÑAS, B.; VILLANUEVA, F.; MARTÍN, P.; BAEZA, M. T.; SALGADO, S.; JIMÉNEZ, E. Study of reaction processes of furan and some furan derivatives initiated by Cl atoms. Atmospheric Environment, v. 39, p. 1935–1944, 2005. 58 DUTTA, S.; DE, S.; ALAM, M. I.; ABU-OMAR, M. M.; SAHA, B. Direct conversion of cellulose and lignocellulosic biomass into chemicals and biofuel with metal chloride catalysts. J. Catal., v. 288, p. 8-15, 2012. FRANCISCO-MÁRQUEZ, M.; ALVAREZ-IDABOY, J. R.; GALANO, A.; VIVIER-BUNGE, A.A Possible Mechanism for Furan Formation in the Tropospheric Oxidation of Dienes. Environ. Sci. Technol., v. 39, p. 8797-8802, 2005. FRIESE, P.; SIMMIE, J.M.; OLZMANN, M. The reaction of 2,5-dimethylfuran with hydrogen atoms – An experimental and theoretical study. Proceedings of the Combustion Institute, v. 34, p. 233–239, 2013. FRISCH, M. J.; TRUCKS, G. W.; SCHLEGEL, H. B.; SCUSERIA, G. E.; ROBB, M. A.; CHEESEMAN, J. R.; SCALMANI, G.; BARONE, V.; MENNUCCI, B.; PETERSSON, G. A.; NAKATSUJI, H.; CARICATO, M.; LI, X.; HRATCHIAN, H. P.; IZMAYLOV, A. F.; BLOINO, J.; ZHENG, G.; SONNENBERG, J. L.; HADA, M.; EHARA, M.; TOYOTA, K.; FUKUDA, R.; HASEGAWA, J.; ISHIDA, M.; NAKAJIMA, T.; HONDA, Y.; KITAO, O.; NAKAI, H.; VREVEN, T.; MONTGOMERY, JR., J. A.; PERALTA, J. E.; OGLIARO, F.; BEARPARK, M.; HEYD, J. J.; BROTHERS, E.; KUDIN, K. N.; STAROVEROV, V. N.; KOBAYASHI, R.; NORMAND, J.; RAGHAVACHARI, K.; RENDELL, A.; BURANT, J. C.; IYENGAR, S. S.; TOMASI, J.; COSSI, M.; REGA, N.; MILLAM, J. M.; KLENE, M.; KNOX, J. E.; CROSS, J. B.; BAKKEN, V.; ADAMO, C.; JARAMILLO, J.; GOMPERTS, R.; STRATMANN, R. E.; YAZYEV, O.; AUSTIN, A. J.; CAMMI, R.; POMELLI, C.; OCHTERSKI, J. W.; MARTIN, R. L.; MOROKUMA, K.; ZAKRZEWSKI, V. G.; VOTH, G. A.; SALVADOR, P.; DANNENBERG, J. J.; DAPPRICH, S.; DANIELS, A. D.; FARKAS, Ö.; FORESMAN, J. B.; ORTIZ, J. V.; CIOSLOWSKI, J.; FOX, D. J. GAUSSIAN, INC., WALLINGFORD CT, Gaussian 09, Revision A.02, 2009. FUKUI, K. A. A Formulation of the Reaction Coordinate. J. Phys Chem., v. 74, 4161, 1970. 59 GREENWALD, E. E.; NORTH, S. W.; GEORGIEVSKII, Y.; KLIPPENSTEIN, S. J.A two transition state model for radical-molecule reactions: a case study of the addition of OH to C2H4. J. Phys. Chem. A, v. 109, p. 6031-6044, 2005. GRELA, M. A.; AMOREBIETA, V. T.; COLUSSI, A. J. Very Low Pressure Pyrolysis of Furan, 2-Methytfuran, and 2,5-Dimethylfuran. The Stability of the Furan Ring. J. Phys. Chem., v. 89, p. 38-41, 1985. GONZALEZ, Z.; SCHLEGEL, H. B. Reaction Path Following in Mass-Weighted Internal Coordinates. J. Phys. Chem., v. 94, p. 5523-5527, 1990. HOHENBERG, P.; KOHN, W. Inhomogeneous Electron Gas. Physical Review, v. 136, n. 3B, p. 864-871, 1964. JIAO, C. Q.; ADAMS, S. F.; GARSCADDEN, A. Ionization of 2,5-dimethylfuran by electron impact and resulting ion-parent molecule reactions. Journal of Applied Physics, v. 106, 2009. KOHN, W.; SHAM, L. Self-Consistent Equation Using Exchange and Correlation Effects. Physical Review, v. 140, n. 4A, p. A1133– A1138, 1965. LIFSHITZ, A.; TAMBURU, C.; SHASHUA, R. Thermal Decomposition of 2,5Dimethylfuran. Experimental Results and Computer Modeling. J. Phys. Chem. A, v. 102, p. 10655−10670, 1998. LUC-SY, T.; SIRJEAN, B.; GLAUDE, P.; KOHSE-HÖINGHAUS, K.; BATTIN-LECLERC, F. Influence of substituted furans on the formation of Polycyclic Aromatic Hydrocarbons in flames. Proc. Combust.,http://dx.doi.org/10.1016/j.proci.2014.06.137, 2014. OLIVEIRA, R. C. M.; BAUERFELDT, G. F. International Journal of Quantum Chemistry, 2012, 112, 3132-3140. 60 ROMÁN-LESHKOV, Y.; BARRETT, C. J.;.LIU, Z. Y.; DUMESIC, J. A. Production of dimethylfuran for liquid fuels from biomass-derived carbohydrates. Nature, v. 447, p. 982-986, 2007. SIMMIE, J. M.; CURRAN, H. J. Formation Enthalpies and Bond Dissociation Energies of Alkylfurans. The Strongest C-X Bonds Known? J. Phys. Chem. A., v. 113, p. 5128–5137, 2009. SIMMIE, J. M.; METCALFE, W. K. Ab Initio Study of the Decomposition of 2,5Dimethylfuran. J. Phys. Chem. A, v. 115, p. 8877–8888, 2011. SIRJEAN, B.; FOURNET, R. Unimolecular decomposition of 2,5-dimethylfuran : a theoretical chemical kinetic study. Phys. Chem. Chem. Phys., v. 15, p. 596—611, 2013. SIRJEAN, B.; FOURNET, R.; GLAUDE, P.; BATTIN-LECLERC, F.; WANG, W.; OEHLSCHLAEGER, M. A. Shock Tube and Chemical Kinetic Modeling Study of the Oxidation of 2,5-Dimethylfuran. J. Phys. Chem. A, v. 117, p. 1371-1392, 2013. SOMERS, K. P.; SIMMIE, J. M.; GILLESPIE, F.; CONROY, C.; BLACK, G.; METCALFE, W. K.; BATTIN-LECLERC, F.; DIRRENBERGER, P.; HERBINET, O. ; GLAUDE, P. A.; DAGAUT, P.; TOGBÉ, C.; YASUNAGA, K.; FERNANDES, R. X.; LEE, C.; TRIPATHI, R.; CURRAN, H. J. A comprehensive experimental and detailed chemical kinetic modelling study of 2,5-dimethylfuran pyrolysis and oxidation. Combustion and Flame, 2013. STEINFELD, J. I.; FRANCISCO, J. S.; HASE, W. L. Chemical Kinetics and Dynamics. Upper Saddle River. Prentice Hall, 2nd ed, 1998.560 p. THANANATTHANACHON, T.; RAUCHFUSS, T. B. Efficient Production of the Liquid Fuel 2,5- Dimethylfuran from Fructose Using Formic Acid as a Reagent. Angew. Chem. Int. Ed., v. 49, p. 6616-6618, 2010. 61 TOGBÉ, C.; TRAN, L.; LIU, D.; FELSMANN. D.; OßWALD, P.; GLAUDE, P.; SIRJEAN, B.; FOURNET, R.; BATTIN-LECLERC, F.; KOHSE-HÖINGHAUS, K. Combustion chemistry and flame structure of furan group biofuels using molecular-beam mass spectrometry and gas chromatography – Part III: 2,5-Dimethylfuran. Combustion and Flame, 2013. TRUHLAR, D. G.; GARRETT, B. C. Variational Transition State Theory. Annual Review of Physical Chemistry, ,v. 35, p. 159-189, 1984. WOON, D. E.; DUNNING JR., T. H. Gaussian basis sets for use in correlated molecular calculations. III. The atoms aluminum through argon. J. Chem. Phys., v. 98, p. 1358-1371, 1993. YANG, P.; CUI, Q.; ZU, Y.; LIU, X.; LU, G.; WANG, Y. Catalytic production of 2,5-dimethylfuran from 5-hydroxymethylfurfural over Ni/Co3O4 catalyst. Catalysis Communications, vol. 66, p. 55-59, 2015. YOUNG, D. C. Computational Chemistry: A Practical Guide for Applying Techniques to Real-World Problems. New York. John Wiley & Sons, 2011. 370 p. ISBN: 0-471-33368-9. ZHAO, Y.; TRUHLAR, D. G. The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor. Chem. Account, v. 120, p. 215-241, 2008. ZHANG, W.; DU, B.; MU, L.; FENG, C. Computational study on the mechanism for the reaction of OH with 2-methylfuran. J. Mol. Struct., v. 851 (1-3), p. 353−357, 2008.https://tede.ufrrj.br/retrieve/5381/2015%20-%20Than%c3%adzia%20Ferraz%20Santos.pdf.jpghttps://tede.ufrrj.br/retrieve/20104/2015%20-%20Than%c3%adzia%20Ferraz%20Santos.pdf.jpghttps://tede.ufrrj.br/retrieve/26405/2015%20-%20Than%c3%adzia%20Ferraz%20Santos.pdf.jpghttps://tede.ufrrj.br/retrieve/32828/2015%20-%20Than%c3%adzia%20Ferraz%20Santos.pdf.jpghttps://tede.ufrrj.br/retrieve/39258/2015%20-%20Than%c3%adzia%20Ferraz%20Santos.pdf.jpghttps://tede.ufrrj.br/retrieve/45636/2015%20-%20Than%c3%adzia%20Ferraz%20Santos.pdf.jpghttps://tede.ufrrj.br/retrieve/52012/2015%20-%20Than%c3%adzia%20Ferraz%20Santos.pdf.jpghttps://tede.ufrrj.br/retrieve/58470/2015%20-%20Than%c3%adzia%20Ferraz%20Santos.pdf.jpghttps://tede.ufrrj.br/jspui/handle/jspui/1709Submitted by Celso Magalhaes (celsomagalhaes@ufrrj.br) on 2017-05-30T17:17:07Z No. of bitstreams: 1 2015 - Thanízia Ferraz Santos.pdf: 1742658 bytes, checksum: 07706cbaaa52be04cb7ec04d0d453fa2 (MD5)Made available in DSpace on 2017-05-30T17:17:07Z (GMT). No. of bitstreams: 1 2015 - Thanízia Ferraz Santos.pdf: 1742658 bytes, checksum: 07706cbaaa52be04cb7ec04d0d453fa2 (MD5) Previous issue date: 2015-08-28info:eu-repo/semantics/openAccessreponame:Biblioteca Digital de Teses e Dissertações da UFRRJinstname:Universidade Federal Rural do Rio de Janeiro (UFRRJ)instacron:UFRRJTHUMBNAIL2015 - Thanízia Ferraz Santos.pdf.jpgGenerated Thumbnailimage/jpeg1958https://rima.ufrrj.br/jspui/bitstream/20.500.14407/14641/1/2015%20-%20Than%c3%adzia%20Ferraz%20Santos.pdf.jpgcbbfba7caafb8a055b9820e587956210MD51TEXT2015 - Thanízia Ferraz Santos.pdf.txtExtracted Texttext/plain116172https://rima.ufrrj.br/jspui/bitstream/20.500.14407/14641/2/2015%20-%20Than%c3%adzia%20Ferraz%20Santos.pdf.txt9a45136695b4391275a91f171e2607ceMD52ORIGINAL2015 - Thanízia Ferraz Santos.pdf2015 - Thanízia Ferraz Santosapplication/pdf1742658https://rima.ufrrj.br/jspui/bitstream/20.500.14407/14641/3/2015%20-%20Than%c3%adzia%20Ferraz%20Santos.pdf07706cbaaa52be04cb7ec04d0d453fa2MD53LICENSElicense.txttext/plain2089https://rima.ufrrj.br/jspui/bitstream/20.500.14407/14641/4/license.txt7b5ba3d2445355f386edab96125d42b7MD5420.500.14407/146412023-12-22 00:03:53.516oai:rima.ufrrj.br:20.500.14407/14641Tk9UQTogQ09MT1FVRSBBUVVJIEEgU1VBIFBSP1BSSUEgTElDRU4/QQpFc3RhIGxpY2VuP2EgZGUgZXhlbXBsbyA/IGZvcm5lY2lkYSBhcGVuYXMgcGFyYSBmaW5zIGluZm9ybWF0aXZvcy4KCkxJQ0VOP0EgREUgRElTVFJJQlVJPz9PIE4/Ty1FWENMVVNJVkEKCkNvbSBhIGFwcmVzZW50YT8/byBkZXN0YSBsaWNlbj9hLCB2b2M/IChvIGF1dG9yIChlcykgb3UgbyB0aXR1bGFyIGRvcyBkaXJlaXRvcyBkZSBhdXRvcikgY29uY2VkZSA/IFVuaXZlcnNpZGFkZSAKWFhYIChTaWdsYSBkYSBVbml2ZXJzaWRhZGUpIG8gZGlyZWl0byBuP28tZXhjbHVzaXZvIGRlIHJlcHJvZHV6aXIsICB0cmFkdXppciAoY29uZm9ybWUgZGVmaW5pZG8gYWJhaXhvKSwgZS9vdSAKZGlzdHJpYnVpciBhIHN1YSB0ZXNlIG91IGRpc3NlcnRhPz9vIChpbmNsdWluZG8gbyByZXN1bW8pIHBvciB0b2RvIG8gbXVuZG8gbm8gZm9ybWF0byBpbXByZXNzbyBlIGVsZXRyP25pY28gZSAKZW0gcXVhbHF1ZXIgbWVpbywgaW5jbHVpbmRvIG9zIGZvcm1hdG9zID91ZGlvIG91IHY/ZGVvLgoKVm9jPyBjb25jb3JkYSBxdWUgYSBTaWdsYSBkZSBVbml2ZXJzaWRhZGUgcG9kZSwgc2VtIGFsdGVyYXIgbyBjb250ZT9kbywgdHJhbnNwb3IgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YT8/byAKcGFyYSBxdWFscXVlciBtZWlvIG91IGZvcm1hdG8gcGFyYSBmaW5zIGRlIHByZXNlcnZhPz9vLgoKVm9jPyB0YW1iP20gY29uY29yZGEgcXVlIGEgU2lnbGEgZGUgVW5pdmVyc2lkYWRlIHBvZGUgbWFudGVyIG1haXMgZGUgdW1hIGM/cGlhIGEgc3VhIHRlc2Ugb3UgCmRpc3NlcnRhPz9vIHBhcmEgZmlucyBkZSBzZWd1cmFuP2EsIGJhY2stdXAgZSBwcmVzZXJ2YT8/by4KClZvYz8gZGVjbGFyYSBxdWUgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YT8/byA/IG9yaWdpbmFsIGUgcXVlIHZvYz8gdGVtIG8gcG9kZXIgZGUgY29uY2VkZXIgb3MgZGlyZWl0b3MgY29udGlkb3MgCm5lc3RhIGxpY2VuP2EuIFZvYz8gdGFtYj9tIGRlY2xhcmEgcXVlIG8gZGVwP3NpdG8gZGEgc3VhIHRlc2Ugb3UgZGlzc2VydGE/P28gbj9vLCBxdWUgc2VqYSBkZSBzZXUgCmNvbmhlY2ltZW50bywgaW5mcmluZ2UgZGlyZWl0b3MgYXV0b3JhaXMgZGUgbmluZ3U/bS4KCkNhc28gYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YT8/byBjb250ZW5oYSBtYXRlcmlhbCBxdWUgdm9jPyBuP28gcG9zc3VpIGEgdGl0dWxhcmlkYWRlIGRvcyBkaXJlaXRvcyBhdXRvcmFpcywgdm9jPyAKZGVjbGFyYSBxdWUgb2J0ZXZlIGEgcGVybWlzcz9vIGlycmVzdHJpdGEgZG8gZGV0ZW50b3IgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIHBhcmEgY29uY2VkZXIgPyBTaWdsYSBkZSBVbml2ZXJzaWRhZGUgCm9zIGRpcmVpdG9zIGFwcmVzZW50YWRvcyBuZXN0YSBsaWNlbj9hLCBlIHF1ZSBlc3NlIG1hdGVyaWFsIGRlIHByb3ByaWVkYWRlIGRlIHRlcmNlaXJvcyBlc3Q/IGNsYXJhbWVudGUgCmlkZW50aWZpY2FkbyBlIHJlY29uaGVjaWRvIG5vIHRleHRvIG91IG5vIGNvbnRlP2RvIGRhIHRlc2Ugb3UgZGlzc2VydGE/P28gb3JhIGRlcG9zaXRhZGEuCgpDQVNPIEEgVEVTRSBPVSBESVNTRVJUQT8/TyBPUkEgREVQT1NJVEFEQSBURU5IQSBTSURPIFJFU1VMVEFETyBERSBVTSBQQVRST0M/TklPIE9VIApBUE9JTyBERSBVTUEgQUc/TkNJQSBERSBGT01FTlRPIE9VIE9VVFJPIE9SR0FOSVNNTyBRVUUgTj9PIFNFSkEgQSBTSUdMQSBERSAKVU5JVkVSU0lEQURFLCBWT0M/IERFQ0xBUkEgUVVFIFJFU1BFSVRPVSBUT0RPUyBFIFFVQUlTUVVFUiBESVJFSVRPUyBERSBSRVZJUz9PIENPTU8gClRBTUI/TSBBUyBERU1BSVMgT0JSSUdBPz9FUyBFWElHSURBUyBQT1IgQ09OVFJBVE8gT1UgQUNPUkRPLgoKQSBTaWdsYSBkZSBVbml2ZXJzaWRhZGUgc2UgY29tcHJvbWV0ZSBhIGlkZW50aWZpY2FyIGNsYXJhbWVudGUgbyBzZXUgbm9tZSAocykgb3UgbyhzKSBub21lKHMpIGRvKHMpIApkZXRlbnRvcihlcykgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIGRhIHRlc2Ugb3UgZGlzc2VydGE/P28sIGUgbj9vIGZhcj8gcXVhbHF1ZXIgYWx0ZXJhPz9vLCBhbD9tIGRhcXVlbGFzIApjb25jZWRpZGFzIHBvciBlc3RhIGxpY2VuP2EuCg==Biblioteca Digital de Teses e Dissertaçõeshttps://tede.ufrrj.br/PUBhttps://tede.ufrrj.br/oai/requestbibliot@ufrrj.br||bibliot@ufrrj.bropendoar:2023-12-22T03:03:53Biblioteca Digital de Teses e Dissertações da UFRRJ - Universidade Federal Rural do Rio de Janeiro (UFRRJ)false
dc.title.por.fl_str_mv Estudo teórico das reações de abstração e adição do radical hidroxila com o 2,5-dimetilfurano
dc.title.alternative.eng.fl_str_mv Theoretical study of abstraction and addiction reactions of hydroxyl radical with 2,5-dimethylfuran
title Estudo teórico das reações de abstração e adição do radical hidroxila com o 2,5-dimetilfurano
spellingShingle Estudo teórico das reações de abstração e adição do radical hidroxila com o 2,5-dimetilfurano
Santos, Thanízia Ferraz
iniciation reactions
combustion
biofuels
DMF, , , ,
ab initio
reações de iniciação
combustão
biocombustíveis
Química
title_short Estudo teórico das reações de abstração e adição do radical hidroxila com o 2,5-dimetilfurano
title_full Estudo teórico das reações de abstração e adição do radical hidroxila com o 2,5-dimetilfurano
title_fullStr Estudo teórico das reações de abstração e adição do radical hidroxila com o 2,5-dimetilfurano
title_full_unstemmed Estudo teórico das reações de abstração e adição do radical hidroxila com o 2,5-dimetilfurano
title_sort Estudo teórico das reações de abstração e adição do radical hidroxila com o 2,5-dimetilfurano
author Santos, Thanízia Ferraz
author_facet Santos, Thanízia Ferraz
author_role author
dc.contributor.author.fl_str_mv Santos, Thanízia Ferraz
dc.contributor.advisor1.fl_str_mv Bauerfeldt, Glauco Favilla
dc.contributor.advisor1ID.fl_str_mv 6902348723
dc.contributor.advisor1Lattes.fl_str_mv http://lattes.cnpq.br/1876040291299143
dc.contributor.referee1.fl_str_mv Silva, Clarissa Oliveira da
dc.contributor.referee2.fl_str_mv Rocha, Alexandre Braga da
dc.contributor.authorID.fl_str_mv 12624431721
dc.contributor.authorLattes.fl_str_mv http://lattes.cnpq.br/5605243531841399
contributor_str_mv Bauerfeldt, Glauco Favilla
Silva, Clarissa Oliveira da
Rocha, Alexandre Braga da
dc.subject.eng.fl_str_mv iniciation reactions
combustion
biofuels
topic iniciation reactions
combustion
biofuels
DMF, , , ,
ab initio
reações de iniciação
combustão
biocombustíveis
Química
dc.subject.por.fl_str_mv DMF, , , ,
ab initio
reações de iniciação
combustão
biocombustíveis
dc.subject.cnpq.fl_str_mv Química
description Neste trabalho, as superfícies de energia potencial para as reações do radical hidroxila (OH) com o 2,5-dimetilfurano (DMF) foram estudadas em detalhes, utilizando a Teoria do Funcional de Densidade. Pontos estacionários como reagentes, complexos pré-barreira, estados de transição e produtos foram localizados por procedimentos de otimização de geometria, acompanhado do cálculo das frequências vibracionais, em níveis BHandHLYP/aug-cc-pVDZ e M06-2X/aug-cc-pVDZ. Cálculos single point a partir da metodologia coupled-cluster com simples e duplas excitações com tratamento perturbativo das triplas conectadas, CCSD(T), também foi explorado. Propriedades termodinâmicas de entalpia, entropia e energia livre de Gibbs foram calculadas a 298,15 K através das equações da Termodinâmica Estatística. Os resultados sugerem mecanismos de adição diferentes, já que uma análise da superfície de energia potencial (SEP) em BHandHLYP/aug-cc-pVDZ aponta para caminhos passando por um intermediário do tipo pi, enquanto em M06-2X/aug-cc-pVDZ o intermediário seria do tipo sigma. Na abstração, apenas a SEP obtida em M06-2X/aug-cc-pVDZ aponta para a formação de um intermediário pré-barreira. Coeficientes de velocidade foram determinados com base na Teoria do Estado de Transição Variacional, com auxílio do programa kcvt. O coeficiente CCSD(T)/aug-cc-pVDZ//BHandHLYP/aug-cc-pVDZ para o mecanismo que inclui a participação do -PC é de =48,4×10−11 cm³ molec-1 s-1, superestimado em relação ao coeficiente experimental em aproximadamente 4 vezes. Desvios dessa magnitude são esperados em cálculos teóricos, especialmente quando envolvem moléculas volumosas. Pode-se constatar que a adição de OH deve ser a principal rota de degradação para o furano e seus derivados durante o dia. Além disso, foi possível esclarecer o efeito da formação de intermediários pré-barreira nas reações entre DMF e o radical OH.
publishDate 2015
dc.date.issued.fl_str_mv 2015-08-28
dc.date.accessioned.fl_str_mv 2023-12-22T03:03:53Z
dc.date.available.fl_str_mv 2023-12-22T03:03:53Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv SANTOS, Thanízia Ferraz. Estudo teórico das reações de abstração e adição do radical hidroxila com o 2,5-dimetilfurano. 2015. 61 f. Dissertação (Mestrado em Química) - Instituto de Ciências Exatas, Universidade Federal Rural do Rio de Janeiro, Seropédica - RJ, 2015.
dc.identifier.uri.fl_str_mv https://rima.ufrrj.br/jspui/handle/20.500.14407/14641
identifier_str_mv SANTOS, Thanízia Ferraz. Estudo teórico das reações de abstração e adição do radical hidroxila com o 2,5-dimetilfurano. 2015. 61 f. Dissertação (Mestrado em Química) - Instituto de Ciências Exatas, Universidade Federal Rural do Rio de Janeiro, Seropédica - RJ, 2015.
url https://rima.ufrrj.br/jspui/handle/20.500.14407/14641
dc.language.iso.fl_str_mv por
language por
dc.relation.references.por.fl_str_mv CAPÍTULO IX - REFERÊNCIAS BIBLIOGRÁFICAS ATKINSON, R.; AREY, J. Atmospheric Degradation of Volatile Organic Compounds. J. Chem. Rev., v. 103, p. 4605−4638, 2003. BABOUL, A. G.; SCHLEGEL, H. B. Improved Method for Calculating Projected Frequencies along a Reaction Path. J. Chem. Phys., v. 107, p. 9413-9417, 1997. BAER, T.; HASE, W. L. Unimolecular Reaction Dynamics: Theory and Experiments. New York , Oxford University Press, Inc. 1996. BARBOSA, T. S.; NIETO, J. D.; COMETTO, P. M.; LANE, S. I.; BAUERFELD, G. F.; ARBILLA, G. Theoretical calculations of the kinetics of the OH reaction with 2-methyl-2-propen-1-ol and its alkene analogue. RSC Adv., v. 4, p. 20830-20840, 2014. BIERBACH, A.; BARNES, I.; BECKER, K. H. Rate coefficients for the gas-phase reactions of hydroxyl radicals with furan, 2-methylfuran, 2-ethylfuran and 2,5-dimethylfuran at 300 ± 2 K. Atmos. Environ., v. 26, p. 813-817, 1992. BINDER, J. B.; RAINES, R. T. Simple Chemical Transformation of Lignocellulosic Biomass into Furans for Fuels and Chemicals .J. Am. Chem. Soc., v. 131, p. 1979-1985, 2009. BOZELL, J. J.; PETERSEN, G. R. Technology development for the productionof biobased products from biorefinery carbohydrates – the US Departmentof Energy’s ―Top 10‖ revisited. Green Chem., v. 12, p. 539–554, 2010. CABAÑAS, B.; VILLANUEVA, F.; MARTÍN, P.; BAEZA, M. T.; SALGADO, S.; JIMÉNEZ, E. Study of reaction processes of furan and some furan derivatives initiated by Cl atoms. Atmospheric Environment, v. 39, p. 1935–1944, 2005. 58 DUTTA, S.; DE, S.; ALAM, M. I.; ABU-OMAR, M. M.; SAHA, B. Direct conversion of cellulose and lignocellulosic biomass into chemicals and biofuel with metal chloride catalysts. J. Catal., v. 288, p. 8-15, 2012. FRANCISCO-MÁRQUEZ, M.; ALVAREZ-IDABOY, J. R.; GALANO, A.; VIVIER-BUNGE, A.A Possible Mechanism for Furan Formation in the Tropospheric Oxidation of Dienes. Environ. Sci. Technol., v. 39, p. 8797-8802, 2005. FRIESE, P.; SIMMIE, J.M.; OLZMANN, M. The reaction of 2,5-dimethylfuran with hydrogen atoms – An experimental and theoretical study. Proceedings of the Combustion Institute, v. 34, p. 233–239, 2013. FRISCH, M. J.; TRUCKS, G. W.; SCHLEGEL, H. B.; SCUSERIA, G. E.; ROBB, M. A.; CHEESEMAN, J. R.; SCALMANI, G.; BARONE, V.; MENNUCCI, B.; PETERSSON, G. A.; NAKATSUJI, H.; CARICATO, M.; LI, X.; HRATCHIAN, H. P.; IZMAYLOV, A. F.; BLOINO, J.; ZHENG, G.; SONNENBERG, J. L.; HADA, M.; EHARA, M.; TOYOTA, K.; FUKUDA, R.; HASEGAWA, J.; ISHIDA, M.; NAKAJIMA, T.; HONDA, Y.; KITAO, O.; NAKAI, H.; VREVEN, T.; MONTGOMERY, JR., J. A.; PERALTA, J. E.; OGLIARO, F.; BEARPARK, M.; HEYD, J. J.; BROTHERS, E.; KUDIN, K. N.; STAROVEROV, V. N.; KOBAYASHI, R.; NORMAND, J.; RAGHAVACHARI, K.; RENDELL, A.; BURANT, J. C.; IYENGAR, S. S.; TOMASI, J.; COSSI, M.; REGA, N.; MILLAM, J. M.; KLENE, M.; KNOX, J. E.; CROSS, J. B.; BAKKEN, V.; ADAMO, C.; JARAMILLO, J.; GOMPERTS, R.; STRATMANN, R. E.; YAZYEV, O.; AUSTIN, A. J.; CAMMI, R.; POMELLI, C.; OCHTERSKI, J. W.; MARTIN, R. L.; MOROKUMA, K.; ZAKRZEWSKI, V. G.; VOTH, G. A.; SALVADOR, P.; DANNENBERG, J. J.; DAPPRICH, S.; DANIELS, A. D.; FARKAS, Ö.; FORESMAN, J. B.; ORTIZ, J. V.; CIOSLOWSKI, J.; FOX, D. J. GAUSSIAN, INC., WALLINGFORD CT, Gaussian 09, Revision A.02, 2009. FUKUI, K. A. A Formulation of the Reaction Coordinate. J. Phys Chem., v. 74, 4161, 1970. 59 GREENWALD, E. E.; NORTH, S. W.; GEORGIEVSKII, Y.; KLIPPENSTEIN, S. J.A two transition state model for radical-molecule reactions: a case study of the addition of OH to C2H4. J. Phys. Chem. A, v. 109, p. 6031-6044, 2005. GRELA, M. A.; AMOREBIETA, V. T.; COLUSSI, A. J. Very Low Pressure Pyrolysis of Furan, 2-Methytfuran, and 2,5-Dimethylfuran. The Stability of the Furan Ring. J. Phys. Chem., v. 89, p. 38-41, 1985. GONZALEZ, Z.; SCHLEGEL, H. B. Reaction Path Following in Mass-Weighted Internal Coordinates. J. Phys. Chem., v. 94, p. 5523-5527, 1990. HOHENBERG, P.; KOHN, W. Inhomogeneous Electron Gas. Physical Review, v. 136, n. 3B, p. 864-871, 1964. JIAO, C. Q.; ADAMS, S. F.; GARSCADDEN, A. Ionization of 2,5-dimethylfuran by electron impact and resulting ion-parent molecule reactions. Journal of Applied Physics, v. 106, 2009. KOHN, W.; SHAM, L. Self-Consistent Equation Using Exchange and Correlation Effects. Physical Review, v. 140, n. 4A, p. A1133– A1138, 1965. LIFSHITZ, A.; TAMBURU, C.; SHASHUA, R. Thermal Decomposition of 2,5Dimethylfuran. Experimental Results and Computer Modeling. J. Phys. Chem. A, v. 102, p. 10655−10670, 1998. LUC-SY, T.; SIRJEAN, B.; GLAUDE, P.; KOHSE-HÖINGHAUS, K.; BATTIN-LECLERC, F. Influence of substituted furans on the formation of Polycyclic Aromatic Hydrocarbons in flames. Proc. Combust.,http://dx.doi.org/10.1016/j.proci.2014.06.137, 2014. OLIVEIRA, R. C. M.; BAUERFELDT, G. F. International Journal of Quantum Chemistry, 2012, 112, 3132-3140. 60 ROMÁN-LESHKOV, Y.; BARRETT, C. J.;.LIU, Z. Y.; DUMESIC, J. A. Production of dimethylfuran for liquid fuels from biomass-derived carbohydrates. Nature, v. 447, p. 982-986, 2007. SIMMIE, J. M.; CURRAN, H. J. Formation Enthalpies and Bond Dissociation Energies of Alkylfurans. The Strongest C-X Bonds Known? J. Phys. Chem. A., v. 113, p. 5128–5137, 2009. SIMMIE, J. M.; METCALFE, W. K. Ab Initio Study of the Decomposition of 2,5Dimethylfuran. J. Phys. Chem. A, v. 115, p. 8877–8888, 2011. SIRJEAN, B.; FOURNET, R. Unimolecular decomposition of 2,5-dimethylfuran : a theoretical chemical kinetic study. Phys. Chem. Chem. Phys., v. 15, p. 596—611, 2013. SIRJEAN, B.; FOURNET, R.; GLAUDE, P.; BATTIN-LECLERC, F.; WANG, W.; OEHLSCHLAEGER, M. A. Shock Tube and Chemical Kinetic Modeling Study of the Oxidation of 2,5-Dimethylfuran. J. Phys. Chem. A, v. 117, p. 1371-1392, 2013. SOMERS, K. P.; SIMMIE, J. M.; GILLESPIE, F.; CONROY, C.; BLACK, G.; METCALFE, W. K.; BATTIN-LECLERC, F.; DIRRENBERGER, P.; HERBINET, O. ; GLAUDE, P. A.; DAGAUT, P.; TOGBÉ, C.; YASUNAGA, K.; FERNANDES, R. X.; LEE, C.; TRIPATHI, R.; CURRAN, H. J. A comprehensive experimental and detailed chemical kinetic modelling study of 2,5-dimethylfuran pyrolysis and oxidation. Combustion and Flame, 2013. STEINFELD, J. I.; FRANCISCO, J. S.; HASE, W. L. Chemical Kinetics and Dynamics. Upper Saddle River. Prentice Hall, 2nd ed, 1998.560 p. THANANATTHANACHON, T.; RAUCHFUSS, T. B. Efficient Production of the Liquid Fuel 2,5- Dimethylfuran from Fructose Using Formic Acid as a Reagent. Angew. Chem. Int. Ed., v. 49, p. 6616-6618, 2010. 61 TOGBÉ, C.; TRAN, L.; LIU, D.; FELSMANN. D.; OßWALD, P.; GLAUDE, P.; SIRJEAN, B.; FOURNET, R.; BATTIN-LECLERC, F.; KOHSE-HÖINGHAUS, K. Combustion chemistry and flame structure of furan group biofuels using molecular-beam mass spectrometry and gas chromatography – Part III: 2,5-Dimethylfuran. Combustion and Flame, 2013. TRUHLAR, D. G.; GARRETT, B. C. Variational Transition State Theory. Annual Review of Physical Chemistry, ,v. 35, p. 159-189, 1984. WOON, D. E.; DUNNING JR., T. H. Gaussian basis sets for use in correlated molecular calculations. III. The atoms aluminum through argon. J. Chem. Phys., v. 98, p. 1358-1371, 1993. YANG, P.; CUI, Q.; ZU, Y.; LIU, X.; LU, G.; WANG, Y. Catalytic production of 2,5-dimethylfuran from 5-hydroxymethylfurfural over Ni/Co3O4 catalyst. Catalysis Communications, vol. 66, p. 55-59, 2015. YOUNG, D. C. Computational Chemistry: A Practical Guide for Applying Techniques to Real-World Problems. New York. John Wiley & Sons, 2011. 370 p. ISBN: 0-471-33368-9. ZHAO, Y.; TRUHLAR, D. G. The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor. Chem. Account, v. 120, p. 215-241, 2008. ZHANG, W.; DU, B.; MU, L.; FENG, C. Computational study on the mechanism for the reaction of OH with 2-methylfuran. J. Mol. Struct., v. 851 (1-3), p. 353−357, 2008.
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal Rural do Rio de Janeiro
dc.publisher.program.fl_str_mv Programa de Pós-Graduação em Química
dc.publisher.initials.fl_str_mv UFRRJ
dc.publisher.country.fl_str_mv Brasil
dc.publisher.department.fl_str_mv Instituto de Ciências Exatas
publisher.none.fl_str_mv Universidade Federal Rural do Rio de Janeiro
dc.source.none.fl_str_mv reponame:Biblioteca Digital de Teses e Dissertações da UFRRJ
instname:Universidade Federal Rural do Rio de Janeiro (UFRRJ)
instacron:UFRRJ
instname_str Universidade Federal Rural do Rio de Janeiro (UFRRJ)
instacron_str UFRRJ
institution UFRRJ
reponame_str Biblioteca Digital de Teses e Dissertações da UFRRJ
collection Biblioteca Digital de Teses e Dissertações da UFRRJ
bitstream.url.fl_str_mv https://rima.ufrrj.br/jspui/bitstream/20.500.14407/14641/1/2015%20-%20Than%c3%adzia%20Ferraz%20Santos.pdf.jpg
https://rima.ufrrj.br/jspui/bitstream/20.500.14407/14641/2/2015%20-%20Than%c3%adzia%20Ferraz%20Santos.pdf.txt
https://rima.ufrrj.br/jspui/bitstream/20.500.14407/14641/3/2015%20-%20Than%c3%adzia%20Ferraz%20Santos.pdf
https://rima.ufrrj.br/jspui/bitstream/20.500.14407/14641/4/license.txt
bitstream.checksum.fl_str_mv cbbfba7caafb8a055b9820e587956210
9a45136695b4391275a91f171e2607ce
07706cbaaa52be04cb7ec04d0d453fa2
7b5ba3d2445355f386edab96125d42b7
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da UFRRJ - Universidade Federal Rural do Rio de Janeiro (UFRRJ)
repository.mail.fl_str_mv bibliot@ufrrj.br||bibliot@ufrrj.br
_version_ 1810107937773846528