Avaliação psicobiológica em camundongos swiss submetidos às manipulações farmacológicas do sistema serotonérgico durante o período neonatal

Detalhes bibliográficos
Autor(a) principal: Melo, Roberto Laureano
Data de Publicação: 2017
Tipo de documento: Tese
Idioma: por
Título da fonte: Biblioteca Digital de Teses e Dissertações da UFRRJ
Texto Completo: https://rima.ufrrj.br/jspui/handle/20.500.14407/10301
Resumo: A serotonina (5-HT) exerce um papel importante na embriogênese do sistema nervoso central de mamíferos, modulando a ontogenia de diversos sistemas neuronais, inclusive aqueles envolvidos com a regulação do humor e reatividade ao estresse. Nesse contexto, alterações na sinalização da 5-HT durante o início da vida podem comprometer a saúde mental e aumentar a susceptibilidade aos transtornos psiquiátricos. Dessa forma, o objetivo do nosso trabalho é avaliar se manipulações farmacológicas do sistema serotonérgico durante o período neonatal são capazes de alterar os parâmetros neurocomportamentais em prole de camundongos Swiss durante a fase adulta, bem como os mecanismos supostamente envolvidos. Para esse propósito, camundungas prenhas (n = 4 cada, e ~ 35g) foram divididas em seis grupos aleatoriamente. A prole obtida foi tratada com salina 0,9%, fluoxetina (FLU; 10mg/kg, s.c.), para-clorofenilalanina (p-CPA; 100mg/kg, s.c.), WAY 100135 (WAY; 1mg/kg, s.c.), 8-hidroxi-2-(di-n-propilamino) tetralina (DPAT; 1mg/kg, s.c.) do 5º ao 15º ou com d-fenfluramina (D-Fen; 3mg/kg, s.c.) do 5º ao 20º dia pós-natal. No 16º ou 21º dia pósnatal, parte da prole foi submetida à eutanásia, sendo o mesencéfalo e o hipocampo dissecados para análise da expressão dos seguintes genes: triptofano hidroxilase 2 (TPH2), transportador de 5-HT (SERT), receptor de 5-HT 1a (5-HT1a), fator neurotrófico derivado do cérebro (BDNF) e dos fatores de transcrição Pet1a e Lmx1b. O restante dos filhotes, ao completar 70 dias de vida, foi submetida a uma bateria de testes comportamentais composta dos seguintes protocolos: campo aberto, caixa claro-escuro, labirinto em cruz elevado e suspensão pela cauda. A análise estatística foi realizada pelo teste t de Student e as médias foram consideradas significativamente diferentes quando p < 0,05. Em relação aos achados transcricionais, foi verificado que aumento da neurotransmissão serotonérgica através do tratamento neonatal com D-Fen reduz a expressão mesencefálica de 5-HT1a (90%, p = 0,001), SERT (87%, p = 0,01), BDNF (70%, p = 0,001) e Pet1a (90%, p = 0,009), bem como a expressão de TPH2 (87%, p = 0,002) e BDNF (90%, p = 0.008) no hipocampo. O tratamento com Flu aumenta a expressão mesencefálica de TPH2 (98%, p = 0,004), mas diminui a expressão de TPH2 (93%, p < 0,001), 5HT1a (92%, p < 0.001), SERT (65%, p < 0,001), BDNF (80%, p = 0.001) e Lmx1b (97%, p = 0,001) no hipocampo. Em condições de depleção de 5-HT através do tratamento com p-CPA, há um aumento da expressão mesencefálica de 5-HT1a (35%, p = 0,02). Em relação às manipulações que envolvem o receptor 5-HT1a, a sua ativação através do tratamento com DPAT aumenta a expressão mesencefálica da TPH2 (66%, p = 0.03) e do próprio receptor 5-HT1a (54%, p = 0,01), mas reduz a expressão hipocampal de TPH2 (97%, p < 0,001), 5HT1a (28%, p = 0.03), SERT (64%, p = 0,003), BDNF (66%, p = 0,004) e Lmx1b (83%, p = 0,001). De maneira semelhante, o seu bloqueio através do tratamento com WAY aumenta a expressão mesencefálica de TPH2 (96%, p = 0,009), do próprio receptor 5-HT1a (78%, p < 0,001) e do SERT (95%, p = 0,002), mas reduz a expressão hipocampal de TPH2 (93%, p < 0.05), 5HT1a (47%, p = 0,01), SERT (58%, p = 0.01), BDNF (66%, p = 0,004) e Lmx1b (95%, p = 0,001). Quanto às avaliações comportamentais, no teste do campo aberto, nenhum dos tratamentos altera a atividade locomotora. Todavia tanto o tratamento com p-CPA quanto com WAY promovem redução da razão central (35%, p = 0,01 e 26%, p = 0,02, respectivamente). Já o tratamento com Flu aumenta o tempo de grooming (153%, p = 0,01). No teste da caixa claroVIII escuro, verificamos que há um aumento da latência e do tempo de permanência no lado claro nos tratamentos com D-Fen (87%, p = 0,01 e 21%, p =0,002) e Flu (764%, p = 0,01 e 108%, p = 0,008). No labirinto em cruz elevado, foi observado que o tratamento com DPAT aumenta o tempo de permanência e a porcentagem de entradas nos braços abertos (276%, p = 0,02 e 155%, p =0,03), ao passo que o WAY reduz (75%, p = 0,02 e 58%, p = 0,01). Já no teste da suspensão pela cauda, o tratamento com D-Fen, Flu ou DPAT reduz o tempo de imobilidade (98%, p < 0,001; 45%, p = 0,02 e 57%, p = 0,01, respectivamente), enquanto o tratamento com p-CPA ou WAY reduz a latência para o primeiro episódio de imobilidade (73%, p = 0,03 e 29%, p = 0,004, respectivamente). Dessa forma, conjecturamos que, através de mecanismos epigenéticos, manipulações farmacológicas que afetam a neurotransmissão serotonérgica durante o período neonatal promovem alterações neuroquímicas e hodológicas de sistemas cerebrais envolvidos com respostas afetivas, programando os comportamentos análogos à ansiedade e depressão na fase adulta.
id UFRRJ-1_0b62034d4222c063ad14096c663f9170
oai_identifier_str oai:rima.ufrrj.br:20.500.14407/10301
network_acronym_str UFRRJ-1
network_name_str Repositório Institucional da UFRRJ
repository_id_str
spelling Melo, Roberto LaureanoCôrtes, Wellington da Silva86891600510http://lattes.cnpq.br/1305510562756172Côrtes, Wellington da SilvaOlivares, Emerson LopesGiannocco, GiseleReis, Luís CarlosPassos Júnior, Daniel Badauê12405535793http://lattes.cnpq.br/17819791633257092023-12-21T19:00:41Z2023-12-21T19:00:41Z2017-10-21MELO, Roberto Laureano. Avaliação psicobiológica em camundongos Swiss submetidos às manipulações farmacológicas do sistema serotonérgico durante o período neonatal. 2017. 68 f. Tese (Doutorado Multicêntrico em Ciências Fisiológicas) - Instituto de Ciências Biológicas e da Saúde, Universidade Federal Rural do Rio de Janeiro, Seropédica-RJ, 2017 .https://rima.ufrrj.br/jspui/handle/20.500.14407/10301A serotonina (5-HT) exerce um papel importante na embriogênese do sistema nervoso central de mamíferos, modulando a ontogenia de diversos sistemas neuronais, inclusive aqueles envolvidos com a regulação do humor e reatividade ao estresse. Nesse contexto, alterações na sinalização da 5-HT durante o início da vida podem comprometer a saúde mental e aumentar a susceptibilidade aos transtornos psiquiátricos. Dessa forma, o objetivo do nosso trabalho é avaliar se manipulações farmacológicas do sistema serotonérgico durante o período neonatal são capazes de alterar os parâmetros neurocomportamentais em prole de camundongos Swiss durante a fase adulta, bem como os mecanismos supostamente envolvidos. Para esse propósito, camundungas prenhas (n = 4 cada, e ~ 35g) foram divididas em seis grupos aleatoriamente. A prole obtida foi tratada com salina 0,9%, fluoxetina (FLU; 10mg/kg, s.c.), para-clorofenilalanina (p-CPA; 100mg/kg, s.c.), WAY 100135 (WAY; 1mg/kg, s.c.), 8-hidroxi-2-(di-n-propilamino) tetralina (DPAT; 1mg/kg, s.c.) do 5º ao 15º ou com d-fenfluramina (D-Fen; 3mg/kg, s.c.) do 5º ao 20º dia pós-natal. No 16º ou 21º dia pósnatal, parte da prole foi submetida à eutanásia, sendo o mesencéfalo e o hipocampo dissecados para análise da expressão dos seguintes genes: triptofano hidroxilase 2 (TPH2), transportador de 5-HT (SERT), receptor de 5-HT 1a (5-HT1a), fator neurotrófico derivado do cérebro (BDNF) e dos fatores de transcrição Pet1a e Lmx1b. O restante dos filhotes, ao completar 70 dias de vida, foi submetida a uma bateria de testes comportamentais composta dos seguintes protocolos: campo aberto, caixa claro-escuro, labirinto em cruz elevado e suspensão pela cauda. A análise estatística foi realizada pelo teste t de Student e as médias foram consideradas significativamente diferentes quando p < 0,05. Em relação aos achados transcricionais, foi verificado que aumento da neurotransmissão serotonérgica através do tratamento neonatal com D-Fen reduz a expressão mesencefálica de 5-HT1a (90%, p = 0,001), SERT (87%, p = 0,01), BDNF (70%, p = 0,001) e Pet1a (90%, p = 0,009), bem como a expressão de TPH2 (87%, p = 0,002) e BDNF (90%, p = 0.008) no hipocampo. O tratamento com Flu aumenta a expressão mesencefálica de TPH2 (98%, p = 0,004), mas diminui a expressão de TPH2 (93%, p < 0,001), 5HT1a (92%, p < 0.001), SERT (65%, p < 0,001), BDNF (80%, p = 0.001) e Lmx1b (97%, p = 0,001) no hipocampo. Em condições de depleção de 5-HT através do tratamento com p-CPA, há um aumento da expressão mesencefálica de 5-HT1a (35%, p = 0,02). Em relação às manipulações que envolvem o receptor 5-HT1a, a sua ativação através do tratamento com DPAT aumenta a expressão mesencefálica da TPH2 (66%, p = 0.03) e do próprio receptor 5-HT1a (54%, p = 0,01), mas reduz a expressão hipocampal de TPH2 (97%, p < 0,001), 5HT1a (28%, p = 0.03), SERT (64%, p = 0,003), BDNF (66%, p = 0,004) e Lmx1b (83%, p = 0,001). De maneira semelhante, o seu bloqueio através do tratamento com WAY aumenta a expressão mesencefálica de TPH2 (96%, p = 0,009), do próprio receptor 5-HT1a (78%, p < 0,001) e do SERT (95%, p = 0,002), mas reduz a expressão hipocampal de TPH2 (93%, p < 0.05), 5HT1a (47%, p = 0,01), SERT (58%, p = 0.01), BDNF (66%, p = 0,004) e Lmx1b (95%, p = 0,001). Quanto às avaliações comportamentais, no teste do campo aberto, nenhum dos tratamentos altera a atividade locomotora. Todavia tanto o tratamento com p-CPA quanto com WAY promovem redução da razão central (35%, p = 0,01 e 26%, p = 0,02, respectivamente). Já o tratamento com Flu aumenta o tempo de grooming (153%, p = 0,01). No teste da caixa claroVIII escuro, verificamos que há um aumento da latência e do tempo de permanência no lado claro nos tratamentos com D-Fen (87%, p = 0,01 e 21%, p =0,002) e Flu (764%, p = 0,01 e 108%, p = 0,008). No labirinto em cruz elevado, foi observado que o tratamento com DPAT aumenta o tempo de permanência e a porcentagem de entradas nos braços abertos (276%, p = 0,02 e 155%, p =0,03), ao passo que o WAY reduz (75%, p = 0,02 e 58%, p = 0,01). Já no teste da suspensão pela cauda, o tratamento com D-Fen, Flu ou DPAT reduz o tempo de imobilidade (98%, p < 0,001; 45%, p = 0,02 e 57%, p = 0,01, respectivamente), enquanto o tratamento com p-CPA ou WAY reduz a latência para o primeiro episódio de imobilidade (73%, p = 0,03 e 29%, p = 0,004, respectivamente). Dessa forma, conjecturamos que, através de mecanismos epigenéticos, manipulações farmacológicas que afetam a neurotransmissão serotonérgica durante o período neonatal promovem alterações neuroquímicas e hodológicas de sistemas cerebrais envolvidos com respostas afetivas, programando os comportamentos análogos à ansiedade e depressão na fase adulta.Serotonin (5-HT) plays an important role in the central nervous system embryogenesis of mammals, modulating the several neuronal systems ontogeny, including those involved in mood regulation and stress reactivity. In this context, changes in 5-HT signaling during early life can compromise the mental health and increase susceptibility to psychiatric disorders. Thus, the aim of our study is to assess whether neonatal pharmacological management of the serotonergic system are able to alter neurobehavioral parameters in Swiss mice offspring in adulthood, as well as the mechanisms supposedly involved. For this purpose, pregnant mice (n = 4 each, and ~ 35g) were randomly divided into six groups. The offspring obtained were treated with isotonic saline, fluoxetine (FLU, 10mg / kg, s.c.), para-chlorophenylalanine (p- CPA, 100mg / kg, s.c.), WAY 100135 (WAY, 1mg / kg, s.c.), 8-hydroxy-2-(di-propylamino)- tetraline (DPAT, 1mg / kg, s.c.) from 5th to 15th or with d-fenfluramine (D-fen, 3mg / kg, s.c.) from the 5th to the 20th postnatal day. On the 16th or 21st postnatal day, part of the offspring underwent to euthanasia, being the mesencephalon and hippocampus dissected for RNA analysis of the following genes: tryptophan hydroxylase 2 (TPH2), 5-HT transporter (SERT), 5-HT1a receptor (5-HT1a), brain derived neurotrophic factor (BDNF) and the transcription factors Pet1a and Lmx1b. The remaining offspring, at 70 days of age, underwent to a battery of behavioral tests composed by the following protocols: open field, dark light box, elevated plus maze and tail suspension tests. Statistical analysis were performed using T Student test and means were considered significantly different when p <0.05. Regarding the transcriptional findings, it was verified that increased serotonergic neurotransmission through neonatal treatment with D-Fen reduced mesencephalic expression of 5-HT1a (90%, p = 0.001), SERT (87%, p = 0.01), BDNF (70%, p = 0.001) and Pet1a (90%, p = 0.009), as well as TPH2 (87%, p = 0.002) and BDNF (90%, p = 0.008) expression in the hippocampus. Flu increases mesencephalic TPH2expression (98%, p = 0.004), however decreases the TPH2 (93%, p <0.001), 5HT1a (92%, p <0.001), SERT (65%, p <0.001), BDNF (80%, p = 0.001) and Lmx1b (97%, p = 0.001) expression in the hippocampus. Under 5-HT depletion conditions through p-CPA treatment, there is an increase in mesencephalic 5-HT1a expression (35%, p = 0.02). In relation to the manipulations involving the 5-HT1a receptor, its activation through DPAT treatment increases the mesencephalic expression of TPH2 (66%, p = 0.03) and 5-HT1a receptor itself (54%, p = 0.01 ), although it has reduced hippocampal expression of TPH2 (97%, p <0.001), 5HT1a (28%, p = 0.03), SERT (64%, p = 0.003), BDNF (66%, p = 0.004) and Lmx1b 83%, p = 0.001). Similarly, its blockade through WAY treatment increases the TPH2 (96%, p = 0.009), 5-HT1a receptor itself (78%, p <0.001) and SERT (95%, p = (P <0.05) mesencephalic expression, however reduced hippocampal expression of TPH2 (93%, p <0.05), 5HT1a (47%, p = 0.01), SERT (58%, p = 0.01), BDNF and Lmx1b (95%, p = 0.001). Regarding the behavioral evaluations, in the open field test, none of the treatments alter the locomotor activity. However, both p-CPA and WAY ones promoted reduction of the central ratio (35%, p = 0.01 and 26%, p = 0.02, respectively), whereas Flu increases grooming time (153%, p = 0.01). In the light-dark box test, there was an increase in latency and in light side time in treatments with D-Fen (87%, p = 0.01 and 21%, p = 0.002) and Flu (764 %, p = 0.01 and 108%, p = 0.008). In the elevated plus maze, it was verified that DPAT increases the time and the percentage of entries in the open arms (276%, p = 0.02 and 155%, p = 0.03), whereas X the WAY reduces (75%, p = 0.02 and 58%, p = 0.01). In tail suspension test, treatment with D-Fen, Flu or DPAT reduced the immobility time (98%, p <0.001, 45%, p = 0.02 and 57%, p = 0.01, respectively ), whereas p-CPA or WAY treatment reduced latency to immobility (73%, p = 0.03 and 29%, p = 0.004, respectively). Thus, we conjecture that, through epigenetic mechanisms, pharmacological management that affect serotonergic neurotransmission during the neonatal period promote neurochemical and hodological alterations of cerebral systems involved with affective responses, programming anxiety and depression like behaviors in adulthoodapplication/pdfporUniversidade Federal Rural do Rio de JaneiroPrograma Multicêntrico de Pós-Graduação em Ciências FisiológicasUFRRJBrasilInstituto de Ciências Biológicas e da SaúdeserotoninadesenvolvimentoansiedadedepressãoserotonindevelopmentanxietydepressionFisiologiaAvaliação psicobiológica em camundongos swiss submetidos às manipulações farmacológicas do sistema serotonérgico durante o período neonatalPsychobiological evaluation in swiss mice underwent to neonatal pharmacological management of the serotonergic systeminfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisAGHAJANIAN, G. K.; KUHAR, M. J.; ROTH, R. H. Serotonin-containing neuronal perikarya and terminals: differential effects of p-chlorophenylalanine. Brain Research, v. 54, p. 85-101, 1973. ALBERT, Paul R.; VAHID-ANSARI, Faranak; LUCKHART, Christine. Serotoninprefrontal cortical circuitry in anxiety and depression phenotypes: pivotal role of preand post-synaptic 5-HT1A receptor expression. Frontiers in behavioral neuroscience, v. 8, 2014. AMERICAN PSYCHIATRIC ASSOCIATION et al. Diagnostic and statistical manual of mental disorders (DSM-5®). American Psychiatric Pub, 2013. ANSORGE, Mark S.; MORELLI, Emanuela; GINGRICH, Jay A. Inhibition of serotonin but not norepinephrine transport during development produces delayed, persistent perturbations of emotional behaviors in mice. Journal of Neuroscience, v. 28, n. 1, p. 199-207, 2008. ARCHER, John. Tests for emotionality in rats and mice: a review. Animal behaviour, v. 21, n. 2, p. 205-235, 1973. ASEGAWA, H.; NAKAMURA, K. Tryptophan Hydroxylase and Serotonin Synthesis Regulation. v. 21, p. 183-202. In: MULLER, C. P.; JACOBS, B. (Ed.). Handbook of the behavioral neurobiology of serotonin. Burlington, MA: Academic Press, 2010. AZMITIA, Efrain C. Modern views on an ancient chemical: serotonin effects on cell proliferation, maturation, and apoptosis. Brain research bulletin, v. 56, n. 5, p. 413- 424, 2001. AZMITIA, Efrain C.; MCEWEN, Bruce S. Adrenalcortical influence on rat brain tryptophan hydroxylase activity. Brain research, v. 78, n. 2, p. 291-302, 1974. BALE, Tracy L. Epigenetic and transgenerational reprogramming of brain development. Nature Reviews Neuroscience, v. 16, n. 6, p. 332-344, 2015. BANERJEE, Tania Das; MIDDLETON, Frank; FARAONE, Stephen V. Environmental risk factors for attention‐deficit hyperactivity disorder. Acta paediatrica, v. 96, n. 9, p. 1269-1274, 2007. BARKER, David JP. The origins of the developmental origins theory. Journal of internal medicine, v. 261, n. 5, p. 412-417, 2007. BAYLISS, L. E.; OGDEN, E. " Vasotonins" and the Pump-Oxygenator-Kidney Preparation. J. Physiol, v. 77, p. 34, 1932. BECK, Sheryl G. et al. Median and dorsal raphe neurons are not electrophysiologically identical. Journal of Neurophysiology, v. 91, n. 2, p. 994-1005, 2004. BEESDO-BAUM, Katja; KNAPPE, Susanne. Developmental epidemiology of anxiety disorders. Child and Adolescent Psychiatric Clinics, v. 21, n. 3, p. 457-478, 2012. BELMAKER, R. H.; AGAM, Galila. Major depressive disorder. N Engl j Med, v. 2008, n. 358, p. 55-68, 2008. 58 BHANJA, Shravani; MOHANAKUMAR, Kochupurackal P. Early-life treatment of antiserotonin antibodies alters sensitivity to serotonin receptors, nociceptive stimulus and serotonin metabolism in adult rats. International Journal of Developmental Neuroscience, v. 28, n. 4, p. 317-324, 2010. BOCKAERT, Joël et al. Classification and Signaling Characteristics of 5-HT Receptors. Handbook of Behavioral Neuroscience, v. 21, p. 103-121, 2010. BORTOLATO, M.; CHEN, K.; SHIH, J. C. The Degradation of Serotonin: Role of MAO. v. 21, p. 203-218. MULLER, C. P.; JACOBS, B. (Ed.). Handbook of the behavioral neurobiology of serotonin. Burlington, MA: Academic Press, 2010. BORTOLATO, Marco et al. Early postnatal inhibition of serotonin synthesis results in long-term reductions of perseverative behaviors, but not aggression, in MAO Adeficient mice. Neuropharmacology, v. 75, p. 223-232, 2013. BORTOLATO, Marco; SHIH, Jean C. Behavioral outcomes of monoamine oxidase deficiency: preclinical and clinical evidence. International review of neurobiology, v. 100, p. 13, 2011. BRANCHEREAU, Pascal; CHAPRON, Jacqueline; MEYRAND, Pierre. Descending 5- hydroxytryptamine raphe inputs repress the expression of serotonergic neurons and slow the maturation of inhibitory systems in mouse embryonic spinal cord. Journal of Neuroscience, v. 22, n. 7, p. 2598-2606, 2002. BRESLAU, Naomi; CHILCOAT, Howard D. Psychiatric sequelae of low birth weight at 11 years of age. Biological psychiatry, v. 47, n. 11, p. 1005-1011, 2000. BRISCOE, J. et al. Homeobox gene Nkx2. 2 and specification of neuronal identity by graded Sonic hedgehog signalling. Nature, v. 398, n. 6728, p. 622, 1999. BURROWS, Emma L.; MCOMISH, Caitlin E.; HANNAN, Anthony J. Gene– environment interactions and construct validity in preclinical models of psychiatric disorders. Progress in Neuro-Psychopharmacology and Biological Psychiatry, v. 35, n. 6, p. 1376-1382, 2011. BUSS, Claudia et al. Maternal care modulates the relationship between prenatal risk and hippocampal volume in women but not in men. Journal of Neuroscience, v. 27, n. 10, p. 2592-2595, 2007. CANSEV, M.; WURTMAN, R. Aromatic amino acids in the brain. v. 4, p. 59-97. Handbook of neurochemistry and molecular neurobiology. LAJTHA, Abel; SARANSAARI, Pirjo; SCHOUSBOE, Arne (Ed.). Handbook of Neurochemistry and Molecular Neurobiology: Amino Acids and Peptides in the Nervous System. Springer Science & Business Media, 2007. CASPI, Avshalom et al. Influence of life stress on depression: moderation by a polymorphism in the 5-HTT gene. Science, v. 301, n. 5631, p. 386-389, 2003. CAVALCANTE, Taisy Cinthia Ferro et al. Effects of perinatal protein malnutrition and fenfluramine action on food intake and neuronal activation in the hypothalamus and raphe nuclei of neonate rats. Physiology & behavior, v. 165, p. 35-42, 2016. 59 CRASKE, Michelle et al. Anxiety disorders. Nature Reviews Disease Primers, v.3, n. 17024, p. 1-18, 2017. CRAWLEY, Jacqueline; GOODWIN, Frederick K. Preliminary report of a simple animal behavior model for the anxiolytic effects of benzodiazepines. Pharmacology Biochemistry and Behavior, v. 13, n. 2, p. 167-170, 1980. DAHLSTRÖM, Annica; FUXE, Kjell. Evidence for the existence of monoaminecontaining neurons in the central nervous system. I. Demonstration of monoamines in the cell bodies of brain stem neurons. Acta Physiologica Scandinavica. Supplementum, p. SUPPL 232: 1-55, 1963. DAI, Jin-Xia et al. Enhanced contextual fear memory in central serotonin-deficient mice. Proceedings of the National Academy of Sciences, v. 105, n. 33, p. 11981- 11986, 2008. DAI, Jin‐Xia; JOHNSON, Randy L.; DING, Yu‐Qiang. Manifold functions of the Nail‐Patella Syndrome gene Lmx1b in vertebrate development. Development, growth & differentiation, v. 51, n. 3, p. 241-250, 2009. DAWS, Lynette C. Unfaithful neurotransmitter transporters: focus on serotonin uptake and implications for antidepressant efficacy. Pharmacology & therapeutics, v. 121, n. 1, p. 89-99, 2009. DE VITRY, F. et al. Serotonin initiates and autoamplifies its own synthesis during mouse central nervous system development. Proceedings of the National Academy of Sciences, v. 83, n. 22, p. 8629-8633, 1986. DEL PORTO, José Alberto. Conceito e diagnóstico. Revista Brasileira de Psiquiatria, v. 21, p. 06-11, 1999. DUMAN, Elif A.; CANLI, Turhan. Influence of life stress, 5-HTTLPR genotype, and SLC6A4 methylation on gene expression and stress response in healthy Caucasian males. Biology of mood & anxiety disorders, v. 5, n. 1, p. 2, 2015. DUVAL, Elizabeth R.; JAVANBAKHT, Arash; LIBERZON, Israel. Neural circuits in anxiety and stress disorders: a focused review. Therapeutics and clinical risk management, v. 11, p. 115, 2015. EGASHIRA, Nobuaki et al. Investigation of mechanisms mediating 8-OH-DPATinduced impairment of spatial memory: involvement of 5-HT 1A receptors in the dorsal hippocampus in rats. Brain research, v. 1069, n. 1, p. 54-62, 2006. ERSPAMER, Vittorio; ASERO, Biagio. Identification of enteramine, the specific hormone of the enterochromaffin cell system, as 5-hydroxytryptamine. Nature, v. 169, n. 4306, p. 800-801, 1952. ETKIN, Amit; BÜCHEL, Christian; GROSS, James J. The neural bases of emotion regulation. Nature Reviews. Neuroscience, v. 16, n. 11, p. 693, 2015. FYODOROV, Dmitry; NELSON, Tom; DENERIS, Evan. Pet-1, a novel ETS domain factor that can activate neuronal nAchR gene transcription. Journal of neurobiology, v. 34, n. 2, p. 151-163, 1998. 60 GALINDO, Lígia Cristina Monteiro et al. Neonatal serotonin reuptake inhibition reduces hypercaloric diet effects on fat mass and hypothalamic gene expression in adult rats. International Journal of Developmental Neuroscience, v. 46, p. 76-81, 2015. GALTER, Dagmar; UNSICKER, Klaus. Sequential activation of the 5-HT1 A serotonin receptor and TrkB induces the serotonergic neuronal phenotype. Molecular and cellular neuroscience, v. 15, n. 5, p. 446-455, 2000. GASPAR, Patricia; CASES, Olivier; MAROTEAUX, Luc. The developmental role of serotonin: news from mouse molecular genetics. Nature reviews. Neuroscience, v. 4, n. 12, p. 1002, 2003. GORIDIS, Christo; ROHRER, Hermann. Specification of catecholaminergic and serotonergic neurons. Nature reviews. Neuroscience, v. 3, n. 7, p. 531, 2002. GRAEFF, Frederico Guilherme; GUIMARÃES, Francisco Silveira. Fundamentos de psicofarmacologia. Atheneu, 2000. GREEN, A. Richard; GRAHAME-SMITH, David G. 5-Hydroxytryptamine and other indoles in the central nervous system. v.3, p. 169-245. In: Biochemistry of Biogenic Amines. Springer US, 2013. GROSS, Cornelius et al. Serotonin1A receptor acts during development to establish normal anxiety-like behaviour in the adult. Nature, v. 416, n. 6879, p. 396-400, 2002. GROSS, Cornelius; HEN, Rene. The developmental origins of anxiety. Nature reviews. Neuroscience, v. 5, n. 7, p. 545, 2004. GUIDOTTI, Gianluigi et al. Developmental influence of the serotonin transporter on the expression of npas4 and GABAergic markers: modulation by antidepressant treatment. Neuropsychopharmacology, v. 37, n. 3, p. 746, 2012. HANSSON, S. R.; MEZEY, E.; HOFFMAN, B. J. Serotonin transporter messenger RNA in the developing rat brain: early expression in serotonergic neurons and transient expression in non-serotonergic neurons. Neuroscience, v. 83, n. 4, p. 1185-1201, 1998. HARIRI, Ahmad R.; HOLMES, Andrew. Finding translation in stress research. Nature neuroscience, v. 18, n. 10, p. 1347-1352, 2015. HARSING, L. G. The pharmacology of the neurochemical transmission in the midbrain raphe nuclei of the rat. Current neuropharmacology, v. 4, n. 4, p. 313-339, 2006. HARTVIG, P. et al. Pyridoxine effect on synthesis rate of serotonin in the monkey brain measured with positron emission tomography. Journal of neural transmission, v. 102, n. 2, p. 91-97, 1995. HASEGAWA, Hiroyuki; ICHIYAMA, Arata. Distinctive iron requirement of tryptophan 5-monooxygenase: TPH1 requires dissociable ferrous iron. Biochemical and biophysical research communications, v. 338, n. 1, p. 277-284, 2005. HENDRICKS, Timothy et al. The ETS domain factor Pet-1 is an early and precise marker of central serotonin neurons and interacts with a conserved element in serotonergic genes. Journal of Neuroscience, v. 19, n. 23, p. 10348-10356, 1999. 61 HENDRICKS, Timothy J. et al. Pet-1 ETS gene plays a critical role in 5-HT neuron development and is required for normal anxiety-like and aggressive behavior. Neuron, v. 37, n. 2, p. 233-247, 2003. HENSLER, J. G; . Serotonin, p. 227-248, 2006. In: Siegal, G. J; Albers, R. W.; Brady, S. T. et al. Basic Neurochemistry: Molecular, Cellular and Medical Aspects (7th ed.). Burlington, MA: Elsevier Academic Press, 2006. HENSLER, Julie G. .5-Serotonin in Mood and Emotion. v. 21, p. 367-378. In: MULLER, C. P.; JACOBS, B. (Ed.). Handbook of the behavioral neurobiology of serotonin. Burlington, MA: Academic Press, 2010. HOLMES, Andrew; MURPHY, Dennis L.; CRAWLEY, Jacqueline N. Abnormal behavioral phenotypes of serotonin transporter knockout mice: parallels with human anxiety and depression. Biological psychiatry, v. 54, n. 10, p. 953-959, 2003. HOMBERG, Judith Regina et al. The serotonin–BDNF duo: developmental implications for the vulnerability to psychopathology. Neuroscience & Biobehavioral Reviews, v. 43, p. 35-47, 2014. HORNUNG, Jean-Pierre. The human raphe nuclei and the serotonergic system. Journal of chemical neuroanatomy, v. 26, n. 4, p. 331-343, 2003. ISSARI, Yasmin et al. Early onset of response with selective serotonin reuptake inhibitors in obsessive-compulsive disorder: a meta-analysis. The Journal of clinical psychiatry, v. 77, n. 5, p. e605-11, 2016. JACOBS, Barry L.; AZMITIA, Efrain C. Structure and function of the brain serotonin system. Physiological reviews, v. 72, n. 1, p. 165-229, 1992.. JANEWAY, Theodore C.; PARK, Edwards A. The question of epinephrin in the circulation and its relation to blood pressure. Journal of Experimental Medicine, v. 16, n. 4, p. 541-557, 1912. KAPCZINSKI, Flávio et al. Bases biológicas dos transtornos psiquiátricos. 2ª Edição. Editota Artmed. São Paulo, 2000. KARPOVA, Nina N. et al. Long-lasting behavioural and molecular alterations induced by early postnatal fluoxetine exposure are restored by chronic fluoxetine treatment in adult mice. European neuropsychopharmacology, v. 19, n. 2, p. 97-108, 2009. KATO, Masaki et al. Effect of 5‐HT1A gene polymorphisms on antidepressant response in major depressive disorder. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, v. 150, n. 1, p. 115-123, 2009. KAUFMAN, Joshua et al. The 5-HT 1A receptor in major depressive disorder. European Neuropsychopharmacology, v. 26, n. 3, p. 397-410, 2016. KEPPEL HESSELINK, J. M.: The history of serotonin, part 1. In Serotonin 1A receptors in depression and anxiety. Edited by SM Stahl, Raven Press, New York,1992;25–29. 62 KEPSER, Lara-Jane; HOMBERG, Judith R. The neurodevelopmental effects of serotonin: a behavioural perspective. Behavioural brain research, v. 277, p. 3-13, 2015. KIM, Ji-Young et al. Postnatal maintenance of the 5-Ht1a-Pet1 autoregulatory loop by serotonin in the raphe nuclei of the brainstem. Molecular brain, v. 7, n. 1, p. 48, 2014. KRIEGEBAUM, Claudia B. et al. The expression of the transcription factor FEV in adult human brain and its association with affective disorders. Journal of neural transmission, v. 117, n. 7, p. 831-836, 2010. KUHN, Donald M. et al. Phosphorylation and activation of tryptophan hydroxylase 2: identification of serine‐19 as the substrate site for calcium, calmodulin‐dependent protein kinase II. Journal of neurochemistry, v. 103, n. 4, p. 1567-1573, 2007. KUHN, Donald M.; ARTHUR, Robert E. Inactivation of tryptophan hydroxylase by nitric oxide: enhancement by tetrahydrobiopterin. Journal of neurochemistry, v. 68, n. 4, p. 1495-1502, 1997. KUHN, Donald M.; ARTHUR, Robert; STATES, J. Christopher. Phosphorylation and Activation of Brain Tryptophan Hydroxylase: Identification of Serine‐58 as a Substrate Site for Protein Kinase A. Journal of neurochemistry, v. 68, n. 5, p. 2220-2223, 1997. LAWAL, Hakeem O.; KRANTZ, David E. SLC18: Vesicular neurotransmitter transporters for monoamines and acetylcholine. Molecular aspects of medicine, v. 34, n. 2, p. 360-372, 2013. LEITE, J. R.; SIQUEIRA, J. S. Métodos para avaliar drogas ansiolíticas. In: ALMEIDA, Reinaldo Nóbrega de. Psicofarmacologia: fundamentos práticos. Ed. Guanabara Koogan, Rio de Janeiro, Brasil, p. 154-160, 2006. LESCH, Klaus-Peter et al. Association of anxiety-related traits with a polymorphism in the serotonin transporter gene regulatory region. Science, v. 274, n. 5292, p. 1527-1531, 1996. LEVITT, Pat; RAKIC, Pasko. The time of genesis, embryonic origin and differentiation of the brain stem monoamine neurons in the rhesus monkey. Developmental Brain Research, v. 4, n. 1, p. 35-57, 1982. LIDOV, Hart GW; MOLLIVER, Mark E. An immunohistochemical study of serotonin neuron development in the rat: ascending pathways and terminal fields. Brain research bulletin, v. 8, n. 4, p. 389-430, 1982. LIEB, Roselind et al. Parental major depression and the risk of depression and other mental disorders in offspring: a prospective-longitudinal community study. Archives of general psychiatry, v. 59, n. 4, p. 365-374, 2002. LIN, Yingxi et al. Activity-dependent regulation of inhibitory synapse development by Npas4. Nature, v. 455, n. 7217, p. 1198, 2008. LIU, Chen et al. Pet-1 is required across different stages of life to regulate serotonergic function. Nature neuroscience, v. 13, n. 10, p. 1190-1198, 2010. 63 LIVAK, Kenneth J.; SCHMITTGEN, Thomas D. Analysis of relative gene expression data using real-time quantitative PCR and the 2− ΔΔCT method. methods, v. 25, n. 4, p. 402-408, 2001. LUCAS, Guillaume; DEBONNEL, Guy. 5‐HT4 receptors exert a frequency‐related facilitatory control on dorsal raphé nucleus 5‐HT neuronal activity. European Journal of Neuroscience, v. 16, n. 5, p. 817-822, 2002. LUDWIG, C.; SCHMIDT, A. Arb. ad physiolog. Anstalt z. Leipzig, v. 3, n. 1, 1868. LUONI, Alessia et al. Behavioural and neuroplastic properties of chronic lurasidone treatment in serotonin transporter knockout rats. International Journal of Neuropsychopharmacology, v. 16, n. 6, p. 1319-1330, 2013. MACIAG, Dorota; COPPINGER, David; PAUL, Ian A. Evidence that the deficit in sexual behavior in adult rats neonatally exposed to citalopram is a consequence of 5-HT 1 receptor stimulation during development. Brain research, v. 1125, n. 1, p. 171-175, 2006. MAEJIMA, Takashi et al. Modulation of firing and synaptic transmission of serotonergic neurons by intrinsic G protein-coupled receptors and ion channels. Frontiers in integrative neuroscience, v. 7, 2013. MALAGIÉ, Isabelle et al. Effects of acute fluoxetine on extracellular serotonin levels in the raphe: an in vivo microdialysis study. European journal of pharmacology, v. 286, n. 2, p. 213-217, 1995. MARRAZZI, Amedeo S.; HART, E. Ross. Relationship of hallucinogens to adrenergic cerebral neurohumors. Science, v. 121, n. 3141, p. 365-367, 1955. MARTINOWICH, Keri; LU, Bai. Interaction between BDNF and serotonin: role in mood disorders. Neuropsychopharmacology, v. 33, n. 1, p. 73, 2008. MASSEY, Caitlin A. et al. Development of brainstem 5‐HT1A receptor‐binding sites in serotonin‐deficient mice. Journal of neurochemistry, v. 126, n. 6, p. 749-757, 2013. MAXIMINO, Caio. Serotonin in the nervous system of vertebrate. v.1, p. 15-36. In: Serotonin and Anxiety. Springer New York, 2012. MAYER, L. E.; WALSH, B. Timothy. The use of selective serotonin reuptake inhibitors in eating disorders. The Journal of clinical psychiatry, v. 59, p. 28-34, 1997. MCDEVITT, Ross A.; NEUMAIER, John F. Regulation of dorsal raphe nucleus function by serotonin autoreceptors: a behavioral perspective. Journal of chemical neuroanatomy, v. 41, n. 4, p. 234-246, 2011. MCILWAIN, Kellie L. et al. The use of behavioral test batteries: effects of training history. Physiology & behavior, v. 73, n. 5, p. 705-717, 2001. MCLEAN, Carmen P. et al. Gender differences in anxiety disorders: prevalence, course of illness, comorbidity and burden of illness. Journal of psychiatric research, v. 45, n. 8, p. 1027-1035, 2011. 64 MICELI, Stéphanie et al. High serotonin levels during brain development alter the structural input-output connectivity of neural networks in the rat somatosensory layer IV. Frontiers in cellular neuroscience, v. 7, 2013. MIGLIARINI, S. et al. Lack of brain serotonin affects postnatal development and serotonergic neuronal circuitry formation. Molecular psychiatry, v. 18, n. 10, p. 1106, 2013. MIKICS, Éva et al. Behavioral specificity of non-genomic glucocorticoid effects in rats: effects on risk assessment in the elevated plus-maze and the open-field. Hormones and behavior, v. 48, n. 2, p. 152-162, 2005. MILLER, J.R. AND EDMONDSON, D.E. Influence of flavin analogue structure on the catalytic activities and flavinylation reactions of recombinant human liver monoamine oxidases Aand B . J. Biol. Chem, v. 274, p. 23515 – 23525, 1999. MIWA, Soichi; WATANABE, Yasuyoshi; HAYAISHI, Osamu. 6R-L-erythro-5, 6, 7, 8-tetrahydrobiopterin as a regulator of dopamine and serotonin biosynthesis in the rat brain. Archives of biochemistry and biophysics, v. 239, n. 1, p. 234-241, 1985. MOLENDIJK, M. L. et al. Serum BDNF concentrations as peripheral manifestations of depression: evidence from a systematic review and meta-analyses on 179 associations (N= 9484). Molecular psychiatry, v. 19, n. 7, p. 791, 2014. NAGATSU, Toshiharu. Progress in monoamine oxidase (MAO) research in relation to genetic engineering. Neurotoxicology, v. 25, n. 1, p. 11-20, 2004. NEMEROFF, Charles B. Anxiolytics: past, present, and future agents. The Journal of clinical psychiatry, v. 64, p. 3-6, 2002. O’DONNELL, Kieran J.; MEANEY, Michael J. Fetal origins of mental health: The developmental origins of health and disease hypothesis. American Journal of Psychiatry, v. 174, n. 4, p. 319-328, 2016. O'CONNOR, J. M. Über den adrenalingehalt des Blutes. Naunyn-Schmiedeberg's Archives of Pharmacology, v. 67, n. 3, p. 195-232, 1912. OGAWA, Tetsuo et al. para-Chlorophenylalanine induces lenticular opacities by prenatal, neonatal, and juvenile treatments, but not by adult treatment, in rats. Neurotoxicology and teratology, v. 21, n. 4, p. 473-477, 1999. OSBORNE-MAJNIK, Amber; FU, Qi; LANE, Robert H. Epigenetic mechanisms in fetal origins of health and disease. Clinical obstetrics and gynecology, v. 56, n. 3, p. 622, 2013. OSMOND, Clive; BARKER, D. J. Fetal, infant, and childhood growth are predictors of coronary heart disease, diabetes, and hypertension in adult men and women. Environmental health perspectives, v. 108, n. Suppl 3, p. 545, 2000. OTTE, Christian et al. Major depressive disorder. Nature reviews. Disease primers, v. 2, p. 16065-16065, 2016. 65 PARDRIDGE, W. Mo. Kinetics of Competitive Inhibition of Neutral Amino Acid Transport Across the Blood‐Brain Barrier. Journal of neurochemistry, v. 28, n. 1, p. 103-108, 1977. PELLOW, Sharon et al. Validation of open: closed arm entries in an elevated plus-maze as a measure of anxiety in the rat. Journal of neuroscience methods, v. 14, n. 3, p. 149-167, 1985. PORSOLT, R.D.; LE PICHON, M.; JALFRE, M. Depression: a new animal model sensitive to antidepressant treatments. Nature, v. 266, n. 5604, p. 730-2, 1977. PRUT, Laetitia; BELZUNG, Catherine. The open field as a paradigm to measure the effects of drugs on anxiety-like behaviors: a review. European journal of pharmacology, v. 463, n. 1, p. 3-33, 2003. PYTLIAK, Marek et al. Serotonin receptors-from molecular biology to clinical applications. Physiological Research, v. 60, n. 1, p. 15, 2011. RAHMAN, Mohammed Khalilur; TOSHIHARU, Nagatsu; TAKESHI, Kato. Aromatic L-amino acid decarboxylase activity in central and peripheral tissues and serum of rats with L-DOPA and L-5-hydroxytryptophan as substrates. Biochemical pharmacology, v. 30, n. 6, p. 645-649, 1981. RANG, Rang et al. Rang & Dale Farmacologia. Elsevier Brasil, 2015. RAPPORT, M.M.; GREEN, A.A; PAGE, I. H. Crystalline serotonin. Science, v. 108, n. 2804, p. 329-330, 1948. RAZNAHAN, Armin et al. Prenatal growth in humans and postnatal brain maturation into late adolescence. Proceedings of the National Academy of Sciences, v. 109, n. 28, p. 11366-11371, 2012. REINHOLD, Jennifer A.; RICKELS, Karl. Pharmacological treatment for generalized anxiety disorder in adults: an update. Expert opinion on pharmacotherapy, v. 16, n. 11, p. 1669-1681, 2015. ROTH, Kevin A.; KATZ, Richard J. Stress, behavioral arousal, and open field activity—a reexamination of emotionality in the rat. Neuroscience & Biobehavioral Reviews, v. 3, n. 4, p. 247-263, 1980. RUDNICK, G. Structure/function relationships in serotonin transporter: new insights from the structure of a bacterial transporter. p. 59-73. In: Neurotransmitter transporters. Springer Berlin Heidelberg, 2006. RUMAJOGEE, Prakasham et al. Up‐regulation of the neuronal serotoninergic phenotype in vitro: BDNF and cAMP share Trk B‐dependent mechanisms. Journal of neurochemistry, v. 83, n. 6, p. 1525-1528, 2002. RUSH, A. John et al. Acute and longer-term outcomes in depressed outpatients requiring one or several treatment steps: a STAR* D report. American Journal of Psychiatry, v. 163, n. 11, p. 1905-1917, 2006. 66 SAKATA, Kazuko et al. Critical role of promoter IV-driven BDNF transcription in GABAergic transmission and synaptic plasticity in the prefrontal cortex. Proceedings of the National Academy of Sciences, v. 106, n. 14, p. 5942-5947, 2009. SANCHEZ, Connie; REINES, Elin H.; MONTGOMERY, Stuart A. A comparative review of escitalopram, paroxetine, and sertraline: are they all alike?. International clinical psychopharmacology, v. 29, n. 4, p. 185, 2014. SANDERS-BUSH, E.; BUSHING, J. A.; SULSER, F. Long-term effects of pchloroamphetamine on tryptophan hydroxylase activity and on the levels of 5- hydroxytryptamine and 5-hydroxyindole acetic acid in brain. European journal of pharmacology, v. 20, n. 3, p. 385-388, 1972. SANTANA, Noemí et al. Expression of serotonin1A and serotonin2A receptors in pyramidal and GABAergic neurons of the rat prefrontal cortex. Cerebral cortex, v. 14, n. 10, p. 1100-1109, 2004. SARKAR, Ambalika; CHACHRA, Parul; VAIDYA, Vidita A. Postnatal Fluoxetine- Evoked Anxiety Is Prevented by Concomitant 5-HT 2A/C Receptor Blockade and Mimicked by Postnatal 5-HT 2A/C Receptor Stimulation. Biological psychiatry, v. 76, n. 11, p. 858-868, 2014. SECO, Sandra; MATIAS, Alexandra. Origem fetal das doenças do adulto: revisitando a teoria de barker Fetal origins of adult disease: revisiting barkers theory. Acta Obstet ginecol Port, v. 3, n. 3, p. 158-168, 2009. SHAW, E.; WOOLLEY, D. W. Pharmacological properties of some antimetabolites of serotonin having unusually high activity on isolated tissues. Journal of Pharmacology and Experimental Therapeutics, v. 111, n. 1, p. 43-53, 1954. SHIMADA‐SUGIMOTO, Mihoko; OTOWA, Takeshi; HETTEMA, John M. Genetics of anxiety disorders: genetic epidemiological and molecular studies in humans. Psychiatry and clinical neurosciences, v. 69, n. 7, p. 388-401, 2015. SIBILLE, E. et al. Lack of serotonin1B receptor expression leads to age-related motor dysfunction, early onset of brain molecular aging and reduced longevity. Molecular psychiatry, v. 12, n. 11, p. 1042, 2007. SJOERDSMA, Albert; PALFREYMAN, Michael G. History of serotonin and serotonin disorders. Annals of the New York Academy of Sciences, v. 600, n. 1, p. 1-8, 1990. SONG, Ning-Ning et al. Adult raphe-specific deletion of Lmx1b leads to central serotonin deficiency. PLoS One, v. 6, n. 1, p. e15998, 2011. SPENCER, William C.; DENERIS, Evan S. Regulatory Mechanisms Controlling Maturation of Serotonin Neuron Identity and Function. Frontiers in cellular neuroscience, v. 11, 2017. STEWART, G. N.; ZUCKER, T. F. A Comparison of the action of plasma and serum on certain objects used in biological tests for epinephrin. Journal of Experimental Medicine, v. 17, n. 2, p. 152-173, 1913. SUMI-ICHINOSE, Chiho et al. Molecular cloning of genomic DNA and chromosomal assignment of the gene for human aromatic L-amino acid decarboxylase, the enzyme for 67 catecholamine and serotonin biosynthesis. Biochemistry, v. 31, n. 8, p. 2229-2238, 1992. TAMIR, Hadassah; GERSHON, Michael D. Serotonin‐Storing Secretory Vesicles. Annals of the New York Academy of Sciences, v. 600, n. 1, p. 53-67, 1990. TAMIR, Hadassah; KLEIN, Athalia; RAPPORT, Maurice M. Serotonin binding protein: enhancement of binding by Fe2+ and inhibition of binding by drugs. Journal of neurochemistry, v. 26, n. 5, p. 871-878, 1976. TEISSIER, Anne; SOIZA-REILLY, Mariano; GASPAR, Patricia. Refining the role of 5-HT in postnatal development of brain circuits. Frontiers in Cellular Neuroscience, v. 11, 2017. THASE, Michael E. et al. Cognitive therapy versus medication in augmentation and switch strategies as second-step treatments: a STAR* D report. American Journal of Psychiatry, v. 164, n. 5, p. 739-752, 2007. TÖRK, Istvan. Anatomy of the serotonergic system. Annals of the New York Academy of Sciences, v. 600, n. 1, p. 9-34, 1990. TURNER, Justin H. et al. 5-HT receptor signal transduction pathways. p. 143- 206.In: ROTH, Bryan L. (Ed.). The serotonin receptors: from molecular pharmacology to human therapeutics. Springer Science & Business Media, 2008. TWAROG, Betty M.; PAGE, Irvine H. Serotonin content of some mammalian tissues and urine and a method for its determination. American Journal of Physiology-- Legacy Content, v. 175, n. 1, p. 157-161, 1953. VAN DER WEES, Jacqueline et al. GATA-3 is involved in the development of serotonergic neurons in the caudal raphe nuclei. The Journal of Neuroscience, v. 19, n. 12, p. 1-8, 1999. VASWANI, Meera; LINDA, Farzana Kadar; RAMESH, Subramanyam. Role of selective serotonin reuptake inhibitors in psychiatric disorders: a comprehensive review. Progress in neuro-psychopharmacology and biological psychiatry, v. 27, n. 1, p. 85-102, 2003. VINKERS, Christiaan H. et al. Early-life blockade of 5-HT 1A receptors alters adult anxiety behavior and benzodiazepine sensitivity. Biological psychiatry, v. 67, n. 4, p. 309-316, 2010. WALKER, Cheryl Lyn; HO, Shuk-mei. Developmental reprogramming of cancer susceptibility. Nature reviews. Cancer, v. 12, n. 7, 2012. WALSH, Roger N.; CUMMINS, Robert A. The open-field test: A critical review. Psychological bulletin, v. 83, n. 3, p. 482, 1976. WATERHOUSE, Barry D. et al. Topographical distribution of dorsal and median raphe neurons projecting to motor, sensorimotor, and visual cortical areas in the rat. Journal of Comparative Neurology, v. 249, n. 4, p. 460-476, 1986. WHITAKER-AZMITIA, Patricia Mack. The discovery of serotonin and its role in neuroscience. Neuropsychopharmacology, v. 21, n. 2, p. 2S-8S, 1999. 68 WOOLLEY, Dilworth W.; SHAW, E. A biochemical and pharmacological suggestion about certain mental disorders. Proceedings of the National Academy of Sciences, v. 40, n. 4, p. 228-231, 1954. World Health Organization. WHO. http://www.who.int/mediacentre/news/en/ (2017).. Wu, H.F.; Chen, K.; Shih, J.C. Site-directed mutagenesis of monoamine oxidase A and B: role of cysteines. Mol Pharmacol, v. 43, p. 888–893, 1993. WU, YeeWen Candace et al. Sex-specific and region-specific changes in BDNF–TrkB signalling in the hippocampus of 5-HT1A receptor and BDNF single and double mutant mice. Brain research, v. 1452, p. 10-17, 2012. WYLER, Steven C. et al. Pet-1 switches transcriptional targets postnatally to regulate maturation of serotonin neuron excitability. Journal of Neuroscience, v. 36, n. 5, p. 1758-1774, 2016. YOUNG, Simon N. How to increase serotonin in the human brain without drugs. Journal of Psychiatry & Neuroscience: JPN, v. 32, n. 6, p. 394, 2007. YU-QIANG, Ding et al. Lmx1b is essential for the development of serotonergic neurons. Nature neuroscience, v. 6, n. 9, p. 933, 2003. ZAHNISER, N. R., & DOOLEN, S.. Chronic and acute regulation of Na+/Cl-dependent neurotransmitter transporters: Drugs, substrates, presynaptic receptors, and signaling systems. Pharmacol Therapeutics, v. 92, p. 21–55, 2001. ZHAO, Zhong-Qiu et al. Lmx1b is required for maintenance of central serotonergic neurons and mice lacking central serotonergic system exhibit normal locomotor activity. Journal of Neuroscience, v. 26, n. 49, p. 12781-12788, 2006. ZHOU, Feng C. et al. Serotonin transporters are located on the axons beyond the synaptic junctions: anatomical and functional evidence. Brain research, v. 805, n. 1, p. 241-254, 1998.https://tede.ufrrj.br/retrieve/65126/2017%20-%20Roberto%20Laureano%20Melo.pdf.jpghttps://tede.ufrrj.br/jspui/handle/jspui/4655Submitted by Celso Magalhaes (celsomagalhaes@ufrrj.br) on 2021-05-18T12:19:14Z No. of bitstreams: 1 2017 - Roberto Laureano Melo.pdf: 1253331 bytes, checksum: 049095757a450ce7f49b69cbb89c666f (MD5)Made available in DSpace on 2021-05-18T12:19:14Z (GMT). No. of bitstreams: 1 2017 - Roberto Laureano Melo.pdf: 1253331 bytes, checksum: 049095757a450ce7f49b69cbb89c666f (MD5) Previous issue date: 2017-10-21info:eu-repo/semantics/openAccessreponame:Biblioteca Digital de Teses e Dissertações da UFRRJinstname:Universidade Federal Rural do Rio de Janeiro (UFRRJ)instacron:UFRRJTHUMBNAIL2017 - Roberto Laureano Melo.pdf.jpgGenerated Thumbnailimage/jpeg1943https://rima.ufrrj.br/jspui/bitstream/20.500.14407/10301/1/2017%20-%20Roberto%20Laureano%20Melo.pdf.jpgcc73c4c239a4c332d642ba1e7c7a9fb2MD51TEXT2017 - Roberto Laureano Melo.pdf.txtExtracted Texttext/plain188814https://rima.ufrrj.br/jspui/bitstream/20.500.14407/10301/2/2017%20-%20Roberto%20Laureano%20Melo.pdf.txtf8312019108400061b0b79b386c570bdMD52ORIGINAL2017 - Roberto Laureano Melo.pdfRoberto Laureano Meloapplication/pdf1253331https://rima.ufrrj.br/jspui/bitstream/20.500.14407/10301/3/2017%20-%20Roberto%20Laureano%20Melo.pdf049095757a450ce7f49b69cbb89c666fMD53LICENSElicense.txttext/plain2089https://rima.ufrrj.br/jspui/bitstream/20.500.14407/10301/4/license.txt7b5ba3d2445355f386edab96125d42b7MD5420.500.14407/103012023-12-21 16:00:41.962oai:rima.ufrrj.br:20.500.14407/10301Tk9UQTogQ09MT1FVRSBBUVVJIEEgU1VBIFBSP1BSSUEgTElDRU4/QQpFc3RhIGxpY2VuP2EgZGUgZXhlbXBsbyA/IGZvcm5lY2lkYSBhcGVuYXMgcGFyYSBmaW5zIGluZm9ybWF0aXZvcy4KCkxJQ0VOP0EgREUgRElTVFJJQlVJPz9PIE4/Ty1FWENMVVNJVkEKCkNvbSBhIGFwcmVzZW50YT8/byBkZXN0YSBsaWNlbj9hLCB2b2M/IChvIGF1dG9yIChlcykgb3UgbyB0aXR1bGFyIGRvcyBkaXJlaXRvcyBkZSBhdXRvcikgY29uY2VkZSA/IFVuaXZlcnNpZGFkZSAKWFhYIChTaWdsYSBkYSBVbml2ZXJzaWRhZGUpIG8gZGlyZWl0byBuP28tZXhjbHVzaXZvIGRlIHJlcHJvZHV6aXIsICB0cmFkdXppciAoY29uZm9ybWUgZGVmaW5pZG8gYWJhaXhvKSwgZS9vdSAKZGlzdHJpYnVpciBhIHN1YSB0ZXNlIG91IGRpc3NlcnRhPz9vIChpbmNsdWluZG8gbyByZXN1bW8pIHBvciB0b2RvIG8gbXVuZG8gbm8gZm9ybWF0byBpbXByZXNzbyBlIGVsZXRyP25pY28gZSAKZW0gcXVhbHF1ZXIgbWVpbywgaW5jbHVpbmRvIG9zIGZvcm1hdG9zID91ZGlvIG91IHY/ZGVvLgoKVm9jPyBjb25jb3JkYSBxdWUgYSBTaWdsYSBkZSBVbml2ZXJzaWRhZGUgcG9kZSwgc2VtIGFsdGVyYXIgbyBjb250ZT9kbywgdHJhbnNwb3IgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YT8/byAKcGFyYSBxdWFscXVlciBtZWlvIG91IGZvcm1hdG8gcGFyYSBmaW5zIGRlIHByZXNlcnZhPz9vLgoKVm9jPyB0YW1iP20gY29uY29yZGEgcXVlIGEgU2lnbGEgZGUgVW5pdmVyc2lkYWRlIHBvZGUgbWFudGVyIG1haXMgZGUgdW1hIGM/cGlhIGEgc3VhIHRlc2Ugb3UgCmRpc3NlcnRhPz9vIHBhcmEgZmlucyBkZSBzZWd1cmFuP2EsIGJhY2stdXAgZSBwcmVzZXJ2YT8/by4KClZvYz8gZGVjbGFyYSBxdWUgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YT8/byA/IG9yaWdpbmFsIGUgcXVlIHZvYz8gdGVtIG8gcG9kZXIgZGUgY29uY2VkZXIgb3MgZGlyZWl0b3MgY29udGlkb3MgCm5lc3RhIGxpY2VuP2EuIFZvYz8gdGFtYj9tIGRlY2xhcmEgcXVlIG8gZGVwP3NpdG8gZGEgc3VhIHRlc2Ugb3UgZGlzc2VydGE/P28gbj9vLCBxdWUgc2VqYSBkZSBzZXUgCmNvbmhlY2ltZW50bywgaW5mcmluZ2UgZGlyZWl0b3MgYXV0b3JhaXMgZGUgbmluZ3U/bS4KCkNhc28gYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YT8/byBjb250ZW5oYSBtYXRlcmlhbCBxdWUgdm9jPyBuP28gcG9zc3VpIGEgdGl0dWxhcmlkYWRlIGRvcyBkaXJlaXRvcyBhdXRvcmFpcywgdm9jPyAKZGVjbGFyYSBxdWUgb2J0ZXZlIGEgcGVybWlzcz9vIGlycmVzdHJpdGEgZG8gZGV0ZW50b3IgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIHBhcmEgY29uY2VkZXIgPyBTaWdsYSBkZSBVbml2ZXJzaWRhZGUgCm9zIGRpcmVpdG9zIGFwcmVzZW50YWRvcyBuZXN0YSBsaWNlbj9hLCBlIHF1ZSBlc3NlIG1hdGVyaWFsIGRlIHByb3ByaWVkYWRlIGRlIHRlcmNlaXJvcyBlc3Q/IGNsYXJhbWVudGUgCmlkZW50aWZpY2FkbyBlIHJlY29uaGVjaWRvIG5vIHRleHRvIG91IG5vIGNvbnRlP2RvIGRhIHRlc2Ugb3UgZGlzc2VydGE/P28gb3JhIGRlcG9zaXRhZGEuCgpDQVNPIEEgVEVTRSBPVSBESVNTRVJUQT8/TyBPUkEgREVQT1NJVEFEQSBURU5IQSBTSURPIFJFU1VMVEFETyBERSBVTSBQQVRST0M/TklPIE9VIApBUE9JTyBERSBVTUEgQUc/TkNJQSBERSBGT01FTlRPIE9VIE9VVFJPIE9SR0FOSVNNTyBRVUUgTj9PIFNFSkEgQSBTSUdMQSBERSAKVU5JVkVSU0lEQURFLCBWT0M/IERFQ0xBUkEgUVVFIFJFU1BFSVRPVSBUT0RPUyBFIFFVQUlTUVVFUiBESVJFSVRPUyBERSBSRVZJUz9PIENPTU8gClRBTUI/TSBBUyBERU1BSVMgT0JSSUdBPz9FUyBFWElHSURBUyBQT1IgQ09OVFJBVE8gT1UgQUNPUkRPLgoKQSBTaWdsYSBkZSBVbml2ZXJzaWRhZGUgc2UgY29tcHJvbWV0ZSBhIGlkZW50aWZpY2FyIGNsYXJhbWVudGUgbyBzZXUgbm9tZSAocykgb3UgbyhzKSBub21lKHMpIGRvKHMpIApkZXRlbnRvcihlcykgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIGRhIHRlc2Ugb3UgZGlzc2VydGE/P28sIGUgbj9vIGZhcj8gcXVhbHF1ZXIgYWx0ZXJhPz9vLCBhbD9tIGRhcXVlbGFzIApjb25jZWRpZGFzIHBvciBlc3RhIGxpY2VuP2EuCg==Biblioteca Digital de Teses e Dissertaçõeshttps://tede.ufrrj.br/PUBhttps://tede.ufrrj.br/oai/requestbibliot@ufrrj.br||bibliot@ufrrj.bropendoar:2023-12-21T19:00:41Biblioteca Digital de Teses e Dissertações da UFRRJ - Universidade Federal Rural do Rio de Janeiro (UFRRJ)false
dc.title.por.fl_str_mv Avaliação psicobiológica em camundongos swiss submetidos às manipulações farmacológicas do sistema serotonérgico durante o período neonatal
dc.title.alternative.por.fl_str_mv Psychobiological evaluation in swiss mice underwent to neonatal pharmacological management of the serotonergic system
title Avaliação psicobiológica em camundongos swiss submetidos às manipulações farmacológicas do sistema serotonérgico durante o período neonatal
spellingShingle Avaliação psicobiológica em camundongos swiss submetidos às manipulações farmacológicas do sistema serotonérgico durante o período neonatal
Melo, Roberto Laureano
serotonina
desenvolvimento
ansiedade
depressão
serotonin
development
anxiety
depression
Fisiologia
title_short Avaliação psicobiológica em camundongos swiss submetidos às manipulações farmacológicas do sistema serotonérgico durante o período neonatal
title_full Avaliação psicobiológica em camundongos swiss submetidos às manipulações farmacológicas do sistema serotonérgico durante o período neonatal
title_fullStr Avaliação psicobiológica em camundongos swiss submetidos às manipulações farmacológicas do sistema serotonérgico durante o período neonatal
title_full_unstemmed Avaliação psicobiológica em camundongos swiss submetidos às manipulações farmacológicas do sistema serotonérgico durante o período neonatal
title_sort Avaliação psicobiológica em camundongos swiss submetidos às manipulações farmacológicas do sistema serotonérgico durante o período neonatal
author Melo, Roberto Laureano
author_facet Melo, Roberto Laureano
author_role author
dc.contributor.author.fl_str_mv Melo, Roberto Laureano
dc.contributor.advisor1.fl_str_mv Côrtes, Wellington da Silva
dc.contributor.advisor1ID.fl_str_mv 86891600510
dc.contributor.advisor1Lattes.fl_str_mv http://lattes.cnpq.br/1305510562756172
dc.contributor.referee1.fl_str_mv Côrtes, Wellington da Silva
dc.contributor.referee2.fl_str_mv Olivares, Emerson Lopes
dc.contributor.referee3.fl_str_mv Giannocco, Gisele
dc.contributor.referee4.fl_str_mv Reis, Luís Carlos
dc.contributor.referee5.fl_str_mv Passos Júnior, Daniel Badauê
dc.contributor.authorID.fl_str_mv 12405535793
dc.contributor.authorLattes.fl_str_mv http://lattes.cnpq.br/1781979163325709
contributor_str_mv Côrtes, Wellington da Silva
Côrtes, Wellington da Silva
Olivares, Emerson Lopes
Giannocco, Gisele
Reis, Luís Carlos
Passos Júnior, Daniel Badauê
dc.subject.por.fl_str_mv serotonina
desenvolvimento
ansiedade
depressão
topic serotonina
desenvolvimento
ansiedade
depressão
serotonin
development
anxiety
depression
Fisiologia
dc.subject.eng.fl_str_mv serotonin
development
anxiety
depression
dc.subject.cnpq.fl_str_mv Fisiologia
description A serotonina (5-HT) exerce um papel importante na embriogênese do sistema nervoso central de mamíferos, modulando a ontogenia de diversos sistemas neuronais, inclusive aqueles envolvidos com a regulação do humor e reatividade ao estresse. Nesse contexto, alterações na sinalização da 5-HT durante o início da vida podem comprometer a saúde mental e aumentar a susceptibilidade aos transtornos psiquiátricos. Dessa forma, o objetivo do nosso trabalho é avaliar se manipulações farmacológicas do sistema serotonérgico durante o período neonatal são capazes de alterar os parâmetros neurocomportamentais em prole de camundongos Swiss durante a fase adulta, bem como os mecanismos supostamente envolvidos. Para esse propósito, camundungas prenhas (n = 4 cada, e ~ 35g) foram divididas em seis grupos aleatoriamente. A prole obtida foi tratada com salina 0,9%, fluoxetina (FLU; 10mg/kg, s.c.), para-clorofenilalanina (p-CPA; 100mg/kg, s.c.), WAY 100135 (WAY; 1mg/kg, s.c.), 8-hidroxi-2-(di-n-propilamino) tetralina (DPAT; 1mg/kg, s.c.) do 5º ao 15º ou com d-fenfluramina (D-Fen; 3mg/kg, s.c.) do 5º ao 20º dia pós-natal. No 16º ou 21º dia pósnatal, parte da prole foi submetida à eutanásia, sendo o mesencéfalo e o hipocampo dissecados para análise da expressão dos seguintes genes: triptofano hidroxilase 2 (TPH2), transportador de 5-HT (SERT), receptor de 5-HT 1a (5-HT1a), fator neurotrófico derivado do cérebro (BDNF) e dos fatores de transcrição Pet1a e Lmx1b. O restante dos filhotes, ao completar 70 dias de vida, foi submetida a uma bateria de testes comportamentais composta dos seguintes protocolos: campo aberto, caixa claro-escuro, labirinto em cruz elevado e suspensão pela cauda. A análise estatística foi realizada pelo teste t de Student e as médias foram consideradas significativamente diferentes quando p < 0,05. Em relação aos achados transcricionais, foi verificado que aumento da neurotransmissão serotonérgica através do tratamento neonatal com D-Fen reduz a expressão mesencefálica de 5-HT1a (90%, p = 0,001), SERT (87%, p = 0,01), BDNF (70%, p = 0,001) e Pet1a (90%, p = 0,009), bem como a expressão de TPH2 (87%, p = 0,002) e BDNF (90%, p = 0.008) no hipocampo. O tratamento com Flu aumenta a expressão mesencefálica de TPH2 (98%, p = 0,004), mas diminui a expressão de TPH2 (93%, p < 0,001), 5HT1a (92%, p < 0.001), SERT (65%, p < 0,001), BDNF (80%, p = 0.001) e Lmx1b (97%, p = 0,001) no hipocampo. Em condições de depleção de 5-HT através do tratamento com p-CPA, há um aumento da expressão mesencefálica de 5-HT1a (35%, p = 0,02). Em relação às manipulações que envolvem o receptor 5-HT1a, a sua ativação através do tratamento com DPAT aumenta a expressão mesencefálica da TPH2 (66%, p = 0.03) e do próprio receptor 5-HT1a (54%, p = 0,01), mas reduz a expressão hipocampal de TPH2 (97%, p < 0,001), 5HT1a (28%, p = 0.03), SERT (64%, p = 0,003), BDNF (66%, p = 0,004) e Lmx1b (83%, p = 0,001). De maneira semelhante, o seu bloqueio através do tratamento com WAY aumenta a expressão mesencefálica de TPH2 (96%, p = 0,009), do próprio receptor 5-HT1a (78%, p < 0,001) e do SERT (95%, p = 0,002), mas reduz a expressão hipocampal de TPH2 (93%, p < 0.05), 5HT1a (47%, p = 0,01), SERT (58%, p = 0.01), BDNF (66%, p = 0,004) e Lmx1b (95%, p = 0,001). Quanto às avaliações comportamentais, no teste do campo aberto, nenhum dos tratamentos altera a atividade locomotora. Todavia tanto o tratamento com p-CPA quanto com WAY promovem redução da razão central (35%, p = 0,01 e 26%, p = 0,02, respectivamente). Já o tratamento com Flu aumenta o tempo de grooming (153%, p = 0,01). No teste da caixa claroVIII escuro, verificamos que há um aumento da latência e do tempo de permanência no lado claro nos tratamentos com D-Fen (87%, p = 0,01 e 21%, p =0,002) e Flu (764%, p = 0,01 e 108%, p = 0,008). No labirinto em cruz elevado, foi observado que o tratamento com DPAT aumenta o tempo de permanência e a porcentagem de entradas nos braços abertos (276%, p = 0,02 e 155%, p =0,03), ao passo que o WAY reduz (75%, p = 0,02 e 58%, p = 0,01). Já no teste da suspensão pela cauda, o tratamento com D-Fen, Flu ou DPAT reduz o tempo de imobilidade (98%, p < 0,001; 45%, p = 0,02 e 57%, p = 0,01, respectivamente), enquanto o tratamento com p-CPA ou WAY reduz a latência para o primeiro episódio de imobilidade (73%, p = 0,03 e 29%, p = 0,004, respectivamente). Dessa forma, conjecturamos que, através de mecanismos epigenéticos, manipulações farmacológicas que afetam a neurotransmissão serotonérgica durante o período neonatal promovem alterações neuroquímicas e hodológicas de sistemas cerebrais envolvidos com respostas afetivas, programando os comportamentos análogos à ansiedade e depressão na fase adulta.
publishDate 2017
dc.date.issued.fl_str_mv 2017-10-21
dc.date.accessioned.fl_str_mv 2023-12-21T19:00:41Z
dc.date.available.fl_str_mv 2023-12-21T19:00:41Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv MELO, Roberto Laureano. Avaliação psicobiológica em camundongos Swiss submetidos às manipulações farmacológicas do sistema serotonérgico durante o período neonatal. 2017. 68 f. Tese (Doutorado Multicêntrico em Ciências Fisiológicas) - Instituto de Ciências Biológicas e da Saúde, Universidade Federal Rural do Rio de Janeiro, Seropédica-RJ, 2017 .
dc.identifier.uri.fl_str_mv https://rima.ufrrj.br/jspui/handle/20.500.14407/10301
identifier_str_mv MELO, Roberto Laureano. Avaliação psicobiológica em camundongos Swiss submetidos às manipulações farmacológicas do sistema serotonérgico durante o período neonatal. 2017. 68 f. Tese (Doutorado Multicêntrico em Ciências Fisiológicas) - Instituto de Ciências Biológicas e da Saúde, Universidade Federal Rural do Rio de Janeiro, Seropédica-RJ, 2017 .
url https://rima.ufrrj.br/jspui/handle/20.500.14407/10301
dc.language.iso.fl_str_mv por
language por
dc.relation.references.por.fl_str_mv AGHAJANIAN, G. K.; KUHAR, M. J.; ROTH, R. H. Serotonin-containing neuronal perikarya and terminals: differential effects of p-chlorophenylalanine. Brain Research, v. 54, p. 85-101, 1973. ALBERT, Paul R.; VAHID-ANSARI, Faranak; LUCKHART, Christine. Serotoninprefrontal cortical circuitry in anxiety and depression phenotypes: pivotal role of preand post-synaptic 5-HT1A receptor expression. Frontiers in behavioral neuroscience, v. 8, 2014. AMERICAN PSYCHIATRIC ASSOCIATION et al. Diagnostic and statistical manual of mental disorders (DSM-5®). American Psychiatric Pub, 2013. ANSORGE, Mark S.; MORELLI, Emanuela; GINGRICH, Jay A. Inhibition of serotonin but not norepinephrine transport during development produces delayed, persistent perturbations of emotional behaviors in mice. Journal of Neuroscience, v. 28, n. 1, p. 199-207, 2008. ARCHER, John. Tests for emotionality in rats and mice: a review. Animal behaviour, v. 21, n. 2, p. 205-235, 1973. ASEGAWA, H.; NAKAMURA, K. Tryptophan Hydroxylase and Serotonin Synthesis Regulation. v. 21, p. 183-202. In: MULLER, C. P.; JACOBS, B. (Ed.). Handbook of the behavioral neurobiology of serotonin. Burlington, MA: Academic Press, 2010. AZMITIA, Efrain C. Modern views on an ancient chemical: serotonin effects on cell proliferation, maturation, and apoptosis. Brain research bulletin, v. 56, n. 5, p. 413- 424, 2001. AZMITIA, Efrain C.; MCEWEN, Bruce S. Adrenalcortical influence on rat brain tryptophan hydroxylase activity. Brain research, v. 78, n. 2, p. 291-302, 1974. BALE, Tracy L. Epigenetic and transgenerational reprogramming of brain development. Nature Reviews Neuroscience, v. 16, n. 6, p. 332-344, 2015. BANERJEE, Tania Das; MIDDLETON, Frank; FARAONE, Stephen V. Environmental risk factors for attention‐deficit hyperactivity disorder. Acta paediatrica, v. 96, n. 9, p. 1269-1274, 2007. BARKER, David JP. The origins of the developmental origins theory. Journal of internal medicine, v. 261, n. 5, p. 412-417, 2007. BAYLISS, L. E.; OGDEN, E. " Vasotonins" and the Pump-Oxygenator-Kidney Preparation. J. Physiol, v. 77, p. 34, 1932. BECK, Sheryl G. et al. Median and dorsal raphe neurons are not electrophysiologically identical. Journal of Neurophysiology, v. 91, n. 2, p. 994-1005, 2004. BEESDO-BAUM, Katja; KNAPPE, Susanne. Developmental epidemiology of anxiety disorders. Child and Adolescent Psychiatric Clinics, v. 21, n. 3, p. 457-478, 2012. BELMAKER, R. H.; AGAM, Galila. Major depressive disorder. N Engl j Med, v. 2008, n. 358, p. 55-68, 2008. 58 BHANJA, Shravani; MOHANAKUMAR, Kochupurackal P. Early-life treatment of antiserotonin antibodies alters sensitivity to serotonin receptors, nociceptive stimulus and serotonin metabolism in adult rats. International Journal of Developmental Neuroscience, v. 28, n. 4, p. 317-324, 2010. BOCKAERT, Joël et al. Classification and Signaling Characteristics of 5-HT Receptors. Handbook of Behavioral Neuroscience, v. 21, p. 103-121, 2010. BORTOLATO, M.; CHEN, K.; SHIH, J. C. The Degradation of Serotonin: Role of MAO. v. 21, p. 203-218. MULLER, C. P.; JACOBS, B. (Ed.). Handbook of the behavioral neurobiology of serotonin. Burlington, MA: Academic Press, 2010. BORTOLATO, Marco et al. Early postnatal inhibition of serotonin synthesis results in long-term reductions of perseverative behaviors, but not aggression, in MAO Adeficient mice. Neuropharmacology, v. 75, p. 223-232, 2013. BORTOLATO, Marco; SHIH, Jean C. Behavioral outcomes of monoamine oxidase deficiency: preclinical and clinical evidence. International review of neurobiology, v. 100, p. 13, 2011. BRANCHEREAU, Pascal; CHAPRON, Jacqueline; MEYRAND, Pierre. Descending 5- hydroxytryptamine raphe inputs repress the expression of serotonergic neurons and slow the maturation of inhibitory systems in mouse embryonic spinal cord. Journal of Neuroscience, v. 22, n. 7, p. 2598-2606, 2002. BRESLAU, Naomi; CHILCOAT, Howard D. Psychiatric sequelae of low birth weight at 11 years of age. Biological psychiatry, v. 47, n. 11, p. 1005-1011, 2000. BRISCOE, J. et al. Homeobox gene Nkx2. 2 and specification of neuronal identity by graded Sonic hedgehog signalling. Nature, v. 398, n. 6728, p. 622, 1999. BURROWS, Emma L.; MCOMISH, Caitlin E.; HANNAN, Anthony J. Gene– environment interactions and construct validity in preclinical models of psychiatric disorders. Progress in Neuro-Psychopharmacology and Biological Psychiatry, v. 35, n. 6, p. 1376-1382, 2011. BUSS, Claudia et al. Maternal care modulates the relationship between prenatal risk and hippocampal volume in women but not in men. Journal of Neuroscience, v. 27, n. 10, p. 2592-2595, 2007. CANSEV, M.; WURTMAN, R. Aromatic amino acids in the brain. v. 4, p. 59-97. Handbook of neurochemistry and molecular neurobiology. LAJTHA, Abel; SARANSAARI, Pirjo; SCHOUSBOE, Arne (Ed.). Handbook of Neurochemistry and Molecular Neurobiology: Amino Acids and Peptides in the Nervous System. Springer Science & Business Media, 2007. CASPI, Avshalom et al. Influence of life stress on depression: moderation by a polymorphism in the 5-HTT gene. Science, v. 301, n. 5631, p. 386-389, 2003. CAVALCANTE, Taisy Cinthia Ferro et al. Effects of perinatal protein malnutrition and fenfluramine action on food intake and neuronal activation in the hypothalamus and raphe nuclei of neonate rats. Physiology & behavior, v. 165, p. 35-42, 2016. 59 CRASKE, Michelle et al. Anxiety disorders. Nature Reviews Disease Primers, v.3, n. 17024, p. 1-18, 2017. CRAWLEY, Jacqueline; GOODWIN, Frederick K. Preliminary report of a simple animal behavior model for the anxiolytic effects of benzodiazepines. Pharmacology Biochemistry and Behavior, v. 13, n. 2, p. 167-170, 1980. DAHLSTRÖM, Annica; FUXE, Kjell. Evidence for the existence of monoaminecontaining neurons in the central nervous system. I. Demonstration of monoamines in the cell bodies of brain stem neurons. Acta Physiologica Scandinavica. Supplementum, p. SUPPL 232: 1-55, 1963. DAI, Jin-Xia et al. Enhanced contextual fear memory in central serotonin-deficient mice. Proceedings of the National Academy of Sciences, v. 105, n. 33, p. 11981- 11986, 2008. DAI, Jin‐Xia; JOHNSON, Randy L.; DING, Yu‐Qiang. Manifold functions of the Nail‐Patella Syndrome gene Lmx1b in vertebrate development. Development, growth & differentiation, v. 51, n. 3, p. 241-250, 2009. DAWS, Lynette C. Unfaithful neurotransmitter transporters: focus on serotonin uptake and implications for antidepressant efficacy. Pharmacology & therapeutics, v. 121, n. 1, p. 89-99, 2009. DE VITRY, F. et al. Serotonin initiates and autoamplifies its own synthesis during mouse central nervous system development. Proceedings of the National Academy of Sciences, v. 83, n. 22, p. 8629-8633, 1986. DEL PORTO, José Alberto. Conceito e diagnóstico. Revista Brasileira de Psiquiatria, v. 21, p. 06-11, 1999. DUMAN, Elif A.; CANLI, Turhan. Influence of life stress, 5-HTTLPR genotype, and SLC6A4 methylation on gene expression and stress response in healthy Caucasian males. Biology of mood & anxiety disorders, v. 5, n. 1, p. 2, 2015. DUVAL, Elizabeth R.; JAVANBAKHT, Arash; LIBERZON, Israel. Neural circuits in anxiety and stress disorders: a focused review. Therapeutics and clinical risk management, v. 11, p. 115, 2015. EGASHIRA, Nobuaki et al. Investigation of mechanisms mediating 8-OH-DPATinduced impairment of spatial memory: involvement of 5-HT 1A receptors in the dorsal hippocampus in rats. Brain research, v. 1069, n. 1, p. 54-62, 2006. ERSPAMER, Vittorio; ASERO, Biagio. Identification of enteramine, the specific hormone of the enterochromaffin cell system, as 5-hydroxytryptamine. Nature, v. 169, n. 4306, p. 800-801, 1952. ETKIN, Amit; BÜCHEL, Christian; GROSS, James J. The neural bases of emotion regulation. Nature Reviews. Neuroscience, v. 16, n. 11, p. 693, 2015. FYODOROV, Dmitry; NELSON, Tom; DENERIS, Evan. Pet-1, a novel ETS domain factor that can activate neuronal nAchR gene transcription. Journal of neurobiology, v. 34, n. 2, p. 151-163, 1998. 60 GALINDO, Lígia Cristina Monteiro et al. Neonatal serotonin reuptake inhibition reduces hypercaloric diet effects on fat mass and hypothalamic gene expression in adult rats. International Journal of Developmental Neuroscience, v. 46, p. 76-81, 2015. GALTER, Dagmar; UNSICKER, Klaus. Sequential activation of the 5-HT1 A serotonin receptor and TrkB induces the serotonergic neuronal phenotype. Molecular and cellular neuroscience, v. 15, n. 5, p. 446-455, 2000. GASPAR, Patricia; CASES, Olivier; MAROTEAUX, Luc. The developmental role of serotonin: news from mouse molecular genetics. Nature reviews. Neuroscience, v. 4, n. 12, p. 1002, 2003. GORIDIS, Christo; ROHRER, Hermann. Specification of catecholaminergic and serotonergic neurons. Nature reviews. Neuroscience, v. 3, n. 7, p. 531, 2002. GRAEFF, Frederico Guilherme; GUIMARÃES, Francisco Silveira. Fundamentos de psicofarmacologia. Atheneu, 2000. GREEN, A. Richard; GRAHAME-SMITH, David G. 5-Hydroxytryptamine and other indoles in the central nervous system. v.3, p. 169-245. In: Biochemistry of Biogenic Amines. Springer US, 2013. GROSS, Cornelius et al. Serotonin1A receptor acts during development to establish normal anxiety-like behaviour in the adult. Nature, v. 416, n. 6879, p. 396-400, 2002. GROSS, Cornelius; HEN, Rene. The developmental origins of anxiety. Nature reviews. Neuroscience, v. 5, n. 7, p. 545, 2004. GUIDOTTI, Gianluigi et al. Developmental influence of the serotonin transporter on the expression of npas4 and GABAergic markers: modulation by antidepressant treatment. Neuropsychopharmacology, v. 37, n. 3, p. 746, 2012. HANSSON, S. R.; MEZEY, E.; HOFFMAN, B. J. Serotonin transporter messenger RNA in the developing rat brain: early expression in serotonergic neurons and transient expression in non-serotonergic neurons. Neuroscience, v. 83, n. 4, p. 1185-1201, 1998. HARIRI, Ahmad R.; HOLMES, Andrew. Finding translation in stress research. Nature neuroscience, v. 18, n. 10, p. 1347-1352, 2015. HARSING, L. G. The pharmacology of the neurochemical transmission in the midbrain raphe nuclei of the rat. Current neuropharmacology, v. 4, n. 4, p. 313-339, 2006. HARTVIG, P. et al. Pyridoxine effect on synthesis rate of serotonin in the monkey brain measured with positron emission tomography. Journal of neural transmission, v. 102, n. 2, p. 91-97, 1995. HASEGAWA, Hiroyuki; ICHIYAMA, Arata. Distinctive iron requirement of tryptophan 5-monooxygenase: TPH1 requires dissociable ferrous iron. Biochemical and biophysical research communications, v. 338, n. 1, p. 277-284, 2005. HENDRICKS, Timothy et al. The ETS domain factor Pet-1 is an early and precise marker of central serotonin neurons and interacts with a conserved element in serotonergic genes. Journal of Neuroscience, v. 19, n. 23, p. 10348-10356, 1999. 61 HENDRICKS, Timothy J. et al. Pet-1 ETS gene plays a critical role in 5-HT neuron development and is required for normal anxiety-like and aggressive behavior. Neuron, v. 37, n. 2, p. 233-247, 2003. HENSLER, J. G; . Serotonin, p. 227-248, 2006. In: Siegal, G. J; Albers, R. W.; Brady, S. T. et al. Basic Neurochemistry: Molecular, Cellular and Medical Aspects (7th ed.). Burlington, MA: Elsevier Academic Press, 2006. HENSLER, Julie G. .5-Serotonin in Mood and Emotion. v. 21, p. 367-378. In: MULLER, C. P.; JACOBS, B. (Ed.). Handbook of the behavioral neurobiology of serotonin. Burlington, MA: Academic Press, 2010. HOLMES, Andrew; MURPHY, Dennis L.; CRAWLEY, Jacqueline N. Abnormal behavioral phenotypes of serotonin transporter knockout mice: parallels with human anxiety and depression. Biological psychiatry, v. 54, n. 10, p. 953-959, 2003. HOMBERG, Judith Regina et al. The serotonin–BDNF duo: developmental implications for the vulnerability to psychopathology. Neuroscience & Biobehavioral Reviews, v. 43, p. 35-47, 2014. HORNUNG, Jean-Pierre. The human raphe nuclei and the serotonergic system. Journal of chemical neuroanatomy, v. 26, n. 4, p. 331-343, 2003. ISSARI, Yasmin et al. Early onset of response with selective serotonin reuptake inhibitors in obsessive-compulsive disorder: a meta-analysis. The Journal of clinical psychiatry, v. 77, n. 5, p. e605-11, 2016. JACOBS, Barry L.; AZMITIA, Efrain C. Structure and function of the brain serotonin system. Physiological reviews, v. 72, n. 1, p. 165-229, 1992.. JANEWAY, Theodore C.; PARK, Edwards A. The question of epinephrin in the circulation and its relation to blood pressure. Journal of Experimental Medicine, v. 16, n. 4, p. 541-557, 1912. KAPCZINSKI, Flávio et al. Bases biológicas dos transtornos psiquiátricos. 2ª Edição. Editota Artmed. São Paulo, 2000. KARPOVA, Nina N. et al. Long-lasting behavioural and molecular alterations induced by early postnatal fluoxetine exposure are restored by chronic fluoxetine treatment in adult mice. European neuropsychopharmacology, v. 19, n. 2, p. 97-108, 2009. KATO, Masaki et al. Effect of 5‐HT1A gene polymorphisms on antidepressant response in major depressive disorder. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, v. 150, n. 1, p. 115-123, 2009. KAUFMAN, Joshua et al. The 5-HT 1A receptor in major depressive disorder. European Neuropsychopharmacology, v. 26, n. 3, p. 397-410, 2016. KEPPEL HESSELINK, J. M.: The history of serotonin, part 1. In Serotonin 1A receptors in depression and anxiety. Edited by SM Stahl, Raven Press, New York,1992;25–29. 62 KEPSER, Lara-Jane; HOMBERG, Judith R. The neurodevelopmental effects of serotonin: a behavioural perspective. Behavioural brain research, v. 277, p. 3-13, 2015. KIM, Ji-Young et al. Postnatal maintenance of the 5-Ht1a-Pet1 autoregulatory loop by serotonin in the raphe nuclei of the brainstem. Molecular brain, v. 7, n. 1, p. 48, 2014. KRIEGEBAUM, Claudia B. et al. The expression of the transcription factor FEV in adult human brain and its association with affective disorders. Journal of neural transmission, v. 117, n. 7, p. 831-836, 2010. KUHN, Donald M. et al. Phosphorylation and activation of tryptophan hydroxylase 2: identification of serine‐19 as the substrate site for calcium, calmodulin‐dependent protein kinase II. Journal of neurochemistry, v. 103, n. 4, p. 1567-1573, 2007. KUHN, Donald M.; ARTHUR, Robert E. Inactivation of tryptophan hydroxylase by nitric oxide: enhancement by tetrahydrobiopterin. Journal of neurochemistry, v. 68, n. 4, p. 1495-1502, 1997. KUHN, Donald M.; ARTHUR, Robert; STATES, J. Christopher. Phosphorylation and Activation of Brain Tryptophan Hydroxylase: Identification of Serine‐58 as a Substrate Site for Protein Kinase A. Journal of neurochemistry, v. 68, n. 5, p. 2220-2223, 1997. LAWAL, Hakeem O.; KRANTZ, David E. SLC18: Vesicular neurotransmitter transporters for monoamines and acetylcholine. Molecular aspects of medicine, v. 34, n. 2, p. 360-372, 2013. LEITE, J. R.; SIQUEIRA, J. S. Métodos para avaliar drogas ansiolíticas. In: ALMEIDA, Reinaldo Nóbrega de. Psicofarmacologia: fundamentos práticos. Ed. Guanabara Koogan, Rio de Janeiro, Brasil, p. 154-160, 2006. LESCH, Klaus-Peter et al. Association of anxiety-related traits with a polymorphism in the serotonin transporter gene regulatory region. Science, v. 274, n. 5292, p. 1527-1531, 1996. LEVITT, Pat; RAKIC, Pasko. The time of genesis, embryonic origin and differentiation of the brain stem monoamine neurons in the rhesus monkey. Developmental Brain Research, v. 4, n. 1, p. 35-57, 1982. LIDOV, Hart GW; MOLLIVER, Mark E. An immunohistochemical study of serotonin neuron development in the rat: ascending pathways and terminal fields. Brain research bulletin, v. 8, n. 4, p. 389-430, 1982. LIEB, Roselind et al. Parental major depression and the risk of depression and other mental disorders in offspring: a prospective-longitudinal community study. Archives of general psychiatry, v. 59, n. 4, p. 365-374, 2002. LIN, Yingxi et al. Activity-dependent regulation of inhibitory synapse development by Npas4. Nature, v. 455, n. 7217, p. 1198, 2008. LIU, Chen et al. Pet-1 is required across different stages of life to regulate serotonergic function. Nature neuroscience, v. 13, n. 10, p. 1190-1198, 2010. 63 LIVAK, Kenneth J.; SCHMITTGEN, Thomas D. Analysis of relative gene expression data using real-time quantitative PCR and the 2− ΔΔCT method. methods, v. 25, n. 4, p. 402-408, 2001. LUCAS, Guillaume; DEBONNEL, Guy. 5‐HT4 receptors exert a frequency‐related facilitatory control on dorsal raphé nucleus 5‐HT neuronal activity. European Journal of Neuroscience, v. 16, n. 5, p. 817-822, 2002. LUDWIG, C.; SCHMIDT, A. Arb. ad physiolog. Anstalt z. Leipzig, v. 3, n. 1, 1868. LUONI, Alessia et al. Behavioural and neuroplastic properties of chronic lurasidone treatment in serotonin transporter knockout rats. International Journal of Neuropsychopharmacology, v. 16, n. 6, p. 1319-1330, 2013. MACIAG, Dorota; COPPINGER, David; PAUL, Ian A. Evidence that the deficit in sexual behavior in adult rats neonatally exposed to citalopram is a consequence of 5-HT 1 receptor stimulation during development. Brain research, v. 1125, n. 1, p. 171-175, 2006. MAEJIMA, Takashi et al. Modulation of firing and synaptic transmission of serotonergic neurons by intrinsic G protein-coupled receptors and ion channels. Frontiers in integrative neuroscience, v. 7, 2013. MALAGIÉ, Isabelle et al. Effects of acute fluoxetine on extracellular serotonin levels in the raphe: an in vivo microdialysis study. European journal of pharmacology, v. 286, n. 2, p. 213-217, 1995. MARRAZZI, Amedeo S.; HART, E. Ross. Relationship of hallucinogens to adrenergic cerebral neurohumors. Science, v. 121, n. 3141, p. 365-367, 1955. MARTINOWICH, Keri; LU, Bai. Interaction between BDNF and serotonin: role in mood disorders. Neuropsychopharmacology, v. 33, n. 1, p. 73, 2008. MASSEY, Caitlin A. et al. Development of brainstem 5‐HT1A receptor‐binding sites in serotonin‐deficient mice. Journal of neurochemistry, v. 126, n. 6, p. 749-757, 2013. MAXIMINO, Caio. Serotonin in the nervous system of vertebrate. v.1, p. 15-36. In: Serotonin and Anxiety. Springer New York, 2012. MAYER, L. E.; WALSH, B. Timothy. The use of selective serotonin reuptake inhibitors in eating disorders. The Journal of clinical psychiatry, v. 59, p. 28-34, 1997. MCDEVITT, Ross A.; NEUMAIER, John F. Regulation of dorsal raphe nucleus function by serotonin autoreceptors: a behavioral perspective. Journal of chemical neuroanatomy, v. 41, n. 4, p. 234-246, 2011. MCILWAIN, Kellie L. et al. The use of behavioral test batteries: effects of training history. Physiology & behavior, v. 73, n. 5, p. 705-717, 2001. MCLEAN, Carmen P. et al. Gender differences in anxiety disorders: prevalence, course of illness, comorbidity and burden of illness. Journal of psychiatric research, v. 45, n. 8, p. 1027-1035, 2011. 64 MICELI, Stéphanie et al. High serotonin levels during brain development alter the structural input-output connectivity of neural networks in the rat somatosensory layer IV. Frontiers in cellular neuroscience, v. 7, 2013. MIGLIARINI, S. et al. Lack of brain serotonin affects postnatal development and serotonergic neuronal circuitry formation. Molecular psychiatry, v. 18, n. 10, p. 1106, 2013. MIKICS, Éva et al. Behavioral specificity of non-genomic glucocorticoid effects in rats: effects on risk assessment in the elevated plus-maze and the open-field. Hormones and behavior, v. 48, n. 2, p. 152-162, 2005. MILLER, J.R. AND EDMONDSON, D.E. Influence of flavin analogue structure on the catalytic activities and flavinylation reactions of recombinant human liver monoamine oxidases Aand B . J. Biol. Chem, v. 274, p. 23515 – 23525, 1999. MIWA, Soichi; WATANABE, Yasuyoshi; HAYAISHI, Osamu. 6R-L-erythro-5, 6, 7, 8-tetrahydrobiopterin as a regulator of dopamine and serotonin biosynthesis in the rat brain. Archives of biochemistry and biophysics, v. 239, n. 1, p. 234-241, 1985. MOLENDIJK, M. L. et al. Serum BDNF concentrations as peripheral manifestations of depression: evidence from a systematic review and meta-analyses on 179 associations (N= 9484). Molecular psychiatry, v. 19, n. 7, p. 791, 2014. NAGATSU, Toshiharu. Progress in monoamine oxidase (MAO) research in relation to genetic engineering. Neurotoxicology, v. 25, n. 1, p. 11-20, 2004. NEMEROFF, Charles B. Anxiolytics: past, present, and future agents. The Journal of clinical psychiatry, v. 64, p. 3-6, 2002. O’DONNELL, Kieran J.; MEANEY, Michael J. Fetal origins of mental health: The developmental origins of health and disease hypothesis. American Journal of Psychiatry, v. 174, n. 4, p. 319-328, 2016. O'CONNOR, J. M. Über den adrenalingehalt des Blutes. Naunyn-Schmiedeberg's Archives of Pharmacology, v. 67, n. 3, p. 195-232, 1912. OGAWA, Tetsuo et al. para-Chlorophenylalanine induces lenticular opacities by prenatal, neonatal, and juvenile treatments, but not by adult treatment, in rats. Neurotoxicology and teratology, v. 21, n. 4, p. 473-477, 1999. OSBORNE-MAJNIK, Amber; FU, Qi; LANE, Robert H. Epigenetic mechanisms in fetal origins of health and disease. Clinical obstetrics and gynecology, v. 56, n. 3, p. 622, 2013. OSMOND, Clive; BARKER, D. J. Fetal, infant, and childhood growth are predictors of coronary heart disease, diabetes, and hypertension in adult men and women. Environmental health perspectives, v. 108, n. Suppl 3, p. 545, 2000. OTTE, Christian et al. Major depressive disorder. Nature reviews. Disease primers, v. 2, p. 16065-16065, 2016. 65 PARDRIDGE, W. Mo. Kinetics of Competitive Inhibition of Neutral Amino Acid Transport Across the Blood‐Brain Barrier. Journal of neurochemistry, v. 28, n. 1, p. 103-108, 1977. PELLOW, Sharon et al. Validation of open: closed arm entries in an elevated plus-maze as a measure of anxiety in the rat. Journal of neuroscience methods, v. 14, n. 3, p. 149-167, 1985. PORSOLT, R.D.; LE PICHON, M.; JALFRE, M. Depression: a new animal model sensitive to antidepressant treatments. Nature, v. 266, n. 5604, p. 730-2, 1977. PRUT, Laetitia; BELZUNG, Catherine. The open field as a paradigm to measure the effects of drugs on anxiety-like behaviors: a review. European journal of pharmacology, v. 463, n. 1, p. 3-33, 2003. PYTLIAK, Marek et al. Serotonin receptors-from molecular biology to clinical applications. Physiological Research, v. 60, n. 1, p. 15, 2011. RAHMAN, Mohammed Khalilur; TOSHIHARU, Nagatsu; TAKESHI, Kato. Aromatic L-amino acid decarboxylase activity in central and peripheral tissues and serum of rats with L-DOPA and L-5-hydroxytryptophan as substrates. Biochemical pharmacology, v. 30, n. 6, p. 645-649, 1981. RANG, Rang et al. Rang & Dale Farmacologia. Elsevier Brasil, 2015. RAPPORT, M.M.; GREEN, A.A; PAGE, I. H. Crystalline serotonin. Science, v. 108, n. 2804, p. 329-330, 1948. RAZNAHAN, Armin et al. Prenatal growth in humans and postnatal brain maturation into late adolescence. Proceedings of the National Academy of Sciences, v. 109, n. 28, p. 11366-11371, 2012. REINHOLD, Jennifer A.; RICKELS, Karl. Pharmacological treatment for generalized anxiety disorder in adults: an update. Expert opinion on pharmacotherapy, v. 16, n. 11, p. 1669-1681, 2015. ROTH, Kevin A.; KATZ, Richard J. Stress, behavioral arousal, and open field activity—a reexamination of emotionality in the rat. Neuroscience & Biobehavioral Reviews, v. 3, n. 4, p. 247-263, 1980. RUDNICK, G. Structure/function relationships in serotonin transporter: new insights from the structure of a bacterial transporter. p. 59-73. In: Neurotransmitter transporters. Springer Berlin Heidelberg, 2006. RUMAJOGEE, Prakasham et al. Up‐regulation of the neuronal serotoninergic phenotype in vitro: BDNF and cAMP share Trk B‐dependent mechanisms. Journal of neurochemistry, v. 83, n. 6, p. 1525-1528, 2002. RUSH, A. John et al. Acute and longer-term outcomes in depressed outpatients requiring one or several treatment steps: a STAR* D report. American Journal of Psychiatry, v. 163, n. 11, p. 1905-1917, 2006. 66 SAKATA, Kazuko et al. Critical role of promoter IV-driven BDNF transcription in GABAergic transmission and synaptic plasticity in the prefrontal cortex. Proceedings of the National Academy of Sciences, v. 106, n. 14, p. 5942-5947, 2009. SANCHEZ, Connie; REINES, Elin H.; MONTGOMERY, Stuart A. A comparative review of escitalopram, paroxetine, and sertraline: are they all alike?. International clinical psychopharmacology, v. 29, n. 4, p. 185, 2014. SANDERS-BUSH, E.; BUSHING, J. A.; SULSER, F. Long-term effects of pchloroamphetamine on tryptophan hydroxylase activity and on the levels of 5- hydroxytryptamine and 5-hydroxyindole acetic acid in brain. European journal of pharmacology, v. 20, n. 3, p. 385-388, 1972. SANTANA, Noemí et al. Expression of serotonin1A and serotonin2A receptors in pyramidal and GABAergic neurons of the rat prefrontal cortex. Cerebral cortex, v. 14, n. 10, p. 1100-1109, 2004. SARKAR, Ambalika; CHACHRA, Parul; VAIDYA, Vidita A. Postnatal Fluoxetine- Evoked Anxiety Is Prevented by Concomitant 5-HT 2A/C Receptor Blockade and Mimicked by Postnatal 5-HT 2A/C Receptor Stimulation. Biological psychiatry, v. 76, n. 11, p. 858-868, 2014. SECO, Sandra; MATIAS, Alexandra. Origem fetal das doenças do adulto: revisitando a teoria de barker Fetal origins of adult disease: revisiting barkers theory. Acta Obstet ginecol Port, v. 3, n. 3, p. 158-168, 2009. SHAW, E.; WOOLLEY, D. W. Pharmacological properties of some antimetabolites of serotonin having unusually high activity on isolated tissues. Journal of Pharmacology and Experimental Therapeutics, v. 111, n. 1, p. 43-53, 1954. SHIMADA‐SUGIMOTO, Mihoko; OTOWA, Takeshi; HETTEMA, John M. Genetics of anxiety disorders: genetic epidemiological and molecular studies in humans. Psychiatry and clinical neurosciences, v. 69, n. 7, p. 388-401, 2015. SIBILLE, E. et al. Lack of serotonin1B receptor expression leads to age-related motor dysfunction, early onset of brain molecular aging and reduced longevity. Molecular psychiatry, v. 12, n. 11, p. 1042, 2007. SJOERDSMA, Albert; PALFREYMAN, Michael G. History of serotonin and serotonin disorders. Annals of the New York Academy of Sciences, v. 600, n. 1, p. 1-8, 1990. SONG, Ning-Ning et al. Adult raphe-specific deletion of Lmx1b leads to central serotonin deficiency. PLoS One, v. 6, n. 1, p. e15998, 2011. SPENCER, William C.; DENERIS, Evan S. Regulatory Mechanisms Controlling Maturation of Serotonin Neuron Identity and Function. Frontiers in cellular neuroscience, v. 11, 2017. STEWART, G. N.; ZUCKER, T. F. A Comparison of the action of plasma and serum on certain objects used in biological tests for epinephrin. Journal of Experimental Medicine, v. 17, n. 2, p. 152-173, 1913. SUMI-ICHINOSE, Chiho et al. Molecular cloning of genomic DNA and chromosomal assignment of the gene for human aromatic L-amino acid decarboxylase, the enzyme for 67 catecholamine and serotonin biosynthesis. Biochemistry, v. 31, n. 8, p. 2229-2238, 1992. TAMIR, Hadassah; GERSHON, Michael D. Serotonin‐Storing Secretory Vesicles. Annals of the New York Academy of Sciences, v. 600, n. 1, p. 53-67, 1990. TAMIR, Hadassah; KLEIN, Athalia; RAPPORT, Maurice M. Serotonin binding protein: enhancement of binding by Fe2+ and inhibition of binding by drugs. Journal of neurochemistry, v. 26, n. 5, p. 871-878, 1976. TEISSIER, Anne; SOIZA-REILLY, Mariano; GASPAR, Patricia. Refining the role of 5-HT in postnatal development of brain circuits. Frontiers in Cellular Neuroscience, v. 11, 2017. THASE, Michael E. et al. Cognitive therapy versus medication in augmentation and switch strategies as second-step treatments: a STAR* D report. American Journal of Psychiatry, v. 164, n. 5, p. 739-752, 2007. TÖRK, Istvan. Anatomy of the serotonergic system. Annals of the New York Academy of Sciences, v. 600, n. 1, p. 9-34, 1990. TURNER, Justin H. et al. 5-HT receptor signal transduction pathways. p. 143- 206.In: ROTH, Bryan L. (Ed.). The serotonin receptors: from molecular pharmacology to human therapeutics. Springer Science & Business Media, 2008. TWAROG, Betty M.; PAGE, Irvine H. Serotonin content of some mammalian tissues and urine and a method for its determination. American Journal of Physiology-- Legacy Content, v. 175, n. 1, p. 157-161, 1953. VAN DER WEES, Jacqueline et al. GATA-3 is involved in the development of serotonergic neurons in the caudal raphe nuclei. The Journal of Neuroscience, v. 19, n. 12, p. 1-8, 1999. VASWANI, Meera; LINDA, Farzana Kadar; RAMESH, Subramanyam. Role of selective serotonin reuptake inhibitors in psychiatric disorders: a comprehensive review. Progress in neuro-psychopharmacology and biological psychiatry, v. 27, n. 1, p. 85-102, 2003. VINKERS, Christiaan H. et al. Early-life blockade of 5-HT 1A receptors alters adult anxiety behavior and benzodiazepine sensitivity. Biological psychiatry, v. 67, n. 4, p. 309-316, 2010. WALKER, Cheryl Lyn; HO, Shuk-mei. Developmental reprogramming of cancer susceptibility. Nature reviews. Cancer, v. 12, n. 7, 2012. WALSH, Roger N.; CUMMINS, Robert A. The open-field test: A critical review. Psychological bulletin, v. 83, n. 3, p. 482, 1976. WATERHOUSE, Barry D. et al. Topographical distribution of dorsal and median raphe neurons projecting to motor, sensorimotor, and visual cortical areas in the rat. Journal of Comparative Neurology, v. 249, n. 4, p. 460-476, 1986. WHITAKER-AZMITIA, Patricia Mack. The discovery of serotonin and its role in neuroscience. Neuropsychopharmacology, v. 21, n. 2, p. 2S-8S, 1999. 68 WOOLLEY, Dilworth W.; SHAW, E. A biochemical and pharmacological suggestion about certain mental disorders. Proceedings of the National Academy of Sciences, v. 40, n. 4, p. 228-231, 1954. World Health Organization. WHO. http://www.who.int/mediacentre/news/en/ (2017).. Wu, H.F.; Chen, K.; Shih, J.C. Site-directed mutagenesis of monoamine oxidase A and B: role of cysteines. Mol Pharmacol, v. 43, p. 888–893, 1993. WU, YeeWen Candace et al. Sex-specific and region-specific changes in BDNF–TrkB signalling in the hippocampus of 5-HT1A receptor and BDNF single and double mutant mice. Brain research, v. 14
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal Rural do Rio de Janeiro
dc.publisher.program.fl_str_mv Programa Multicêntrico de Pós-Graduação em Ciências Fisiológicas
dc.publisher.initials.fl_str_mv UFRRJ
dc.publisher.country.fl_str_mv Brasil
dc.publisher.department.fl_str_mv Instituto de Ciências Biológicas e da Saúde
publisher.none.fl_str_mv Universidade Federal Rural do Rio de Janeiro
dc.source.none.fl_str_mv reponame:Biblioteca Digital de Teses e Dissertações da UFRRJ
instname:Universidade Federal Rural do Rio de Janeiro (UFRRJ)
instacron:UFRRJ
instname_str Universidade Federal Rural do Rio de Janeiro (UFRRJ)
instacron_str UFRRJ
institution UFRRJ
reponame_str Biblioteca Digital de Teses e Dissertações da UFRRJ
collection Biblioteca Digital de Teses e Dissertações da UFRRJ
bitstream.url.fl_str_mv https://rima.ufrrj.br/jspui/bitstream/20.500.14407/10301/1/2017%20-%20Roberto%20Laureano%20Melo.pdf.jpg
https://rima.ufrrj.br/jspui/bitstream/20.500.14407/10301/2/2017%20-%20Roberto%20Laureano%20Melo.pdf.txt
https://rima.ufrrj.br/jspui/bitstream/20.500.14407/10301/3/2017%20-%20Roberto%20Laureano%20Melo.pdf
https://rima.ufrrj.br/jspui/bitstream/20.500.14407/10301/4/license.txt
bitstream.checksum.fl_str_mv cc73c4c239a4c332d642ba1e7c7a9fb2
f8312019108400061b0b79b386c570bd
049095757a450ce7f49b69cbb89c666f
7b5ba3d2445355f386edab96125d42b7
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da UFRRJ - Universidade Federal Rural do Rio de Janeiro (UFRRJ)
repository.mail.fl_str_mv bibliot@ufrrj.br||bibliot@ufrrj.br
_version_ 1810107976253440000