Impacto do manejo agr?cola em Organossolos no estado do Rio de Janeiro

Detalhes bibliográficos
Autor(a) principal: Santos, Otavio Augusto Queiroz dos
Data de Publicação: 2020
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Biblioteca Digital de Teses e Dissertações da UFRRJ
Texto Completo: https://tede.ufrrj.br/jspui/handle/jspui/6326
Resumo: Histosols are defined by the high levels of organic matter and they are very important for storing carbon and nitrogen, thus contributing in mitigating greenhouse gases (GHG). Proper management of these soils should preserve organic matter, consequently, mitigating GHG production. This study aimed to evaluate the following changes in the properties of Histosols due to the soil tillage and artificial drainage: organic matter and sulfate content, C and N stocks, availability and content of P fractions. Three areas with different coverages were selected: secondary forest in natural regeneration, conventional cultivation of cassava (Manihot sculenta) and intercropped coconut (Cocos nucifera) with cassava; in which soil pits were opened for profiles description and sampling. The following analyzes were carried out: chemical characterization, von Post scale of decomposition of organic matter, percentage of rubbed fibers, organic matter content, percentage of mineral material, bulk density, electrical conductivity, soluble sulfate, total organic carbon (TOC) and total nitrogen (NT). There were calculated the stocks of C and N, and obtained fractionation of organic matter and sequential fractionation of P. The results of chapter I showed that the values of COT and NT decreased in 33 and 20%, respectively, in the histic horizon of the area with cassava crop. In the area with coconut intercropped with manioc, the TOC and NT values decreased by 31 and 18% respectively, in the histic horizon. There were losses of labile organic carbon and the sulfurization process was evidenced in the profiles with agricultural usage. In the chapter II, the results show that in the cassava cultivation area there was a reduction in the total P content in the subsurface by 35.6 and 37.9%, when compared to the area with coconut intercropped with cassava and the secondary forest, respectively. In all areas, there was predominance of the highly recalcitrant residual P fraction (> 70%). The available P content was reduced only in the cassava cultivation area. Drainage and soil tillage reduced the C and N stocks in the soil, and affected P adsorption and mineralization processes, in all the inorganic fractions.
id UFRRJ-1_1e9163472c72655234239b8c8b02caee
oai_identifier_str oai:localhost:jspui/6326
network_acronym_str UFRRJ-1
network_name_str Biblioteca Digital de Teses e Dissertações da UFRRJ
repository_id_str
spelling Pereira, Marcos Gervasio874.292.767-68http://lattes.cnpq.br/3657759682534978Garc?a, Andr?s Calder?nPereira, Marcos GervasioLoss, Arc?ngeloSchiavo, Jolimar Antonio420.697.918-90http://lattes.cnpq.br/5893308385515780Santos, Otavio Augusto Queiroz dos2023-02-15T16:00:00Z2020-10-26SANTOS, Otavio Augusto Queiroz dos. Impacto do manejo agr?cola em Organossolos no estado do Rio de Janeiro. 2020. 67 f. Disserta??o (Mestrado em Agronomia - Ci?ncia do Solo) - Instituto de Agronomia, Universidade Federal Rural do Rio de Janeiro, Serop?dica, RJ, 2020.https://tede.ufrrj.br/jspui/handle/jspui/6326Histosols are defined by the high levels of organic matter and they are very important for storing carbon and nitrogen, thus contributing in mitigating greenhouse gases (GHG). Proper management of these soils should preserve organic matter, consequently, mitigating GHG production. This study aimed to evaluate the following changes in the properties of Histosols due to the soil tillage and artificial drainage: organic matter and sulfate content, C and N stocks, availability and content of P fractions. Three areas with different coverages were selected: secondary forest in natural regeneration, conventional cultivation of cassava (Manihot sculenta) and intercropped coconut (Cocos nucifera) with cassava; in which soil pits were opened for profiles description and sampling. The following analyzes were carried out: chemical characterization, von Post scale of decomposition of organic matter, percentage of rubbed fibers, organic matter content, percentage of mineral material, bulk density, electrical conductivity, soluble sulfate, total organic carbon (TOC) and total nitrogen (NT). There were calculated the stocks of C and N, and obtained fractionation of organic matter and sequential fractionation of P. The results of chapter I showed that the values of COT and NT decreased in 33 and 20%, respectively, in the histic horizon of the area with cassava crop. In the area with coconut intercropped with manioc, the TOC and NT values decreased by 31 and 18% respectively, in the histic horizon. There were losses of labile organic carbon and the sulfurization process was evidenced in the profiles with agricultural usage. In the chapter II, the results show that in the cassava cultivation area there was a reduction in the total P content in the subsurface by 35.6 and 37.9%, when compared to the area with coconut intercropped with cassava and the secondary forest, respectively. In all areas, there was predominance of the highly recalcitrant residual P fraction (> 70%). The available P content was reduced only in the cassava cultivation area. Drainage and soil tillage reduced the C and N stocks in the soil, and affected P adsorption and mineralization processes, in all the inorganic fractions.Organossolos s?o definidos pelo elevado teor de mat?ria org?nica e s?o relevantes pelo estoque de carbono e nitrog?nio, assim contribuindo para a mitiga??o de gases de efeito estufa (GEE). O manejo adequado desses solos deve preservar a mat?ria org?nica, consequentemente, mitigando a produ??o de GEE. Este estudo objetivou avaliar as seguintes altera??es nas propriedades dos Organossolos em fun??o do revolvimento do solo e drenagem artificial: conte?do de mat?ria org?nica e de sulfato, estoques de C e N, disponibilidade e conte?do das fra??es de P. Foram selecionadas tr?s ?reas com diferentes coberturas: mata secund?ria em regenera??o natural, cultivo convencional de mandioca (Manihot sculenta) e cultivo consorciado de coco (Cocos nucifera) com mandioca; nas quais foram abertas trincheiras para descri??o de perfis de solo e coleta de amostras. Foram realizadas as seguintes an?lises: caracteriza??o qu?mica, escala de von Post de decomposi??o da mat?ria org?nica, porcentagem de fibras esfregadas, conte?do de mat?ria org?nica, porcentagem de material mineral, densidade do solo, condutividade el?trica, sulfato sol?vel, carbono org?nico total (COT) e nitrog?nio total (NT). Foram calculados os estoques de C e N, e realizados o fracionamento da mat?ria org?nica e fracionamento sequencial de P. Os resultados do cap?tulo I mostraram que os valores de COT e NT diminu?ram 33 e 20%, respectivamente, no horizonte h?stico na ?rea com cultivo de mandioca. Na ?rea de coco consorciado com mandioca os valores de COT e NT diminu?ram 31 e 18% respectivamente, no horizonte h?stico. Verificou-se perdas de carbono org?nico l?bil e o processo de sulfuriza??o foi evidenciado nos perfis com uso agr?cola. No cap?tulo II os resultados mostram que na ?rea de cultivo de mandioca houve redu??o no conte?do de P total em subsuperf?cie em 35,6 e 37,9%, quando comparado com a de cultivo de coco consorciado com mandioca e a floresta secund?ria, respectivamente. Em todas as ?reas observou-se o predom?nio da fra??o de P residual altamente recalcitrante (> 70%). O conte?do de P dispon?vel foi reduzido somente na ?rea de cultivo de mandioca. A drenagem e o revolvimento do solo reduziram dos estoques de C e N do solo e afetou os processos de adsor??o e mineraliza??o do P, em todas suas fra??es inorg?nicas.Submitted by Jorge Silva (jorgelmsilva@ufrrj.br) on 2023-02-15T16:00:00Z No. of bitstreams: 1 2020 - Otavio Augusto Queiroz dos Santos.pdf: 5318158 bytes, checksum: f7464ca9a84b8e375538e9cadfd2fb07 (MD5)Made available in DSpace on 2023-02-15T16:00:00Z (GMT). No. of bitstreams: 1 2020 - Otavio Augusto Queiroz dos Santos.pdf: 5318158 bytes, checksum: f7464ca9a84b8e375538e9cadfd2fb07 (MD5) Previous issue date: 2020-10-26CAPES - Coordena??o de Aperfei?oamento de Pessoal de N?vel Superiorapplication/pdfhttps://tede.ufrrj.br/retrieve/72176/2020%20-%20Otavio%20Augusto%20Queiroz%20dos%20Santos.pdf.jpgporUniversidade Federal Rural do Rio de JaneiroPrograma de P?s-Gradua??o em Agronomia - Ci?ncia do SoloUFRRJBrasilInstituto de AgronomiaARSENAULT, J.; TALBOT, J.; MOORE, T. R. Environmental controls of C, N and P biogeochemistry in peatland pools. Science of the Total Environment, v. 631-632, p. 714- 722, 2018. ASSAD, E. D.; PINTO, H. S.; MARTINS, S. C.; GROPPO, J. D.; SALGADO, P. R.; EVANGELISTA, B.; MARTINELLI, L. Changes in soil carbono stocks in Brazil due to land use: paired site comparisons and a regional pasture soil survey: Biogeosciences, v. 10, p. 6141-6160, 2013. BATJES, N. H. Total carbon and nitrogen in the soils of the world. European Journal of Soil Sciense, v. 47, p. 151-163, 1996. BEEK, C. L.; EERTWEGH, G. A. P. H.; SCHAIK, F. H.; VELTHOF, G. L.; OENEMA, O. The contribution of dairy farming on peat soil to N and P loading of surface water. Nutrient Cycling in Agroecosystems, v. 70, p. 85-95, 2004. BLAIR, G. J.; LEFROY, R. D. B.; LISLE, L. Soil carbon fractions based on their degree of oxidation, and the development of a carbon management index for agricultural systems. Australian Journal of Agricultural Research, v. 46, n.7, p. 1459-1466, 1995. BROUNS, K.; KEUSKAMP, J. A.; POTKAMP, G.; VERHOEVEN, J. T. A.; HEFTING, M. M. Peat origin and land use effects on microbial activity, respiration dynamics and exoenzyme activities in drained peat soils in the Netherlands. Soil Biology and Biochemistry. v. 95, p. 144-155, 2016. BRUCE, J. P.; FROME, M.; HAITES, E.; JANZEN, H.; LAL, R.; PAUSTIAN, K.; Carbon sequestration in soils. Journal Soil Water Conservation, v. 54, p. 383-389, 1999. BRUUN, T. B.; ELBERLING, B.; CHRISTENSEN, B. T. Lability of soil organic carbon in tropical soils with different clay minerals. Soil Biology and Biochemistry, v. 42, n. 6, p. 888- 895, 2010. CIPRIANO-SILVA, R.; VALLADARES, G. S.; PEREIRA, M. G., ANJOS, L. H. C. Caracteriza??o de Organossolos em ambientes de v?rzea no nordeste do Brasil. Revista Brasileira de Ci?ncia do Solo, v. 38, n. 1, p. 26-38, 2014. COUWENBERG, J.; DOMMAIN, R.; JOOSTEN, H. Greenhouse gas fluxes from tropical peatlands in south-east Asia. Global Change Biology, v.16, n. 6, p. 1715?1732, 2010. CUMMING, G.; FIDLER, F.; VAUX, D. L. Error bars in experimental biology. The Journal of Cell Biology, v. 177, n. 1, p. 7-11, 2007. DANTAS, M. E.; SHINZATO, E.; MEDINA, A. I. D. M.; SILVA, C. R. D.; PIMENTEL, J.; LUMBRERAS, J. F.; CALDERANO, S. B.; CARVALHO FILHO, A. D. Diagn?stico geoambiental do estado do Rio de Janeiro. Bras?lia, DF, 2001. DUBALL, C.; VAUGHAN, K.; BERKOWITZ, J. F.; RABENHORST, M. C.; VANZOMEREN, C.M. Iron monosulfide indentification: Field techniques to provide evidence of reducing conditions in soils. Soil Society of America Journal, v. 84, n. 2, p. 303- 313, 2020. FANNING, D. S.; RABENHORST, M. C.; FITZPATRICK, R. W. Historical developments in the understanding ofacid sulfate soils. Geoderma, v. 308, p. 191-206, 2017. FERREIRA, T. O.; OTERO, X. L.; VIDAL-TORRADO, P.; MAC?AS, F. Redox Processes in Mangrove Soils under in Relation to Different Environmental Conditions. Soil Science Society of America Journal, v. 71, n. 2, p. 484-491, 2007. FERREIRA, T. O.; VIDAL-TORRADO, P.; OTERO, X. L.; MAC?AS, F. Are mangrove forest substrates sediments or soils? A case study in southeastern Brazil. Catena, v. 70, n. 1, p. 79?91, 2007. GNATOWSKI, T.; SZATY?OWICZ, J.; BRANDYK, T.; KECHAVARZI, C. Hydraulic properties of fen peat soils in Poland. Geoderma, v. 154, n. 3-4, p. 188?195, 2010. GNIAZDOWSKI, Z. Interpretation of principal components analysis. Zeszyty Naukowe WWSI, v. 11, n. 16, p. 43-65, 2017. GRZYWNA, A. The degree of peatland subsidence resulting from drainage of land. Environmental Earth Sciences, v. 76, n. 16, p. 559, 2017. HERNDON, E. M.; KINSMAN-COSTELLO, L.; DUROE, K. A.; MILLS, J.; KANE, E. S.; SEBESTYEN, S. D.; THOMPSON, A. A.; WULLSCHLEGER, S. D. Iron (oxyhydr)oxides serve as phosphate traps in tundra and boreal peat soils. Journal of Geophysical Research: Biogeosciences, v. 124, n. 2, p. 227-246, 2019. HOLDEN, J.; EVANS, M. G.; BURT, T. P.; HORTON, M. Impact of land drainage on peatland hydrology. Journal Environmental Quality, v. 35, n. 5, p. 1764?1778, 2006. HOYT, A. M.; CHAUSSARD, E.; SEPPALAINEN, S. S.; HARVEY, C.F. Widespread subsidence and carbon emissions across Southeast Asian peatlands. Nature Geoscience, v. 13, p. 435-440, 2020. HU, J.; LIAO, X.; VARDANYAN, L. G.; HUANG, Y.; INGLETT, K. S.; WRIGHT, A. L.; REDDY, K. R. Duration and frequency of drainage and flooding events interactively affect soil biogeochemistry and N flux in subtropical peat soils. Science of the Total Environment, v. 727, p. 1-11, 2020. HUNGATE, B. A.; DUKES, J. S.; SHAW, M. R.; LUO, Y.; FIELD, C. B.; Nitrogen and climate change. Science, v. 302, n. 5650, p. 1512? 1513, 2003. HUTH, V.; GUNTHER, A.; BARTEL, A.; HOFER, B.; JACOBS, O.; JANTZ, N.; MEISTER, M.; ROSINSKI, E.; URICH, T.; WEIL, M.; ZAK, D.; JURASINSKI, G. Topsoil removal reduced in-situ methane emissions in a temperate rewetted bog grassland by a hundredfold. Science of the Total Environment, v. 721, p. 1-8, 2020. IUSS WORKING GROUP, W. World reference base for soil resources 2014. International soil classification system for naming soils and creating legends for soil maps. World Soil ed. Rome: FAO, 2014. JACKSON, R. B.; LAJTHA, K.; CROW, S. E.; HUGELIUS, G.; KRAMER, M. G.; PI?EIRO, G. The ecology of soil carbon: pools, vulnerabilities, and biotic and abiotic controls. Annual Review of Ecology, Evololtion, and Systematics, v. 48, p. 419?445, 2017. JOOSTEN, H.; TAPIO-BISTRO, M. L.; TOL, S. Peatlands: guidance for climate change mitigation through conservation, rehabilitation and sustainable use. FAO. Available in: http://www.fao.org/3/a-an762e.pdf. Accessed 24 Jun 2020. KAISER, K.; MIKUTTA, R.; GUGGENBERGER, G. Increased stability of organic matter sorbed to ferrihydrite and goethite on aging. Soil Science Society of America Journal, v. 71, n. 3, p. 711?719, 2007. KINDLER, R.; SIEMENS, J.; KAISER, K.; WALMSLEY, D. C.; BERNHOFER, C.; BUCHMANN, N.; CELLIER, P.; EUGSTER, W.; GLEIXNER, G.; GR?NSWALD, T.; HEIM, A.; IBROM, A.; JONES, S. K.; JONES, M.; KLUMPP, K.; KUTSCH, W.; LARSEN, K. S.; LEHUGER, S.; LOUBET, B.; MCKENZIE, R.; MOORS, E.; OSBORNE, B.; PILEGAARD, K.; REBMANN, C.; SAUNDERS, M.; SCHMIDT, I.; SCHRUMPF, M.; SEYFFERTH, J.; SKIB U.; SOUSSANA, J. F.; SUTTON, M. A.; TEFS, C.; VIWINCKELS, B., ZEEMAN, M.; KAUPENJOHANN, M. Dissolved carbon leaching from soil is a crucial component of the net ecosystem carbon balance. Global Change Biology, v. 17, n. 2, p. 1167?1185, 2011. KL?VE, B.; BERGLUND, K.; BERGLUND, ?.; WELDON, S.; MALJANEN, M. Future options for cultivated Nordic peat soils: Can land management and rewetting control greenhouse gas emissions? Environmental Science & Policy, v. 69, p. 85-93, 2017. K?CHY, M.; HIEDERER, R.; FREIBAUER, A. Global distribution of soil organic carbon? part 1: Masses and frequency distributions of SOC stocks for the tropics, permafrost regions, wetlands, and the world. Soil, v. 1, n.1, p. 351?365, 2015. KOOIJMAN, A. M.; CUSSEL, C.; HEDENAS, L.; LAMERS, L. P. M.; METTROP, I. S.; NEIJMEIJER, T. Re-assessment of phosphorus availability in fens with varying contents of iron and calcium. Plant and Soil, v. 447, p. 219-239, 2020. LAL, R.; GRIFFIN, M.; APT, J.; LAVE, L.; GRANGER MORGAN, M. G. Managing soil carbon. Science, v. 304, n. 5669, p. 393, 2004. LEIFELD, J.; KLEIN, K.; WUST-GALLEY, C. Soil organic matter stoichiometry as indicator for peatlands degradation. Scientific Reports, v. 10, p. 1-9, 2020. LEIFELD, J.; W?ST-GALLEY, C.; PAGE, S. Intact and managed peatland soils as a source and sink of GHGs from 1850 to 2100. Nature Climate Change, v. 9, p. 945-947, 2019. LI, D.; NIU, S.; LUO, Y. Global patterns of the dynamics of soil carbon and nitrogen stocks following afforestation: a meta? analysis. New Phytologist, n. 195, v. 1, p. 172-181, 2012. LIIMATAINEN, M.; VOIGT, C.; MARTIKAINEN, P. J.; HYTONEN, J.; REGINA, K.; OSKARSSON, H.; MALJANEN, M. Factors controlling nitrous oxide emissions from managed northern peat soils with low carbon to nitrogen ratio. Soil Biology and Biochemistry, v. 122, p. 186-195, 2018. LOGINOW, W.; WISNIEWSKI, W.; GONET, S.S.; CIESCINSKA, B. Fractionation of organic carbon based on susceptibility to oxidation. Polish Journal of Soil Science, v. 20, n. 1, p. 47-52, 1987. LUMBRERAS, J. F.; GOMES, J. B. V. Mapeamento pedol?gico e interpreta??es ?teis ao planejamento Ambiental do Munic?pio do Rio de Janeiro. Sergipe: Embrapa Tabuleiros Costeiros/Rio de Janeiro: Embrapa Solos, 326p. 2004. LUO, Y.; SU, B.; CURRIE, W. S.; DUKES, J. S.; FINZI, A.; HARTWIG, U.; HUNGATE, B.; MCMURTRIE, R. E.; OREN, R.; PARTON, W. J.; PATAKI, D. E.; SHAW, M. R., ZAK, D. R.; FIELD, C. B. Progressive nitrogen limitation of ecosystem responses to rising atmospheric carbon dioxide. BioScience, v. 54, p. 731? 739, 2004. LYNN, W. C.; MCKINZIE, W. E.; GROSSMAN, R. B. Q. Field laboratory tests for characterizarion of Histosols. In: AANDAHL, A. R. editor. Histosols: their characteristics, classification, and use. Madison: Soil Science Society of America, v. 6, p. 11-20, 1974. MELVILLE, M. D.; WHITE, I.; QUIRK, R. Acid sulfate soils: Management. In Encyclopedia of Soil Science, 3nd Ed.; Lal, R., Ed.; Taylor and Francis: New York, p. 31? 35, 2017. MENDON?A-SANTOS, M. L.; SILVA, E. F.; LUMBRERAS, J. F.; OLIVEIRA, R. P. Quantifica??o e distribui??o especial de carbono org?nico na paisagem e em perfis de solos no munic?pio do Rio de Janeiro. Boletim de Pesquisa e Desenvolvimento. Embrapa Solos, v. 39, p. 1-21, 2003. MINASY, B.; BERGLUND, ?.; CONNOLLY, H. C.; VRIES, F.; GIMONA, A.; KEMPEN, B.; KIDD, D.; LILJA, H.; MALONE, B.; MCBRATNEY, A. Digital mapping of peatlands ? a critical review. Earth ? Sciense Reviews, v. 196, p. 102870, 2019. MORRISON, E.; NEWMAN, S.; BAE, H. S.; HE, Z.; ZHOU, J.; REDDY, K. R.; OGRAM, A. Microbial genetic and enzymatic responses to an anthropogenic phosphorus gradient within subtropical peatlands. Geoderma, v. 268, p. 119-127, 2016. MUNIR, T. M.; KHADKA, B.; XU, B.; STRACK, M. Mineral nitrogen and phosphorus pools affected by water table lowering and warming in a boreal forested peatland. Ecohydrology, v. 10, n. 8, p. 1-15, 2017. NEGASSA, W.; MICHALIK, D.; KLYSUBUN, W.; LEINWEBER, P. Phosphorus speciation in long-term drained and rewetted peatlands of Northern Germany. Soil Systems, v. 4, n. 11, p. 1-20, 2020. OLIVEIRA FILHO, J. S.; FERRARI, A. C.; PEREIRA, M. G.; PINTO, L. A. S. R.; ZONTA, E.; MATOS, T. S. Phosphorus accumulation in soil after successive applications of swine manure: a long? term study in Brazil. Environmental Earth Sciences, v. 79, n. 62, p. 1-12, 2020. PARVIN, S.; BLAGODATSKAYA, E.; BECKER, J. N.; KUZYAKOV, Y.; UDDIN, S.; DORODNIKOV, M. Depth rather than microrelief controls microbial biomass and kinetics of C-, N-, P- and S-cycle enzymes in peatlands. Geoderma, v. 324, p. 67-76, 2018. PEREIRA, M. G.; ANJOS, L. H. C.; VALLADARES, G. S.; Organossolos: Ocorr?ncia, g?nese, classifica??o, altera??es pelo uso agr?cola e manejo. In: TORRADO, P.V., ALLEONI, L. R. F.; COOPER, M.; SILVA, A. P.; CARDOSO, E. J. (Eds.), T?picos em ci?ncia do solo. 4. Sociedade Brasileira de Ci?ncia do Solo, Vi?osa, MG, p. 233?276, 2005. PEREIRA, M. G.; LOSS, A.; SCHULTZ, N.; ZONTA, E.; GUARESCHI, R. F.; SANTOS, O. A. Q. Fertilidade de um Organossolo e produtividade do feijoeiro influenciados pela calagem e inocula??o. Revista Agrarian, v. 13, n. 48, p. 211-221, 2020. PRIETZEL, J.; THIEME, J.; PATERSON, D. Phosphorus speciation of forest-soil organic surface layers using P K-edge XANES spectroscopy. Journal of Plant Nutrition and Soil Science, v. 173, n. 6, p. 805-807, 2010. RABENHORST, M. C.; MEGONIGAL, J. P.; KELLER, J. Synthetic iron oxides for documenting sulfide in marsh pore water. Soil Sciense Society of America Journal, v. 74, n. 4, p. 1383 ? 1388, 2010. RUMPEL, C.; ALEXIS, M.; CHABBI, A.; CHAPLOT, V.; RASSE, D. P.; VALENTIN, C.; MARIOTTI, A.Black carbon contribution to soil organic matter composition in tropical sloping land under slash and burn agriculture. Geoderma, v. 130, n. 1-2, p. 35?46, 2006. SALES, M. V. S.; ALEIXO, S.; GAMA-RODRIGUES, A. C.; GAMA-RODRIGUES, E. F. Structural equation modeling for the estimation of interconnections between the P cycle and soil properties. Nutrient Cycling Agroecosystems, v. 109, p. 193-207, 2017. SANTOS, H. G.; JACOMINE, P. K. T.; ANJOS, L. H. C.; OLIVEIRA, V. A.; LUMBRERAS, J. F.; COELHO, M. R.; ALMEIDA, J. A.; CUNHA, T. J. F.; OLIVEIRA, J. B. Sistema Brasileiro de Classifica??o de Solos. 5. ed. revista e ampliada Bras?lia, DF: Embrapa, p. 590, 2018. SANTOS, R. D.; LEMOS, R. C.; SANTOS, H. G.; KER, J. C.; ANJOS, L. H. C.; SHIMIZU, S. H. Manual de descri??o e coleta de solo no campo. Vi?osa, MG: Sociedade Brasileira de Ci?ncia do Solo, ed. 7, p. 102, 2015. SAURICH, A.; TIEMEYER, B.; DON, A.; FIEDLER, S.; BECHTOLD, M.; AMELUNG, W.; FREIBAUER, A. Drained organic soils under agriculture - The more degraded the soil the higher the specific basal respiration. Geoderma, v. 355, p. 1-13, 2019. SCHARLEMANN, J. P.; TANNER, E. V.; HIEDERER, R.; KAPOS, V. Global soil carbon: understanding and managing the largest terrestrial carbon pool. Carbon Management, v. 5, n. 1, p. 81?91, 2014. SCHMIEDER, F.; GUSTAFSSON, J. P.; KLYSUBUN, W.; ZEHETNER, F.; RIDDLE, M.; KIRCHMANN, H.; BERGSTROM, L. Phosphorus speciation in cultivated oganic soils revealed by O K-edge XANES spectroscopy. Journal of Plant Nutrition and Soil Science, v. 183, n. 3, p. 367-381, 2020. SILVA NETO, E. C.; PEREIRA, M. G.; DE ARAUJO CARVALHO, M.; CALEGARI, M. R.; SCHIAVO, J. A.; DE PAULA S?, N.; ANJOS, L. H. C.; PESSENDA, L. C. R. Palaeonvironmental records of Histosol pedogenesis in upland area, Esp?rito Santo State (SE, Brazil). Journal of South American Earth Sciences, v. 95, p. 102301, 2019. SOARES, P. F. C. Varia??o de atributos e din?mica de carbono e nitrog?nio em Organossolos em fun??o de uso e manejo agr?cola no Rio de Janeiro. Disserta??o, 2011. SOARES, P. F. C.; ZUCHELLO, F.; ANJOS, L. H. C.; PEREIRA, M. G.; OLIVEIRA, A. P. P. Soil attributes and c and n variation in histosols under different agricultural usages in the state of Rio de Janeiro, Brazil. Bioscience Journal, v. 31, p. 1349-1362, 2015. SOUZA J?NIOR, V. S.; RIBEIRO, M. R.; OLIVEIRA, L. B. Caracteriza??o e classifica??o de solos tiom?rficos da v?rzea do rio Coruripe, no Estado de Alagoas. Revista brasileira de ci?ncia do solo, v. 25, n. 4, p. 977-986, 2001a. SOUZA J?NIOR, V. S.; RIBEIRO, M. R.; OLIVEIRA, L. B. Propriedades qu?micas e manejo de solos tiom?rficos da v?rzea do Rio Coruripe, Estado de Alagoas. Revista Brasileira de Ci?ncia do solo, v. 25, n. 4, p. 811-822, 2001b. STANEK, W.; SILC, T. Comparisons of four methods for determination of degree of peat humification (decomposition) with emphasis on the von Post method. Canadian Journal of Soil Science, v. 57, n. 2, p. 109-117, 1977. TAFT, H. E.; CROSS, P. A.; EDWARDS-JONES, G.; MOORHOUSE, E. R.; JONES, D. L. Greenhouse gas emissions from intensively managed peat soils in na arable production system. Agriculture, Ecosystems & Environment, v. 237, p. 162-172, 2017. TEAM, R. C. R: a language and environment for statistical computing (version 3.5. 3, Vienna, Austria: R Foundation for Statistical Computing), 2019. TEIXEIRA, L. A. J.; BATAGLIA, O. C.; BUZETTI, S.; FURLANI JUNIOR, E. Fertilizer and lime recommendation for coconut (Cocos nucifera L.) in the state of S?o Paulo, Brazil. Revista Brasileira de Fruticultura, v. 27, n. 3, p. 519-520, 2005. TEIXEIRA, L. A. J.; SILVA, J. A. A. Mineral nutrition of populations and hybrids of coconuts (Cocos nucifera L.) grown in Bebedouro (SP), Brazil. Revista Brasileira de Fruticultura, v. 25, n. 2, p. 371-374, 2003. TEIXEIRA, P. C.; DONAGEMMA, G. K.; FONTANA, A.; TEIXEIRA, W. G. Manual de m?todos de an?lise de solo. Bras?lia: Embrapa. 573p, 2017. TER BRAAK, C. J. F.; SMILAUER, P. CANOCO Reference manual and CanoDraw for Windows user's guide: Software for Canonical Community Ordination (version 4.5). Ithaca, Microcomputer Power, 500p, 2002. VALLADARES, G. S.; PEREIRA, M. G.; ANJOS, L. H. C.; BENITES, V. M.; EBELING, A. G.; MOUTA, R. O. Humic substance fractions and atributes of histosols and related highorganic- matter soils from Brazil. Communications in Soil Science and Plant Analysis, v. 38, n. 5-6, p. 763-777, 2007. VALLADARES, G. S.; PEREIRA, M. G.; BENITES, V. M.; ANJOS, L. H. C.; EBELING, A. G.; GUARESCHI, R. F. Carbon and Nitrogen stocks and humic fractions in Brazilian Organosols. Revista Brasileira de Ci?ncia do Solo, v. 40, 2016. VAN RAIJ, B.; ANDRADE, J. C.; CANTARELLA, H.; QUAGGIO, J. A. An?lise qu?mica para avalia??o da fertilidade de solos tropicais. Campinas: Instituto Agron?mico de Campinas, 285p. 2001. VEGAS-VILARR?BIA, T.; BARITTO, F.; MELEAN, G. A critical examination of some common field tests to assess the acid-sulphate condition in soils. Soil Use and Management, v. 24, n. 1, p. 60-68, 2008. WANG, G.; BAO, K.; YU, X.; ZHAO, H.; LIN, Q.; LU, X. Forms and accumulation of soil P in a subalpine peatland of Mt. Changbai in Northeast China. Catena, v. 92, p. 22-29, 2012. WANG, J. Y.; SONG, C. C.; WANG, X. W.; SONG, Y. Y. Changes in labile soil organic carbon fractions in wetland ecosystems along a latitudinal gradient in Northeast China. Catena, v. 96, p. 83-89, 2012. WANG, L.; AMELUNG, W.; PRIETZEL, J.; WILLBOLD, S. Transformation of organic phosphorus compounds during 1500 years of organic soil formation in Bavarian Alpine forests - A 31P NMR study. Geoderma, v. 340, p. 192-205, 2019. WANG, M. TALBOT, J. MOORE, T. R. Drainage and fertilization effects on nutrient availability in an ombrotrophic peatland. Science of the Total Environment, v. 621, p. 1255- 1263, 2018. WANG, M., MOORE, T. R.; TALBOT, J.; RILEY, J. L. The stoichiometry of carbon and nutrientes in peat formation. Global Biogeochemical Cycles, v. 29, n. 2, p. 113-121, 2015. WANG, M.; MOORE, T. R. Carbon, nitrogen, phosphorus, and potassium stoichiometry in an ombrotrophic peatland reflects plant functional type. Ecosystems, v. 17, p. 673-684, 2014. WANG, Q.; ZHANG, P. J.; LIU, M.; DENG, Z. W. Mineral-associated organic carbon and black carbon in restored wetlands. Soil Biology and Biochemistry, v. 75, p. 300?309, 2014. WANG, Z.; LIU, S.; HUANG, C.; LIU, Y.; BU, Z. Impact of land use change on profile distributions of organic carbon fractions in peat and mineral soils in Northeast China. Catena, v. 152, p. 1?8, 2017. WEISSERT, L. F.; DISNEY, M. Carbon storage in peatlands: a case study on the Isle of Man. Geoderma, v. 204-205, p. 111-119, 2013. W?STEN, J. H. M.; ISMAIL, A. B.; VAN WIKJ, A. L. M. Peat subsidence and its practical implications: a case study in Malaysia. Geoderma, v. 78, n. 1-2, p. 25-36, 1997. W?STEN, J. H. M.; RITZEMA, H. P. Land and water management options for peatland development in Sarawak, Malaysia. International Pet Journal, v. 11, p. 59-66, 2001. YEOMANS, J. C.; BREMNER, J. M. A rapid and precise method for routine determination of organic carbon in soil. Communications in Soil Science and Plant Analysis, v. 19, p. 1467-1476, 1998. ZAK, D.; WAGNER, C.; PAYER, B.; AUGUSTIN, J.; GELBRECHT, J. Phosphorus mobilization in rewetted fens: the effect of altered peat properties and implications for their restoration. Ecological Applications, v. 20, n. 5, p. 1336-1349, 2010. ZHANG, J. B.; SONG, C. C.; YANG, W. Y. Lang use effects on the distribution of labile organic carbon fractions through soil profiles. Soil Science Society of America Journal, v. 70, p. 660?667, 2006. ZOU, X. M.; RUAN, H. H.; FU, Y.; YANG, X. D.; SHA, L. Q. Estimating soil labile organic carbon and potential turnover rates using a sequential fumigation?incubation procedure. Soil Biology and Biochemistry, v. 37, p. 1923?1928, 2005.Uso do soloEstoques de C e NFracionamento sequencial de PSubsid?nciaSulfuriza??oLand useC and N stocksP sequential fractionationSubsidenceSulfurizationAgronomiaImpacto do manejo agr?cola em Organossolos no estado do Rio de JaneiroImpact of agricultural management in Histosols in Rio de Janeiro Stateinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/openAccessreponame:Biblioteca Digital de Teses e Dissertações da UFRRJinstname:Universidade Federal Rural do Rio de Janeiro (UFRRJ)instacron:UFRRJTHUMBNAIL2020 - Otavio Augusto Queiroz dos Santos.pdf.jpg2020 - Otavio Augusto Queiroz dos Santos.pdf.jpgimage/jpeg1943http://localhost:8080/tede/bitstream/jspui/6326/4/2020+-+Otavio+Augusto+Queiroz+dos+Santos.pdf.jpgcc73c4c239a4c332d642ba1e7c7a9fb2MD54TEXT2020 - Otavio Augusto Queiroz dos Santos.pdf.txt2020 - Otavio Augusto Queiroz dos Santos.pdf.txttext/plain152274http://localhost:8080/tede/bitstream/jspui/6326/3/2020+-+Otavio+Augusto+Queiroz+dos+Santos.pdf.txt550aeac44505803759c9be818158113cMD53ORIGINAL2020 - Otavio Augusto Queiroz dos Santos.pdf2020 - Otavio Augusto Queiroz dos Santos.pdfapplication/pdf5318158http://localhost:8080/tede/bitstream/jspui/6326/2/2020+-+Otavio+Augusto+Queiroz+dos+Santos.pdff7464ca9a84b8e375538e9cadfd2fb07MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-82089http://localhost:8080/tede/bitstream/jspui/6326/1/license.txt7b5ba3d2445355f386edab96125d42b7MD51jspui/63262023-02-16 02:00:32.322oai:localhost:jspui/6326Tk9UQTogQ09MT1FVRSBBUVVJIEEgU1VBIFBSP1BSSUEgTElDRU4/QQpFc3RhIGxpY2VuP2EgZGUgZXhlbXBsbyA/IGZvcm5lY2lkYSBhcGVuYXMgcGFyYSBmaW5zIGluZm9ybWF0aXZvcy4KCkxJQ0VOP0EgREUgRElTVFJJQlVJPz9PIE4/Ty1FWENMVVNJVkEKCkNvbSBhIGFwcmVzZW50YT8/byBkZXN0YSBsaWNlbj9hLCB2b2M/IChvIGF1dG9yIChlcykgb3UgbyB0aXR1bGFyIGRvcyBkaXJlaXRvcyBkZSBhdXRvcikgY29uY2VkZSA/IFVuaXZlcnNpZGFkZSAKWFhYIChTaWdsYSBkYSBVbml2ZXJzaWRhZGUpIG8gZGlyZWl0byBuP28tZXhjbHVzaXZvIGRlIHJlcHJvZHV6aXIsICB0cmFkdXppciAoY29uZm9ybWUgZGVmaW5pZG8gYWJhaXhvKSwgZS9vdSAKZGlzdHJpYnVpciBhIHN1YSB0ZXNlIG91IGRpc3NlcnRhPz9vIChpbmNsdWluZG8gbyByZXN1bW8pIHBvciB0b2RvIG8gbXVuZG8gbm8gZm9ybWF0byBpbXByZXNzbyBlIGVsZXRyP25pY28gZSAKZW0gcXVhbHF1ZXIgbWVpbywgaW5jbHVpbmRvIG9zIGZvcm1hdG9zID91ZGlvIG91IHY/ZGVvLgoKVm9jPyBjb25jb3JkYSBxdWUgYSBTaWdsYSBkZSBVbml2ZXJzaWRhZGUgcG9kZSwgc2VtIGFsdGVyYXIgbyBjb250ZT9kbywgdHJhbnNwb3IgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YT8/byAKcGFyYSBxdWFscXVlciBtZWlvIG91IGZvcm1hdG8gcGFyYSBmaW5zIGRlIHByZXNlcnZhPz9vLgoKVm9jPyB0YW1iP20gY29uY29yZGEgcXVlIGEgU2lnbGEgZGUgVW5pdmVyc2lkYWRlIHBvZGUgbWFudGVyIG1haXMgZGUgdW1hIGM/cGlhIGEgc3VhIHRlc2Ugb3UgCmRpc3NlcnRhPz9vIHBhcmEgZmlucyBkZSBzZWd1cmFuP2EsIGJhY2stdXAgZSBwcmVzZXJ2YT8/by4KClZvYz8gZGVjbGFyYSBxdWUgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YT8/byA/IG9yaWdpbmFsIGUgcXVlIHZvYz8gdGVtIG8gcG9kZXIgZGUgY29uY2VkZXIgb3MgZGlyZWl0b3MgY29udGlkb3MgCm5lc3RhIGxpY2VuP2EuIFZvYz8gdGFtYj9tIGRlY2xhcmEgcXVlIG8gZGVwP3NpdG8gZGEgc3VhIHRlc2Ugb3UgZGlzc2VydGE/P28gbj9vLCBxdWUgc2VqYSBkZSBzZXUgCmNvbmhlY2ltZW50bywgaW5mcmluZ2UgZGlyZWl0b3MgYXV0b3JhaXMgZGUgbmluZ3U/bS4KCkNhc28gYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YT8/byBjb250ZW5oYSBtYXRlcmlhbCBxdWUgdm9jPyBuP28gcG9zc3VpIGEgdGl0dWxhcmlkYWRlIGRvcyBkaXJlaXRvcyBhdXRvcmFpcywgdm9jPyAKZGVjbGFyYSBxdWUgb2J0ZXZlIGEgcGVybWlzcz9vIGlycmVzdHJpdGEgZG8gZGV0ZW50b3IgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIHBhcmEgY29uY2VkZXIgPyBTaWdsYSBkZSBVbml2ZXJzaWRhZGUgCm9zIGRpcmVpdG9zIGFwcmVzZW50YWRvcyBuZXN0YSBsaWNlbj9hLCBlIHF1ZSBlc3NlIG1hdGVyaWFsIGRlIHByb3ByaWVkYWRlIGRlIHRlcmNlaXJvcyBlc3Q/IGNsYXJhbWVudGUgCmlkZW50aWZpY2FkbyBlIHJlY29uaGVjaWRvIG5vIHRleHRvIG91IG5vIGNvbnRlP2RvIGRhIHRlc2Ugb3UgZGlzc2VydGE/P28gb3JhIGRlcG9zaXRhZGEuCgpDQVNPIEEgVEVTRSBPVSBESVNTRVJUQT8/TyBPUkEgREVQT1NJVEFEQSBURU5IQSBTSURPIFJFU1VMVEFETyBERSBVTSBQQVRST0M/TklPIE9VIApBUE9JTyBERSBVTUEgQUc/TkNJQSBERSBGT01FTlRPIE9VIE9VVFJPIE9SR0FOSVNNTyBRVUUgTj9PIFNFSkEgQSBTSUdMQSBERSAKVU5JVkVSU0lEQURFLCBWT0M/IERFQ0xBUkEgUVVFIFJFU1BFSVRPVSBUT0RPUyBFIFFVQUlTUVVFUiBESVJFSVRPUyBERSBSRVZJUz9PIENPTU8gClRBTUI/TSBBUyBERU1BSVMgT0JSSUdBPz9FUyBFWElHSURBUyBQT1IgQ09OVFJBVE8gT1UgQUNPUkRPLgoKQSBTaWdsYSBkZSBVbml2ZXJzaWRhZGUgc2UgY29tcHJvbWV0ZSBhIGlkZW50aWZpY2FyIGNsYXJhbWVudGUgbyBzZXUgbm9tZSAocykgb3UgbyhzKSBub21lKHMpIGRvKHMpIApkZXRlbnRvcihlcykgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIGRhIHRlc2Ugb3UgZGlzc2VydGE/P28sIGUgbj9vIGZhcj8gcXVhbHF1ZXIgYWx0ZXJhPz9vLCBhbD9tIGRhcXVlbGFzIApjb25jZWRpZGFzIHBvciBlc3RhIGxpY2VuP2EuCg==Biblioteca Digital de Teses e Dissertaçõeshttps://tede.ufrrj.br/PUBhttps://tede.ufrrj.br/oai/requestbibliot@ufrrj.br||bibliot@ufrrj.bropendoar:2023-02-16T04:00:32Biblioteca Digital de Teses e Dissertações da UFRRJ - Universidade Federal Rural do Rio de Janeiro (UFRRJ)false
dc.title.por.fl_str_mv Impacto do manejo agr?cola em Organossolos no estado do Rio de Janeiro
dc.title.alternative.eng.fl_str_mv Impact of agricultural management in Histosols in Rio de Janeiro State
title Impacto do manejo agr?cola em Organossolos no estado do Rio de Janeiro
spellingShingle Impacto do manejo agr?cola em Organossolos no estado do Rio de Janeiro
Santos, Otavio Augusto Queiroz dos
Uso do solo
Estoques de C e N
Fracionamento sequencial de P
Subsid?ncia
Sulfuriza??o
Land use
C and N stocks
P sequential fractionation
Subsidence
Sulfurization
Agronomia
title_short Impacto do manejo agr?cola em Organossolos no estado do Rio de Janeiro
title_full Impacto do manejo agr?cola em Organossolos no estado do Rio de Janeiro
title_fullStr Impacto do manejo agr?cola em Organossolos no estado do Rio de Janeiro
title_full_unstemmed Impacto do manejo agr?cola em Organossolos no estado do Rio de Janeiro
title_sort Impacto do manejo agr?cola em Organossolos no estado do Rio de Janeiro
author Santos, Otavio Augusto Queiroz dos
author_facet Santos, Otavio Augusto Queiroz dos
author_role author
dc.contributor.advisor1.fl_str_mv Pereira, Marcos Gervasio
dc.contributor.advisor1ID.fl_str_mv 874.292.767-68
dc.contributor.advisor1Lattes.fl_str_mv http://lattes.cnpq.br/3657759682534978
dc.contributor.advisor-co1.fl_str_mv Garc?a, Andr?s Calder?n
dc.contributor.referee1.fl_str_mv Pereira, Marcos Gervasio
dc.contributor.referee2.fl_str_mv Loss, Arc?ngelo
dc.contributor.referee3.fl_str_mv Schiavo, Jolimar Antonio
dc.contributor.authorID.fl_str_mv 420.697.918-90
dc.contributor.authorLattes.fl_str_mv http://lattes.cnpq.br/5893308385515780
dc.contributor.author.fl_str_mv Santos, Otavio Augusto Queiroz dos
contributor_str_mv Pereira, Marcos Gervasio
Garc?a, Andr?s Calder?n
Pereira, Marcos Gervasio
Loss, Arc?ngelo
Schiavo, Jolimar Antonio
dc.subject.por.fl_str_mv Uso do solo
Estoques de C e N
Fracionamento sequencial de P
Subsid?ncia
Sulfuriza??o
topic Uso do solo
Estoques de C e N
Fracionamento sequencial de P
Subsid?ncia
Sulfuriza??o
Land use
C and N stocks
P sequential fractionation
Subsidence
Sulfurization
Agronomia
dc.subject.eng.fl_str_mv Land use
C and N stocks
P sequential fractionation
Subsidence
Sulfurization
dc.subject.cnpq.fl_str_mv Agronomia
description Histosols are defined by the high levels of organic matter and they are very important for storing carbon and nitrogen, thus contributing in mitigating greenhouse gases (GHG). Proper management of these soils should preserve organic matter, consequently, mitigating GHG production. This study aimed to evaluate the following changes in the properties of Histosols due to the soil tillage and artificial drainage: organic matter and sulfate content, C and N stocks, availability and content of P fractions. Three areas with different coverages were selected: secondary forest in natural regeneration, conventional cultivation of cassava (Manihot sculenta) and intercropped coconut (Cocos nucifera) with cassava; in which soil pits were opened for profiles description and sampling. The following analyzes were carried out: chemical characterization, von Post scale of decomposition of organic matter, percentage of rubbed fibers, organic matter content, percentage of mineral material, bulk density, electrical conductivity, soluble sulfate, total organic carbon (TOC) and total nitrogen (NT). There were calculated the stocks of C and N, and obtained fractionation of organic matter and sequential fractionation of P. The results of chapter I showed that the values of COT and NT decreased in 33 and 20%, respectively, in the histic horizon of the area with cassava crop. In the area with coconut intercropped with manioc, the TOC and NT values decreased by 31 and 18% respectively, in the histic horizon. There were losses of labile organic carbon and the sulfurization process was evidenced in the profiles with agricultural usage. In the chapter II, the results show that in the cassava cultivation area there was a reduction in the total P content in the subsurface by 35.6 and 37.9%, when compared to the area with coconut intercropped with cassava and the secondary forest, respectively. In all areas, there was predominance of the highly recalcitrant residual P fraction (> 70%). The available P content was reduced only in the cassava cultivation area. Drainage and soil tillage reduced the C and N stocks in the soil, and affected P adsorption and mineralization processes, in all the inorganic fractions.
publishDate 2020
dc.date.issued.fl_str_mv 2020-10-26
dc.date.accessioned.fl_str_mv 2023-02-15T16:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv SANTOS, Otavio Augusto Queiroz dos. Impacto do manejo agr?cola em Organossolos no estado do Rio de Janeiro. 2020. 67 f. Disserta??o (Mestrado em Agronomia - Ci?ncia do Solo) - Instituto de Agronomia, Universidade Federal Rural do Rio de Janeiro, Serop?dica, RJ, 2020.
dc.identifier.uri.fl_str_mv https://tede.ufrrj.br/jspui/handle/jspui/6326
identifier_str_mv SANTOS, Otavio Augusto Queiroz dos. Impacto do manejo agr?cola em Organossolos no estado do Rio de Janeiro. 2020. 67 f. Disserta??o (Mestrado em Agronomia - Ci?ncia do Solo) - Instituto de Agronomia, Universidade Federal Rural do Rio de Janeiro, Serop?dica, RJ, 2020.
url https://tede.ufrrj.br/jspui/handle/jspui/6326
dc.language.iso.fl_str_mv por
language por
dc.relation.references.por.fl_str_mv ARSENAULT, J.; TALBOT, J.; MOORE, T. R. Environmental controls of C, N and P biogeochemistry in peatland pools. Science of the Total Environment, v. 631-632, p. 714- 722, 2018. ASSAD, E. D.; PINTO, H. S.; MARTINS, S. C.; GROPPO, J. D.; SALGADO, P. R.; EVANGELISTA, B.; MARTINELLI, L. Changes in soil carbono stocks in Brazil due to land use: paired site comparisons and a regional pasture soil survey: Biogeosciences, v. 10, p. 6141-6160, 2013. BATJES, N. H. Total carbon and nitrogen in the soils of the world. European Journal of Soil Sciense, v. 47, p. 151-163, 1996. BEEK, C. L.; EERTWEGH, G. A. P. H.; SCHAIK, F. H.; VELTHOF, G. L.; OENEMA, O. The contribution of dairy farming on peat soil to N and P loading of surface water. Nutrient Cycling in Agroecosystems, v. 70, p. 85-95, 2004. BLAIR, G. J.; LEFROY, R. D. B.; LISLE, L. Soil carbon fractions based on their degree of oxidation, and the development of a carbon management index for agricultural systems. Australian Journal of Agricultural Research, v. 46, n.7, p. 1459-1466, 1995. BROUNS, K.; KEUSKAMP, J. A.; POTKAMP, G.; VERHOEVEN, J. T. A.; HEFTING, M. M. Peat origin and land use effects on microbial activity, respiration dynamics and exoenzyme activities in drained peat soils in the Netherlands. Soil Biology and Biochemistry. v. 95, p. 144-155, 2016. BRUCE, J. P.; FROME, M.; HAITES, E.; JANZEN, H.; LAL, R.; PAUSTIAN, K.; Carbon sequestration in soils. Journal Soil Water Conservation, v. 54, p. 383-389, 1999. BRUUN, T. B.; ELBERLING, B.; CHRISTENSEN, B. T. Lability of soil organic carbon in tropical soils with different clay minerals. Soil Biology and Biochemistry, v. 42, n. 6, p. 888- 895, 2010. CIPRIANO-SILVA, R.; VALLADARES, G. S.; PEREIRA, M. G., ANJOS, L. H. C. Caracteriza??o de Organossolos em ambientes de v?rzea no nordeste do Brasil. Revista Brasileira de Ci?ncia do Solo, v. 38, n. 1, p. 26-38, 2014. COUWENBERG, J.; DOMMAIN, R.; JOOSTEN, H. Greenhouse gas fluxes from tropical peatlands in south-east Asia. Global Change Biology, v.16, n. 6, p. 1715?1732, 2010. CUMMING, G.; FIDLER, F.; VAUX, D. L. Error bars in experimental biology. The Journal of Cell Biology, v. 177, n. 1, p. 7-11, 2007. DANTAS, M. E.; SHINZATO, E.; MEDINA, A. I. D. M.; SILVA, C. R. D.; PIMENTEL, J.; LUMBRERAS, J. F.; CALDERANO, S. B.; CARVALHO FILHO, A. D. Diagn?stico geoambiental do estado do Rio de Janeiro. Bras?lia, DF, 2001. DUBALL, C.; VAUGHAN, K.; BERKOWITZ, J. F.; RABENHORST, M. C.; VANZOMEREN, C.M. Iron monosulfide indentification: Field techniques to provide evidence of reducing conditions in soils. Soil Society of America Journal, v. 84, n. 2, p. 303- 313, 2020. FANNING, D. S.; RABENHORST, M. C.; FITZPATRICK, R. W. Historical developments in the understanding ofacid sulfate soils. Geoderma, v. 308, p. 191-206, 2017. FERREIRA, T. O.; OTERO, X. L.; VIDAL-TORRADO, P.; MAC?AS, F. Redox Processes in Mangrove Soils under in Relation to Different Environmental Conditions. Soil Science Society of America Journal, v. 71, n. 2, p. 484-491, 2007. FERREIRA, T. O.; VIDAL-TORRADO, P.; OTERO, X. L.; MAC?AS, F. Are mangrove forest substrates sediments or soils? A case study in southeastern Brazil. Catena, v. 70, n. 1, p. 79?91, 2007. GNATOWSKI, T.; SZATY?OWICZ, J.; BRANDYK, T.; KECHAVARZI, C. Hydraulic properties of fen peat soils in Poland. Geoderma, v. 154, n. 3-4, p. 188?195, 2010. GNIAZDOWSKI, Z. Interpretation of principal components analysis. Zeszyty Naukowe WWSI, v. 11, n. 16, p. 43-65, 2017. GRZYWNA, A. The degree of peatland subsidence resulting from drainage of land. Environmental Earth Sciences, v. 76, n. 16, p. 559, 2017. HERNDON, E. M.; KINSMAN-COSTELLO, L.; DUROE, K. A.; MILLS, J.; KANE, E. S.; SEBESTYEN, S. D.; THOMPSON, A. A.; WULLSCHLEGER, S. D. Iron (oxyhydr)oxides serve as phosphate traps in tundra and boreal peat soils. Journal of Geophysical Research: Biogeosciences, v. 124, n. 2, p. 227-246, 2019. HOLDEN, J.; EVANS, M. G.; BURT, T. P.; HORTON, M. Impact of land drainage on peatland hydrology. Journal Environmental Quality, v. 35, n. 5, p. 1764?1778, 2006. HOYT, A. M.; CHAUSSARD, E.; SEPPALAINEN, S. S.; HARVEY, C.F. Widespread subsidence and carbon emissions across Southeast Asian peatlands. Nature Geoscience, v. 13, p. 435-440, 2020. HU, J.; LIAO, X.; VARDANYAN, L. G.; HUANG, Y.; INGLETT, K. S.; WRIGHT, A. L.; REDDY, K. R. Duration and frequency of drainage and flooding events interactively affect soil biogeochemistry and N flux in subtropical peat soils. Science of the Total Environment, v. 727, p. 1-11, 2020. HUNGATE, B. A.; DUKES, J. S.; SHAW, M. R.; LUO, Y.; FIELD, C. B.; Nitrogen and climate change. Science, v. 302, n. 5650, p. 1512? 1513, 2003. HUTH, V.; GUNTHER, A.; BARTEL, A.; HOFER, B.; JACOBS, O.; JANTZ, N.; MEISTER, M.; ROSINSKI, E.; URICH, T.; WEIL, M.; ZAK, D.; JURASINSKI, G. Topsoil removal reduced in-situ methane emissions in a temperate rewetted bog grassland by a hundredfold. Science of the Total Environment, v. 721, p. 1-8, 2020. IUSS WORKING GROUP, W. World reference base for soil resources 2014. International soil classification system for naming soils and creating legends for soil maps. World Soil ed. Rome: FAO, 2014. JACKSON, R. B.; LAJTHA, K.; CROW, S. E.; HUGELIUS, G.; KRAMER, M. G.; PI?EIRO, G. The ecology of soil carbon: pools, vulnerabilities, and biotic and abiotic controls. Annual Review of Ecology, Evololtion, and Systematics, v. 48, p. 419?445, 2017. JOOSTEN, H.; TAPIO-BISTRO, M. L.; TOL, S. Peatlands: guidance for climate change mitigation through conservation, rehabilitation and sustainable use. FAO. Available in: http://www.fao.org/3/a-an762e.pdf. Accessed 24 Jun 2020. KAISER, K.; MIKUTTA, R.; GUGGENBERGER, G. Increased stability of organic matter sorbed to ferrihydrite and goethite on aging. Soil Science Society of America Journal, v. 71, n. 3, p. 711?719, 2007. KINDLER, R.; SIEMENS, J.; KAISER, K.; WALMSLEY, D. C.; BERNHOFER, C.; BUCHMANN, N.; CELLIER, P.; EUGSTER, W.; GLEIXNER, G.; GR?NSWALD, T.; HEIM, A.; IBROM, A.; JONES, S. K.; JONES, M.; KLUMPP, K.; KUTSCH, W.; LARSEN, K. S.; LEHUGER, S.; LOUBET, B.; MCKENZIE, R.; MOORS, E.; OSBORNE, B.; PILEGAARD, K.; REBMANN, C.; SAUNDERS, M.; SCHMIDT, I.; SCHRUMPF, M.; SEYFFERTH, J.; SKIB U.; SOUSSANA, J. F.; SUTTON, M. A.; TEFS, C.; VIWINCKELS, B., ZEEMAN, M.; KAUPENJOHANN, M. Dissolved carbon leaching from soil is a crucial component of the net ecosystem carbon balance. Global Change Biology, v. 17, n. 2, p. 1167?1185, 2011. KL?VE, B.; BERGLUND, K.; BERGLUND, ?.; WELDON, S.; MALJANEN, M. Future options for cultivated Nordic peat soils: Can land management and rewetting control greenhouse gas emissions? Environmental Science & Policy, v. 69, p. 85-93, 2017. K?CHY, M.; HIEDERER, R.; FREIBAUER, A. Global distribution of soil organic carbon? part 1: Masses and frequency distributions of SOC stocks for the tropics, permafrost regions, wetlands, and the world. Soil, v. 1, n.1, p. 351?365, 2015. KOOIJMAN, A. M.; CUSSEL, C.; HEDENAS, L.; LAMERS, L. P. M.; METTROP, I. S.; NEIJMEIJER, T. Re-assessment of phosphorus availability in fens with varying contents of iron and calcium. Plant and Soil, v. 447, p. 219-239, 2020. LAL, R.; GRIFFIN, M.; APT, J.; LAVE, L.; GRANGER MORGAN, M. G. Managing soil carbon. Science, v. 304, n. 5669, p. 393, 2004. LEIFELD, J.; KLEIN, K.; WUST-GALLEY, C. Soil organic matter stoichiometry as indicator for peatlands degradation. Scientific Reports, v. 10, p. 1-9, 2020. LEIFELD, J.; W?ST-GALLEY, C.; PAGE, S. Intact and managed peatland soils as a source and sink of GHGs from 1850 to 2100. Nature Climate Change, v. 9, p. 945-947, 2019. LI, D.; NIU, S.; LUO, Y. Global patterns of the dynamics of soil carbon and nitrogen stocks following afforestation: a meta? analysis. New Phytologist, n. 195, v. 1, p. 172-181, 2012. LIIMATAINEN, M.; VOIGT, C.; MARTIKAINEN, P. J.; HYTONEN, J.; REGINA, K.; OSKARSSON, H.; MALJANEN, M. Factors controlling nitrous oxide emissions from managed northern peat soils with low carbon to nitrogen ratio. Soil Biology and Biochemistry, v. 122, p. 186-195, 2018. LOGINOW, W.; WISNIEWSKI, W.; GONET, S.S.; CIESCINSKA, B. Fractionation of organic carbon based on susceptibility to oxidation. Polish Journal of Soil Science, v. 20, n. 1, p. 47-52, 1987. LUMBRERAS, J. F.; GOMES, J. B. V. Mapeamento pedol?gico e interpreta??es ?teis ao planejamento Ambiental do Munic?pio do Rio de Janeiro. Sergipe: Embrapa Tabuleiros Costeiros/Rio de Janeiro: Embrapa Solos, 326p. 2004. LUO, Y.; SU, B.; CURRIE, W. S.; DUKES, J. S.; FINZI, A.; HARTWIG, U.; HUNGATE, B.; MCMURTRIE, R. E.; OREN, R.; PARTON, W. J.; PATAKI, D. E.; SHAW, M. R., ZAK, D. R.; FIELD, C. B. Progressive nitrogen limitation of ecosystem responses to rising atmospheric carbon dioxide. BioScience, v. 54, p. 731? 739, 2004. LYNN, W. C.; MCKINZIE, W. E.; GROSSMAN, R. B. Q. Field laboratory tests for characterizarion of Histosols. In: AANDAHL, A. R. editor. Histosols: their characteristics, classification, and use. Madison: Soil Science Society of America, v. 6, p. 11-20, 1974. MELVILLE, M. D.; WHITE, I.; QUIRK, R. Acid sulfate soils: Management. In Encyclopedia of Soil Science, 3nd Ed.; Lal, R., Ed.; Taylor and Francis: New York, p. 31? 35, 2017. MENDON?A-SANTOS, M. L.; SILVA, E. F.; LUMBRERAS, J. F.; OLIVEIRA, R. P. Quantifica??o e distribui??o especial de carbono org?nico na paisagem e em perfis de solos no munic?pio do Rio de Janeiro. Boletim de Pesquisa e Desenvolvimento. Embrapa Solos, v. 39, p. 1-21, 2003. MINASY, B.; BERGLUND, ?.; CONNOLLY, H. C.; VRIES, F.; GIMONA, A.; KEMPEN, B.; KIDD, D.; LILJA, H.; MALONE, B.; MCBRATNEY, A. Digital mapping of peatlands ? a critical review. Earth ? Sciense Reviews, v. 196, p. 102870, 2019. MORRISON, E.; NEWMAN, S.; BAE, H. S.; HE, Z.; ZHOU, J.; REDDY, K. R.; OGRAM, A. Microbial genetic and enzymatic responses to an anthropogenic phosphorus gradient within subtropical peatlands. Geoderma, v. 268, p. 119-127, 2016. MUNIR, T. M.; KHADKA, B.; XU, B.; STRACK, M. Mineral nitrogen and phosphorus pools affected by water table lowering and warming in a boreal forested peatland. Ecohydrology, v. 10, n. 8, p. 1-15, 2017. NEGASSA, W.; MICHALIK, D.; KLYSUBUN, W.; LEINWEBER, P. Phosphorus speciation in long-term drained and rewetted peatlands of Northern Germany. Soil Systems, v. 4, n. 11, p. 1-20, 2020. OLIVEIRA FILHO, J. S.; FERRARI, A. C.; PEREIRA, M. G.; PINTO, L. A. S. R.; ZONTA, E.; MATOS, T. S. Phosphorus accumulation in soil after successive applications of swine manure: a long? term study in Brazil. Environmental Earth Sciences, v. 79, n. 62, p. 1-12, 2020. PARVIN, S.; BLAGODATSKAYA, E.; BECKER, J. N.; KUZYAKOV, Y.; UDDIN, S.; DORODNIKOV, M. Depth rather than microrelief controls microbial biomass and kinetics of C-, N-, P- and S-cycle enzymes in peatlands. Geoderma, v. 324, p. 67-76, 2018. PEREIRA, M. G.; ANJOS, L. H. C.; VALLADARES, G. S.; Organossolos: Ocorr?ncia, g?nese, classifica??o, altera??es pelo uso agr?cola e manejo. In: TORRADO, P.V., ALLEONI, L. R. F.; COOPER, M.; SILVA, A. P.; CARDOSO, E. J. (Eds.), T?picos em ci?ncia do solo. 4. Sociedade Brasileira de Ci?ncia do Solo, Vi?osa, MG, p. 233?276, 2005. PEREIRA, M. G.; LOSS, A.; SCHULTZ, N.; ZONTA, E.; GUARESCHI, R. F.; SANTOS, O. A. Q. Fertilidade de um Organossolo e produtividade do feijoeiro influenciados pela calagem e inocula??o. Revista Agrarian, v. 13, n. 48, p. 211-221, 2020. PRIETZEL, J.; THIEME, J.; PATERSON, D. Phosphorus speciation of forest-soil organic surface layers using P K-edge XANES spectroscopy. Journal of Plant Nutrition and Soil Science, v. 173, n. 6, p. 805-807, 2010. RABENHORST, M. C.; MEGONIGAL, J. P.; KELLER, J. Synthetic iron oxides for documenting sulfide in marsh pore water. Soil Sciense Society of America Journal, v. 74, n. 4, p. 1383 ? 1388, 2010. RUMPEL, C.; ALEXIS, M.; CHABBI, A.; CHAPLOT, V.; RASSE, D. P.; VALENTIN, C.; MARIOTTI, A.Black carbon contribution to soil organic matter composition in tropical sloping land under slash and burn agriculture. Geoderma, v. 130, n. 1-2, p. 35?46, 2006. SALES, M. V. S.; ALEIXO, S.; GAMA-RODRIGUES, A. C.; GAMA-RODRIGUES, E. F. Structural equation modeling for the estimation of interconnections between the P cycle and soil properties. Nutrient Cycling Agroecosystems, v. 109, p. 193-207, 2017. SANTOS, H. G.; JACOMINE, P. K. T.; ANJOS, L. H. C.; OLIVEIRA, V. A.; LUMBRERAS, J. F.; COELHO, M. R.; ALMEIDA, J. A.; CUNHA, T. J. F.; OLIVEIRA, J. B. Sistema Brasileiro de Classifica??o de Solos. 5. ed. revista e ampliada Bras?lia, DF: Embrapa, p. 590, 2018. SANTOS, R. D.; LEMOS, R. C.; SANTOS, H. G.; KER, J. C.; ANJOS, L. H. C.; SHIMIZU, S. H. Manual de descri??o e coleta de solo no campo. Vi?osa, MG: Sociedade Brasileira de Ci?ncia do Solo, ed. 7, p. 102, 2015. SAURICH, A.; TIEMEYER, B.; DON, A.; FIEDLER, S.; BECHTOLD, M.; AMELUNG, W.; FREIBAUER, A. Drained organic soils under agriculture - The more degraded the soil the higher the specific basal respiration. Geoderma, v. 355, p. 1-13, 2019. SCHARLEMANN, J. P.; TANNER, E. V.; HIEDERER, R.; KAPOS, V. Global soil carbon: understanding and managing the largest terrestrial carbon pool. Carbon Management, v. 5, n. 1, p. 81?91, 2014. SCHMIEDER, F.; GUSTAFSSON, J. P.; KLYSUBUN, W.; ZEHETNER, F.; RIDDLE, M.; KIRCHMANN, H.; BERGSTROM, L. Phosphorus speciation in cultivated oganic soils revealed by O K-edge XANES spectroscopy. Journal of Plant Nutrition and Soil Science, v. 183, n. 3, p. 367-381, 2020. SILVA NETO, E. C.; PEREIRA, M. G.; DE ARAUJO CARVALHO, M.; CALEGARI, M. R.; SCHIAVO, J. A.; DE PAULA S?, N.; ANJOS, L. H. C.; PESSENDA, L. C. R. Palaeonvironmental records of Histosol pedogenesis in upland area, Esp?rito Santo State (SE, Brazil). Journal of South American Earth Sciences, v. 95, p. 102301, 2019. SOARES, P. F. C. Varia??o de atributos e din?mica de carbono e nitrog?nio em Organossolos em fun??o de uso e manejo agr?cola no Rio de Janeiro. Disserta??o, 2011. SOARES, P. F. C.; ZUCHELLO, F.; ANJOS, L. H. C.; PEREIRA, M. G.; OLIVEIRA, A. P. P. Soil attributes and c and n variation in histosols under different agricultural usages in the state of Rio de Janeiro, Brazil. Bioscience Journal, v. 31, p. 1349-1362, 2015. SOUZA J?NIOR, V. S.; RIBEIRO, M. R.; OLIVEIRA, L. B. Caracteriza??o e classifica??o de solos tiom?rficos da v?rzea do rio Coruripe, no Estado de Alagoas. Revista brasileira de ci?ncia do solo, v. 25, n. 4, p. 977-986, 2001a. SOUZA J?NIOR, V. S.; RIBEIRO, M. R.; OLIVEIRA, L. B. Propriedades qu?micas e manejo de solos tiom?rficos da v?rzea do Rio Coruripe, Estado de Alagoas. Revista Brasileira de Ci?ncia do solo, v. 25, n. 4, p. 811-822, 2001b. STANEK, W.; SILC, T. Comparisons of four methods for determination of degree of peat humification (decomposition) with emphasis on the von Post method. Canadian Journal of Soil Science, v. 57, n. 2, p. 109-117, 1977. TAFT, H. E.; CROSS, P. A.; EDWARDS-JONES, G.; MOORHOUSE, E. R.; JONES, D. L. Greenhouse gas emissions from intensively managed peat soils in na arable production system. Agriculture, Ecosystems & Environment, v. 237, p. 162-172, 2017. TEAM, R. C. R: a language and environment for statistical computing (version 3.5. 3, Vienna, Austria: R Foundation for Statistical Computing), 2019. TEIXEIRA, L. A. J.; BATAGLIA, O. C.; BUZETTI, S.; FURLANI JUNIOR, E. Fertilizer and lime recommendation for coconut (Cocos nucifera L.) in the state of S?o Paulo, Brazil. Revista Brasileira de Fruticultura, v. 27, n. 3, p. 519-520, 2005. TEIXEIRA, L. A. J.; SILVA, J. A. A. Mineral nutrition of populations and hybrids of coconuts (Cocos nucifera L.) grown in Bebedouro (SP), Brazil. Revista Brasileira de Fruticultura, v. 25, n. 2, p. 371-374, 2003. TEIXEIRA, P. C.; DONAGEMMA, G. K.; FONTANA, A.; TEIXEIRA, W. G. Manual de m?todos de an?lise de solo. Bras?lia: Embrapa. 573p, 2017. TER BRAAK, C. J. F.; SMILAUER, P. CANOCO Reference manual and CanoDraw for Windows user's guide: Software for Canonical Community Ordination (version 4.5). Ithaca, Microcomputer Power, 500p, 2002. VALLADARES, G. S.; PEREIRA, M. G.; ANJOS, L. H. C.; BENITES, V. M.; EBELING, A. G.; MOUTA, R. O. Humic substance fractions and atributes of histosols and related highorganic- matter soils from Brazil. Communications in Soil Science and Plant Analysis, v. 38, n. 5-6, p. 763-777, 2007. VALLADARES, G. S.; PEREIRA, M. G.; BENITES, V. M.; ANJOS, L. H. C.; EBELING, A. G.; GUARESCHI, R. F. Carbon and Nitrogen stocks and humic fractions in Brazilian Organosols. Revista Brasileira de Ci?ncia do Solo, v. 40, 2016. VAN RAIJ, B.; ANDRADE, J. C.; CANTARELLA, H.; QUAGGIO, J. A. An?lise qu?mica para avalia??o da fertilidade de solos tropicais. Campinas: Instituto Agron?mico de Campinas, 285p. 2001. VEGAS-VILARR?BIA, T.; BARITTO, F.; MELEAN, G. A critical examination of some common field tests to assess the acid-sulphate condition in soils. Soil Use and Management, v. 24, n. 1, p. 60-68, 2008. WANG, G.; BAO, K.; YU, X.; ZHAO, H.; LIN, Q.; LU, X. Forms and accumulation of soil P in a subalpine peatland of Mt. Changbai in Northeast China. Catena, v. 92, p. 22-29, 2012. WANG, J. Y.; SONG, C. C.; WANG, X. W.; SONG, Y. Y. Changes in labile soil organic carbon fractions in wetland ecosystems along a latitudinal gradient in Northeast China. Catena, v. 96, p. 83-89, 2012. WANG, L.; AMELUNG, W.; PRIETZEL, J.; WILLBOLD, S. Transformation of organic phosphorus compounds during 1500 years of organic soil formation in Bavarian Alpine forests - A 31P NMR study. Geoderma, v. 340, p. 192-205, 2019. WANG, M. TALBOT, J. MOORE, T. R. Drainage and fertilization effects on nutrient availability in an ombrotrophic peatland. Science of the Total Environment, v. 621, p. 1255- 1263, 2018. WANG, M., MOORE, T. R.; TALBOT, J.; RILEY, J. L. The stoichiometry of carbon and nutrientes in peat formation. Global Biogeochemical Cycles, v. 29, n. 2, p. 113-121, 2015. WANG, M.; MOORE, T. R. Carbon, nitrogen, phosphorus, and potassium stoichiometry in an ombrotrophic peatland reflects plant functional type. Ecosystems, v. 17, p. 673-684, 2014. WANG, Q.; ZHANG, P. J.; LIU, M.; DENG, Z. W. Mineral-associated organic carbon and black carbon in restored wetlands. Soil Biology and Biochemistry, v. 75, p. 300?309, 2014. WANG, Z.; LIU, S.; HUANG, C.; LIU, Y.; BU, Z. Impact of land use change on profile distributions of organic carbon fractions in peat and mineral soils in Northeast China. Catena, v. 152, p. 1?8, 2017. WEISSERT, L. F.; DISNEY, M. Carbon storage in peatlands: a case study on the Isle of Man. Geoderma, v. 204-205, p. 111-119, 2013. W?STEN, J. H. M.; ISMAIL, A. B.; VAN WIKJ, A. L. M. Peat subsidence and its practical implications: a case study in Malaysia. Geoderma, v. 78, n. 1-2, p. 25-36, 1997. W?STEN, J. H. M.; RITZEMA, H. P. Land and water management options for peatland development in Sarawak, Malaysia. International Pet Journal, v. 11, p. 59-66, 2001. YEOMANS, J. C.; BREMNER, J. M. A rapid and precise method for routine determination of organic carbon in soil. Communications in Soil Science and Plant Analysis, v. 19, p. 1467-1476, 1998. ZAK, D.; WAGNER, C.; PAYER, B.; AUGUSTIN, J.; GELBRECHT, J. Phosphorus mobilization in rewetted fens: the effect of altered peat properties and implications for their restoration. Ecological Applications, v. 20, n. 5, p. 1336-1349, 2010. ZHANG, J. B.; SONG, C. C.; YANG, W. Y. Lang use effects on the distribution of labile organic carbon fractions through soil profiles. Soil Science Society of America Journal, v. 70, p. 660?667, 2006. ZOU, X. M.; RUAN, H. H.; FU, Y.; YANG, X. D.; SHA, L. Q. Estimating soil labile organic carbon and potential turnover rates using a sequential fumigation?incubation procedure. Soil Biology and Biochemistry, v. 37, p. 1923?1928, 2005.
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal Rural do Rio de Janeiro
dc.publisher.program.fl_str_mv Programa de P?s-Gradua??o em Agronomia - Ci?ncia do Solo
dc.publisher.initials.fl_str_mv UFRRJ
dc.publisher.country.fl_str_mv Brasil
dc.publisher.department.fl_str_mv Instituto de Agronomia
publisher.none.fl_str_mv Universidade Federal Rural do Rio de Janeiro
dc.source.none.fl_str_mv reponame:Biblioteca Digital de Teses e Dissertações da UFRRJ
instname:Universidade Federal Rural do Rio de Janeiro (UFRRJ)
instacron:UFRRJ
instname_str Universidade Federal Rural do Rio de Janeiro (UFRRJ)
instacron_str UFRRJ
institution UFRRJ
reponame_str Biblioteca Digital de Teses e Dissertações da UFRRJ
collection Biblioteca Digital de Teses e Dissertações da UFRRJ
bitstream.url.fl_str_mv http://localhost:8080/tede/bitstream/jspui/6326/4/2020+-+Otavio+Augusto+Queiroz+dos+Santos.pdf.jpg
http://localhost:8080/tede/bitstream/jspui/6326/3/2020+-+Otavio+Augusto+Queiroz+dos+Santos.pdf.txt
http://localhost:8080/tede/bitstream/jspui/6326/2/2020+-+Otavio+Augusto+Queiroz+dos+Santos.pdf
http://localhost:8080/tede/bitstream/jspui/6326/1/license.txt
bitstream.checksum.fl_str_mv cc73c4c239a4c332d642ba1e7c7a9fb2
550aeac44505803759c9be818158113c
f7464ca9a84b8e375538e9cadfd2fb07
7b5ba3d2445355f386edab96125d42b7
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da UFRRJ - Universidade Federal Rural do Rio de Janeiro (UFRRJ)
repository.mail.fl_str_mv bibliot@ufrrj.br||bibliot@ufrrj.br
_version_ 1800313565277585408