Abordagem teórica das interações dissacarídeo-protótipo de membrana fosfolipídica

Detalhes bibliográficos
Autor(a) principal: Soares, Cinthia Santos
Data de Publicação: 2022
Tipo de documento: Tese
Idioma: por
Título da fonte: Biblioteca Digital de Teses e Dissertações da UFRRJ
Texto Completo: https://rima.ufrrj.br/jspui/handle/20.500.14407/10266
Resumo: A presente tese teve como objetivo principal estudar as interações entre uma molécula de dissacarídeo e um protótipo de membrana fosfolipídica, formado por um sistema dimérico composto por duas moléculas de fosfolipídio. Tal estudo foi feito de maneira teórica, utilizando métodos quânticos para a modelagem dos sistemas moleculares de interesse: um método baseado na Teoria do Funcional da Densidade (B97-D/6-31G(d,p)) e um método semi-empírico (PM6). Os dissacarídeos considerados foram trealose, maltose e celobiose. O fosfolipídio considerado foi dioctanoil- fosfatidilcolina. O estudo de tais interações envolveu a construção do protótipo de membrana fosfolipídica e a criação de um protocolo para a aproximação dos dissacarídeos ao protótipo e se deu por meio do cálculo da energia de interação quando na formação dos sistemas interagentes (dissacarídeo-protótipo de membrana fosfolipídica). Com base em critérios geométricos, foram identificados dois tipos de interações entre todos os dissacarídeos e o protótipo de membrana fosfolipídica: interações com grupos fosfato e com grupos trimetil-amônio. Foram obtidos os espectros de absorção no infravermelho para o protótipo de membrana fosfolipídica isolado e para todos os sistemas interagentes – quatro para a trealose, três para a maltose e dois para a celobiose, a fim de comparar o comportamento do sinal correspondente ao estiramento assimétrico do grupo fosfato para agregados fosfolipídicos secos e agregados fosfolipídicos na presença de diferentes carboidratos, indicado na literatura como diferentemente afetado pela presença de diferentes carboidratos. Utilizando uma equação que relaciona o valor da constante de acoplamento de spin heteronuclear à três ligações 3JC1,H1’ ao valor do ângulo diedro definido pela sequência de átomos C1–O–C1’–H1’, ao longo da ligação glicosídica da trealose, foram calculados os respectivos valores de 3JC1,H1’ para todos os quatro sistemas interagentes obtidos. A partir do cálculo de população de Boltzmann para os sistemas interagentes, foi obtido um valor médio para a constante de acoplamento, que foi comparado ao resultado experimental disponível na literatura. Os valores de energia de interação dissacarídeo- protótipo de membrana fosfolipídica não mostraram concordância com o comportamento do sinal correspondente ao estiramento assimétrico do grupo fosfato, isso considerando os sistemas interagentes de mais baixa energia, sem correção de ponto zero. Tal resultado foi compreendido como sendo um forte indício de que as interações com grupos trimetil-amônio também precisam ser consideradas nessa avaliação. Já o valor médio obtido para a constante de acoplamento de spin heteronuclear, comparou-se muito bem ao valor experimental disponível na literatura, sendo um indicativo de que os valores dos ângulos glicosídicos da trealose presentes nos sistemas interagentes obtidos teoricamente comparam-se àqueles assumidos pelo dissacarídeo em sistemas interagentes reais, de forma que o método PM6, utilizado para a modelagem dos sistemas interagentes, pode ser apontado como um método computacional capaz de descrever adequadamente os efeitos estabilizantes da ligação glicosídica da trealose nesse tipo de sistema.
id UFRRJ-1_27824e0f0f6c43872b4e9a69c0f318b9
oai_identifier_str oai:rima.ufrrj.br:20.500.14407/10266
network_acronym_str UFRRJ-1
network_name_str Repositório Institucional da UFRRJ
repository_id_str
spelling Soares, Cinthia SantosSilva, Clarissa Oliveira da014.109.957-71https://orcid.org/0000-0002-5640-5387http://lattes.cnpq.br/3211933004567550Bauerfeldt, Glauco Favilla069.023.487-23https://orcid.org/0000-0001-5906-7080http://lattes.cnpq.br/1876040291299143Silva, Clarissa Oliveira da014.109.957-71https://orcid.org/0000-0002-5640-5387http://lattes.cnpq.br/3211933004567550Riger, Cristiano Jorgehttps://orcid.org/0000-0002-7579-5958http://lattes.cnpq.br/8756160468801705Pereira, Márcio Soareshttps://orcid.org/0000-0002-7579-5958http://lattes.cnpq.br/8756160468801705Magalhães, Camila Silva de077.313.237-65Baptista, Leonardo053.120.556-89https://orcid.org/0000-0001-9433-3313http://lattes.cnpq.br/2182432135517042099.709.887-27http://lattes.cnpq.br/86301620097994062023-12-21T18:59:48Z2023-12-21T18:59:48Z2022-07-06SOARES, Cinthia Santos. Abordagem teórica das interações dissacarídeo-protótipo de membrana fosfolipídica. 2022. 132 f. Tese (Doutorado em Química) - Instituto de Química, Universidade Federal Rural do Rio de Janeiro, Seropédica, 2022.https://rima.ufrrj.br/jspui/handle/20.500.14407/10266A presente tese teve como objetivo principal estudar as interações entre uma molécula de dissacarídeo e um protótipo de membrana fosfolipídica, formado por um sistema dimérico composto por duas moléculas de fosfolipídio. Tal estudo foi feito de maneira teórica, utilizando métodos quânticos para a modelagem dos sistemas moleculares de interesse: um método baseado na Teoria do Funcional da Densidade (B97-D/6-31G(d,p)) e um método semi-empírico (PM6). Os dissacarídeos considerados foram trealose, maltose e celobiose. O fosfolipídio considerado foi dioctanoil- fosfatidilcolina. O estudo de tais interações envolveu a construção do protótipo de membrana fosfolipídica e a criação de um protocolo para a aproximação dos dissacarídeos ao protótipo e se deu por meio do cálculo da energia de interação quando na formação dos sistemas interagentes (dissacarídeo-protótipo de membrana fosfolipídica). Com base em critérios geométricos, foram identificados dois tipos de interações entre todos os dissacarídeos e o protótipo de membrana fosfolipídica: interações com grupos fosfato e com grupos trimetil-amônio. Foram obtidos os espectros de absorção no infravermelho para o protótipo de membrana fosfolipídica isolado e para todos os sistemas interagentes – quatro para a trealose, três para a maltose e dois para a celobiose, a fim de comparar o comportamento do sinal correspondente ao estiramento assimétrico do grupo fosfato para agregados fosfolipídicos secos e agregados fosfolipídicos na presença de diferentes carboidratos, indicado na literatura como diferentemente afetado pela presença de diferentes carboidratos. Utilizando uma equação que relaciona o valor da constante de acoplamento de spin heteronuclear à três ligações 3JC1,H1’ ao valor do ângulo diedro definido pela sequência de átomos C1–O–C1’–H1’, ao longo da ligação glicosídica da trealose, foram calculados os respectivos valores de 3JC1,H1’ para todos os quatro sistemas interagentes obtidos. A partir do cálculo de população de Boltzmann para os sistemas interagentes, foi obtido um valor médio para a constante de acoplamento, que foi comparado ao resultado experimental disponível na literatura. Os valores de energia de interação dissacarídeo- protótipo de membrana fosfolipídica não mostraram concordância com o comportamento do sinal correspondente ao estiramento assimétrico do grupo fosfato, isso considerando os sistemas interagentes de mais baixa energia, sem correção de ponto zero. Tal resultado foi compreendido como sendo um forte indício de que as interações com grupos trimetil-amônio também precisam ser consideradas nessa avaliação. Já o valor médio obtido para a constante de acoplamento de spin heteronuclear, comparou-se muito bem ao valor experimental disponível na literatura, sendo um indicativo de que os valores dos ângulos glicosídicos da trealose presentes nos sistemas interagentes obtidos teoricamente comparam-se àqueles assumidos pelo dissacarídeo em sistemas interagentes reais, de forma que o método PM6, utilizado para a modelagem dos sistemas interagentes, pode ser apontado como um método computacional capaz de descrever adequadamente os efeitos estabilizantes da ligação glicosídica da trealose nesse tipo de sistema.CAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível SuperiorThe main objective of this thesis was to study the interactions between a disaccharide molecule and a phospholipid membrane prototype, formed by a dimeric system composed of two phospholipid molecules. This study was carried out theoretically, using quantum methods to model the molecular systems of interest: a method based on the Density Functional Theory (B97-D/6-31G(d,p)) and a semi- empirical method (PM6). The disaccharides considered were trehalose, maltose and cellobiose. The phospholipid considered was dioctanoyl-phosphatidylcholine. The study of such interactions involved the construction of the phospholipid membrane prototype and the creation of a protocol for the approximation of the disaccharides to the prototype. Based on geometric criteria, two types of interactions were identified between all disaccharides and the phospholipid membrane prototype: interactions with phosphate groups and with trimethyl-ammonium groups. Infrared absorption spectra were obtained for the isolated phospholipid membrane prototype and for all interacting systems - four for trehalose, three for maltose and two for cellobiose, in order to compare the behavior of the signal corresponding to the asymmetric stretching of the phosphate group for dry phospholipid aggregates and phospholipid aggregates in the presence of different carbohydrates, indicated in the literature as differently affected by the presence of different carbohydrates. Using an equation that relates the value of the heteronuclear spin coupling constant 3JC1,H1' to the value of the dihedral angle defined by the sequence of atoms C1–O–C1'–H1', along the glycosidic bond of trehalose, the respective values of 3JC1,H1' were calculated for all four interacting systems obtained. From the calculation of the Boltzmann population for the interacting systems, an average value for the coupling constant was obtained, which was compared to the experimental result available in the literature. The values of disaccharide-prototype phospholipid membrane interaction energy did not show agreement with the behavior of the signal corresponding to the asymmetric stretching of the phosphate group, considering the lowest energy interacting systems, without zero point correction. This result was understood as a strong indication that interactions with trimethyl-ammonium groups also need to be considered in this evaluation. The average value obtained for the heteronuclear spin coupling constant, compared very well to the experimental value available in the literature, being an indication that the values of the glycosidic angles of trehalose present in the interacting systems theoretically obtained are compared to those assumed by the disaccharide in real interacting systems, so that the PM6 method, used to model the interacting systems, can be pointed out as a computational method capable of adequately describing the stabilizing effects of the trehalose glycosidic bond in this type of system.application/pdfporUniversidade Federal Rural do Rio de JaneiroPrograma de Pós-Graduação em QuímicaUFRRJBrasilInstituto de QuímicaConformação de fosfolipídiosMembrana fosfolipídicaInteração dissacarídeo-membranaPhospholipid conformationPhospholipid membraneDissaccharide- membrane interactionQuímicaAbordagem teórica das interações dissacarídeo-protótipo de membrana fosfolipídicaTheoretical approach of dissaccharide-phospholipid membrane interactionsinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisJAIN, M. K.; VAGNER, R. C. Introduction to Biological Membranes. John Wiley & Sons, 1980. 2 LODISH, H.; BERK, A.; MATSUDAIRA, P.; KAISER, C. A.; KRIEGER, M.; SCOTT, M. P.; ZIPURSKY, L.; DARNELL, J. Molecular Cell Biology. 5th ed. W. H. Freeman and Company, 2005. 3 BERG, J. M.; CLARKE, N.N.; STRYER, L.; TYMOCZKO, J. L. Biochemistry. W. H. Freeman and Company, 2002. 4 ALBERTS, B.; JOHNSON, A.; LEWIS, J.; RAFF, M.; ROBERTS, K.; WALTER, P. Molecular Biology of the Cell. 4th ed. Garland Science, 2002. 5 ZHANG, M.; OLDENHOF , H.; SYDYKIV, B.; BIGALK, J.; SIEME, H.; WOLKERS, W. F. Freeze-drying of mammalian cells using trehalose: preservation of DNA integrity. Scientific Reports, v. 7, p. 6198. 2017. 6 TERO, R.; FUKUMOTO, K.; MOTEGI, T.; YOSHIDA, M.; NIWANO, M.; HIRANO-IWATA, A. Formation of Cell Membrane Component Domains in Artifcial Lipid Bilayer. Scientific Reports, v. 7, p. 17905. 2017. 7 DANIELLI, J.F.; DAVSON, H. A contribution to the theory of permeability of thin films. Journal of Cellular Physiology, v. 5, p. 495˗508. 1935. 8 SINGER, S. J.; NICOLSON, G. L. The Fluid Mosaic Model of the Structure of Cell Membranes: Cell membranes are viewed as two-dimensional solutions of oriented globular proteins and lipids. Science, v. 175, p. 720˗731. 1972. 9 SIMONS, K.; IKONEN, E. Functional rafts in cell membranes. Nature, v. 387, p. 569˗572. 1997. 10 BROWN, D. A.; LONDON, E. Structure of detergent-resistant membrane domains: does phase separation occur in biological membranes? Biochemical and Biophysical Research Communications, v. 240, p. 1˗7. 1997. 11 LINGWOOD, D.; SIMONS, K. Lipid rafts as a membrane-organizing principle. Science, v. 327, p. 46˗50. 2010. 125 12 NELSON, D. L.; COX, M. M. Principles of Biochemistry. 6th ed. W. H. Freeman and Company, 2012. 13CASARES, D.; ESCRIBÁ, P. V.; ROSSELLÓ, C. A. Membrane Lipid Composition: Effect on Membrane and Organelle Structure, Function and Compartmentalization and Therapeutic Avenues. International Journal of Molecular Sciences, v. 20, p. 2167. 2019. 14KOYNOVA, R.; TENCHOV, B. Phase Transitions and Phase Behavior of Lipids. In: ROBERTS, G. C. K. Encyclopedia of Biophysics. Springer, 2013, 1841˗1854. 15 MUELLER, P.; RUDIN, D. O.; TIEN, H. T.; WESCOTT, W. C. Reconstitution of Cell Membrane Structure in vitro and its Transformation into an Excitable System. Nature, v. 194, p. 979˗980. 1962. 16 METZLER, D. E. Biochemistry: The Chemical Reactions of Living Cells. 2nd ed. Academic Press, 2003. 17 VANCE, J. E.; VANCE, D. Biochemistry of Lipids, Lipoproteins and Membranes. 4th ed. Elsevier, 2002. 18 ROTHMAN J. E.; LENARD, J. Membrane asymmetry. Science, v. 195, p. 743˗753. 1977. 19 WIENER, M. C.; WHITE, S. H. Structure of a fluid dioleoylphosphatidylcholine bilayer determined by joint refinement of x-ray and neutron diffraction data. III. Complete structure. Biophysical Journal, v. 61, p. 434˗447. 1992. 20 KARPLUS, M. J. Contact Electron‐Spin Coupling of Nuclear Magnetic Moments. The Journal of Chemical Physics, v. 30, p. 11. 1959. 126 21 RAMSEY, N. F. Electron Coupled Interactions between Nuclear Spins in Molecules. Physical Review, v. 91, p. 303. 1953. 22 COXON, B. Model parameters for the analysis of skew conformations of carbohydrates by p.m.r. spectroscopy. Carbohydrate Research, v. 13, p. 321˗330. 1970. 23 GUSCHLBAUER, W. Conformational analysis of ribonucleosides from proton- proton coupling constants. Biochimica et Biophysica Acta, v. 610, p. 47˗55. 1980. 24 LÖHR, F.; BLÜMEL, M.; SCHMIDT, J. M.; RÜTERJANS, H. Application of H(N)CA,CO-E.COSY experiments for calibrating the φ angular dependences of vicinal couplings J(C′i−1,Hi α), J(C′i−1,Ci β) and J(C′i−1,C′i) in proteins. Journal of Biomolecular NMR, v. 10, 107˗118. 1997. 25 PASSEY, R. F.; FAIRBAIRN, D. The conversion of fat to carbohydrate during embryonation os ascaris eggs. Canadian Journal of Biochemistry and Physiology, v. 35, p. 511˗525. 1957. 26 SUSSMAN, A. S.; LINGAPPA, B. T. Role of Trehalose in Ascosporos of Neurospora Tetrasperma. Science, v.130, p. 1343. 1959. 27 DUTRIEU, J. Variations du trehalose au cours de Lembryogenese Chez Bombyx Mori et de la metamorphose Chez Calliphora Erythrocephala. Comptes Rendus Hebdomadairesdes Seances de l’AcadémiedesSciences, v. 252, p. 347. 1961. 28 MADIN, K. A. C.; CROWE, J. H. Anhydrobiosis in nematodes: carbohydrate and lipid metabolism during dehydration. Journal of Experimental Zoology, v. 193, p. 335˗342. 1975. 29 CLEGG, J. S. Free glycerol in dormant cysts of the brine shrimp Artemia salina, and its disappearance during development. The Biological Bulletin, v. 123, p. 295˗301. 1962. 30 DUTRIEU, J. Observations biochimiques et physiologiques sur le développement d’Artemiasalina Leach. Archives de Zoologie Expérimentale et Générale, v. 99, p. 3˗128. 1960. 127 31 CROWE, J. H. Anhydrobiosis: An Unsolved Problem. The American Naturalist, v. 105, p. 563˗573. 1971. 32 CROWE, J. H.; CROWE, L. M.; JACKSON, S. A. Preservation of Structural and Functional Activity in Lyophilized Sarcoplasmic Reticulum. Archives of Biochemistry and Biophysics, v. 220, p. 477˗484. 1983. 33 CROWE, J. H.; CROWE, L. M.; MOURADIAN, R. Stabilization of Biological Membranes at Low Water Activities. Cryobiology, v. 20, p. 346˗356. 1983. 34 CROWE, J. H.; CROWE, L. M.; CHAPMAN, D. Preservation of Membranes in Anhydrobiotic Organisms: the Role of Trehalose. Science, v. 223, p. 701˗703. 1984. 35 CROWE, L. M.; MOURADIAN, R.; CROWE, J. H.; JACKSON, S. A.; WOMERSLEY, C. Effects of carbohydrates on membrane stability at low water activities. Biochimica et Biophysica Acta, v. 769, 141˗150. 1984. 36 LUZZATI, V.; HUSSON, F. The structure of the liquid-crystalline phases of lipid-water systems. The Journal of Cell Biology, v. 12, p. 207˗219. 1962. 37 CROWE, L. M.; CROWE, J. H. Hydration-Dependent Hexagonal Phase Lipid in a Biological Membrane. Archives of Biochemistry and Biophysics, v. 217, p. 582˗587. 1982. 38 CROWE, L. M.; CROWE, J. H.; CHAPMAN, D. Interaction of carbohydrates with dry dipalmitoylphosphatidylcholine. Archives of Biochemistry and Biophysics, v. 236, p. 289˗296. 1985. 39 GREEN, J. L.; ANGELL, C. A. Phase relations and vitrification in saccharide-water solutions and the trehalose anomaly. The Journal of Physical Chemistry, v. 93, p. 2880˗2882. 1989. 40 KOSTER, K. L.; WEBB, M. S.; BRYANT, G.; LYNCH, D. V. Interactions between soluble sugars and POPC (1-palmitoyl-2-oleoylphosphatidylcholine) during dehydration: vitrification of sugars alters the phase behavior of the phospholipid. Biochimica et Biophysica Acta, v. 1193, p. 143˗150. 1994. 128 41 CROWE, J. H.; LESLIE, S. B.; CROWE, L. M. Is vitrification sufficient to preserve liposomes during freeze-drying? Cryobiology, v. 31, p. 355˗366. 1994. 42 CROWE, L. M.; REID, D. S.; CROWE, J. H. Is Trehalose Special for Preserving Dry Biomaterials? Biophysical Journal, v. 71, p. 2087˗2093. 1996. 43 ALBERTORIO, F.; CHAPA, V. A.; CHEN, X.; DIAZ, A. J.; CREMER, P.S. The α,α-(1→1) Linkage of Trehalose Is Key to Anhydrobiotic Preservation. Journal of the American Chemical Society, v. 129, p. 10567˗10574. 2007. 44 KAPLA, J.; ENGSTRÖM, O.; STEVENSSON, B.; WOHLERT, J.; WIDMALM, G.; MALINIAK, A. Molecular dynamics simulations and NMR spectroscopy studies of trehalose˗lipid bilayer systems. Physical Chemistry and Chemical Physics, v. 17, p. 22438˗22447. 2015. 45 CRAMER, C. J. Essentials of Computational Chemistry: Theories and Models. 2nd ed. John Wiley & Sons, 2004. 46 SZABO, A.; OSTLUND, N. S. Modern Quantum Chemistry: Introduction to Advanced Electronic Structure Theory. Dover Publications, 1996. 47 ATKINS, P. W.; FRIEDMAN, R. S. Molecular Quantum Mechanics. 5th ed. Oxford University Press, 2010. 48 LEACH, A. R. Molecular Modelling: Principles and Applications. 2nd ed. Prentice Hall, 2001. 49 DEWAR, M. J. S.; THIEL, W. Ground states of molecules. 38. The MNDO method. Approximations and parameters. Journal of the American Chemical Society, v. 99, p. 4899-4907. 1977. 50 STEWART, J. J. P. Optimization of parameters for semi-empirical methods V: Modification of NDDO approximations and application to 70 elements. Journal of Molecular Modeling, v. 13, p. 1173˗1213. 2007. 51 TSCHUMPER, G.S.; LEININGER, M. L.; HOFFMAN, B. C.; VALEEV, E. F.; SCHAEFER, H. F.; QUACK, M. Anchoring the water dimer potential energy surface 129 with explicitly correlated computations and focal point analyses. Journal of Chemical Physics, v. 116, p. 690˗701. 2002. 52 JENSEN, F. Introduction to Computational Chemistry. John Wiley & Sons, 1999. 53 KOHN, W.; SHAM, L. S. Self-Consistent Equations Including Exchange and Correlation Effects. Physical Reviews, v. 140, p. A1133˗A1138. 1965. 54 GRIMME, S. Accurate description of van der Waals complexes by density functional theory including empirical corrections. Journal of Computational Chemistry, v. 25, p. 1463˗1473. 2004. 55 GRIMME, S. Semiempirical GGA-type density functional constructed with a long- range dispersion correction. Journal of Computational Chemistry, v. 27, p. 1787˗1799. 2006. 56 BECKE, A. D. Density-functional thermochemistry. V. Systematic optimization of exchange-correlation functionals. Journal of Chemical Physics, v. 107, p. 8554˗8560. 1997. 57 BECKE, A. D. Correlation energy of an inhomogeneous electron gas: A coordinate- space model. Journal of Chemical Physics, v. 88, p. 1053˗1062. 1988. 58 DIRAC, P. A. M. Exchange phenomena in the Thomas atom. Proceedings of the Cambridge Philosophical Society, v. 26, p. 376˗385. 1930. 59 STOLL, H.; GOLKA, E.; PREUSS, H. Correlation energies in the spin-density functional formalism. Theoretica Chimica Acta, v. 55, p. 29˗41. 1980. 60 VOSKO, S. H.; WILK, L.; NUSAIR, M. Accurate spin-dependent electron liquid correlation energies from local spin density calculations: a critical analysis. Canadian Journal of Physics, v. 58, p. 1200˗1211. 1980. 61 PERDEW, J. P.; WANG, Y. Accurate and simple analytic representation of the electron-gas correlation energy. Physical Review B, v. 45, p. 13244˗13249. 1992. 62 ALEM, M.; TOZER, D. J. Helium dimer dispersion forces and correlation potentials in density functional theory. Journal of Chemical Physics, v. 117, p. 11113˗11120. 2002. 130 63 ZIMMERLI, U.; PARRINELLO, M.; KOUMOUTSAKOS, P. Dispersion corrections to density functionals for water aromatic interactions. Journal of Chemical Physics, v. 120, p. 2693˗2699. 2004. 64 TSUZUKI, S.; LUETHI, H. P. Interaction energies of van der Waals and hydrogen bonded systems calculated using density functional theory: Assessing the PW91 model. Journal of Chemical Physics, v. 114, p. 3949˗3957. 2001. 65 WU, Q.; YANG, W. Empirical correction to density functional theory for van der Waals interactions. Journal of Chemical Physics, v. 116, p. 515˗524. 2002. 66 WU, X.; VARGAS, M. C.; NAYAK, S.; LOTRICH, V.; SCOLES, G. Towards extending the applicability of density functional theory to weakly bound systems. Journal of Chemical Physics, v. 115, p. 8748˗8757. 2001. 67 DA SILVA, C. O.; MENEZES, A. O.; COELHO, A. V.; DE OLIVEIRA, V. P.; SOARES, C. S. Quantum mechanical calculations on carbohydrates: What they can tell us? In: VERLI, H. Strategies for the Determination of Carbohydrates Structure and Conformation. Transworld Research Network, 2010. 68 HAUSER, H.; PASCHER, I.; PEARSON, R. H.; SUNDELL, S. Preferred conformation and molecular packing of phosphatidylethanolamine and phosphatidylcholine. Biochimica et Biophysica Acta, v. 650, p. 21˗51. 1981. 69 BARTLETT, R. J. Coupled-cluster approach to molecular structure and spectra: a step toward predictive quantum chemistry. Journal of Physical Chemistry, v. 93, p. 1697˗1708. 1989. 70 MOLLER, C.; PLESSET, M. S. Note on an Approximation Treatment for Many- Electron Systems. Physical Review, v. 46, p. 618˗622. 1934. 71 HOHENBERG, P.; KOHN, W. Inhomogeneous Electron Gas. Physical Reviews, v. 136, p. B864˗B871. 1964. 72 BAUSCHLICHER, C. W., Jr.; RICCA, A.; PARTRIDGE, H.; LANGHOFF, S. R. Chemistry by Density Functional Theory. In: CHANG, D. P. Recent Advances in Density Functional Methods, part II. World Scientific, 1997. 131 73 MARTIN, J. M. L. Some observations and cases studies on basis set convergence in Density Functional Theory. In: GEERLINGS, P.; DEPROFT, F.; LANGENAEKER, W. Density Functional Theory: a bridge between Chemistry and Physics. Vrije Universiteit Brussel, 2000. 74 JOHNSON, E. R.; WOLKOW, R. A.; DILABIO, G. A. Application of 25 density functionals to dispersion-bound homomolecular dimers. Chemical Physics Letters, v. 394, p. 334˗338. 2004. 75 PEVERATI, R.; BALDRIDGE, K. K. Implementation and performance of DFT-D with respect to basis set and functional for study of dispersion interactions in nanoscale aromatic hydrocarbons. Journal of Chemical Theory and Computation, v. 4, p. 2030˗2048. 2008. 76 DITCHFIELD, R.; HEHRE, W. J.; POPLE, J. A. Self Consistent Molecular Orbital Methods. IX. An Extended Gaussian Type Basis for Molecular Orbital Studies of Organic Molecules. Journal of Chemical Physics, v. 54, p. 724˗728. 1971. 77 HEHRE, W. J.; DITCHFIELD, R.; POPLE, J. A. Self-Consistent Molecular Orbital Methods. XII. Further Extensions of Gaussian-Type Basis Sets for Use in Molecular Orbital Studies of Organic Molecules. Journal of Chemical Physics, v. 56, p. 2257˗2261. 1972. 78 SOARES, C. S.; da SILVA, C. O. Conformational study of methylphosphocholine: a prototype for phospholipid headgroups in membranes. Journal of Molecular Graphs and Modelling, v. 29, p. 82˗92. 2010. 79 KRISHNAMURTY, S.; STEFANOV, M.; MINEVA, T.; BÉGU, S.; DEVOISSELLE, J. M.; GOURSOT, A.; ZHU, R.; SALAHUB, D. R. Density Functional Theory-Based Conformational Analysis of a Phospholipid Molecule (Dimyristoyl Phosphatidylcholine). Journal of Physical Chemistry B, v. 112, p. 13433˗13442. 2008. 80 TVAROŠKA, I.; TARAVEL, F. R.; UTILLE, J. P.; CARVER, J. P. Quantum mechanical and NMR spectroscopy studies on the conformations of the hydroxymethyl and methoxymethyl groups in aldohexosides. Carbohydrate Research, v. 337, p. 353˗367. 2002. 132 81 HARMON, K. H.; GENNICK, I.; MADEIRA, S. L. Hydrogen bonding. IV. Correlation of infrared spectral properties with C-H...X hydrogen bonding and crystal habit in tetramethylammonium ion salts. Journal of Physical Chemistry, v. 78, p. 2585˗2591. 1974. 82 KABISCH, G. Raman spectra and crystal structure of polycrystalline tetramethylammonium salts. Journal of Raman Spectroscopy, v. 9, p. 279˗285. 1980. 83 GRDADOLNIK, J.; HADŽI, D. FT infrared and Raman investigation of saccharide-phosphatidylcholine interactions using novelstructure probes. Spectrochimica Acta Part A, v. 54, p. 1989˗2000. 1998.https://tede.ufrrj.br/retrieve/73869/2022%20-%20Cinthia%20Santos%20Soares.pdf.jpghttps://tede.ufrrj.br/jspui/handle/jspui/6732Submitted by Leticia Schettini (leticia@ufrrj.br) on 2023-07-14T11:51:43Z No. of bitstreams: 1 2022 - Cinthia Santos Soares.pdf: 2995100 bytes, checksum: 45eb6cda77e7db0d56e6a4c20745b2f5 (MD5)Made available in DSpace on 2023-07-14T11:51:43Z (GMT). No. of bitstreams: 1 2022 - Cinthia Santos Soares.pdf: 2995100 bytes, checksum: 45eb6cda77e7db0d56e6a4c20745b2f5 (MD5) Previous issue date: 2022-07-06info:eu-repo/semantics/openAccessreponame:Biblioteca Digital de Teses e Dissertações da UFRRJinstname:Universidade Federal Rural do Rio de Janeiro (UFRRJ)instacron:UFRRJTHUMBNAIL2022 - Cinthia Santos Soares.pdf.jpgGenerated Thumbnailimage/jpeg1943https://rima.ufrrj.br/jspui/bitstream/20.500.14407/10266/1/2022%20-%20Cinthia%20Santos%20Soares.pdf.jpgcc73c4c239a4c332d642ba1e7c7a9fb2MD51TEXT2022 - Cinthia Santos Soares.pdf.txtExtracted Texttext/plain222653https://rima.ufrrj.br/jspui/bitstream/20.500.14407/10266/2/2022%20-%20Cinthia%20Santos%20Soares.pdf.txtf2612b098274638b8598d66f8a5fed96MD52ORIGINAL2022 - Cinthia Santos Soares.pdf2022 - Cinthia Santos Soaresapplication/pdf2995100https://rima.ufrrj.br/jspui/bitstream/20.500.14407/10266/3/2022%20-%20Cinthia%20Santos%20Soares.pdf45eb6cda77e7db0d56e6a4c20745b2f5MD53LICENSElicense.txttext/plain2089https://rima.ufrrj.br/jspui/bitstream/20.500.14407/10266/4/license.txt7b5ba3d2445355f386edab96125d42b7MD5420.500.14407/102662023-12-21 15:59:48.057oai:rima.ufrrj.br:20.500.14407/10266Tk9UQTogQ09MT1FVRSBBUVVJIEEgU1VBIFBSP1BSSUEgTElDRU4/QQpFc3RhIGxpY2VuP2EgZGUgZXhlbXBsbyA/IGZvcm5lY2lkYSBhcGVuYXMgcGFyYSBmaW5zIGluZm9ybWF0aXZvcy4KCkxJQ0VOP0EgREUgRElTVFJJQlVJPz9PIE4/Ty1FWENMVVNJVkEKCkNvbSBhIGFwcmVzZW50YT8/byBkZXN0YSBsaWNlbj9hLCB2b2M/IChvIGF1dG9yIChlcykgb3UgbyB0aXR1bGFyIGRvcyBkaXJlaXRvcyBkZSBhdXRvcikgY29uY2VkZSA/IFVuaXZlcnNpZGFkZSAKWFhYIChTaWdsYSBkYSBVbml2ZXJzaWRhZGUpIG8gZGlyZWl0byBuP28tZXhjbHVzaXZvIGRlIHJlcHJvZHV6aXIsICB0cmFkdXppciAoY29uZm9ybWUgZGVmaW5pZG8gYWJhaXhvKSwgZS9vdSAKZGlzdHJpYnVpciBhIHN1YSB0ZXNlIG91IGRpc3NlcnRhPz9vIChpbmNsdWluZG8gbyByZXN1bW8pIHBvciB0b2RvIG8gbXVuZG8gbm8gZm9ybWF0byBpbXByZXNzbyBlIGVsZXRyP25pY28gZSAKZW0gcXVhbHF1ZXIgbWVpbywgaW5jbHVpbmRvIG9zIGZvcm1hdG9zID91ZGlvIG91IHY/ZGVvLgoKVm9jPyBjb25jb3JkYSBxdWUgYSBTaWdsYSBkZSBVbml2ZXJzaWRhZGUgcG9kZSwgc2VtIGFsdGVyYXIgbyBjb250ZT9kbywgdHJhbnNwb3IgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YT8/byAKcGFyYSBxdWFscXVlciBtZWlvIG91IGZvcm1hdG8gcGFyYSBmaW5zIGRlIHByZXNlcnZhPz9vLgoKVm9jPyB0YW1iP20gY29uY29yZGEgcXVlIGEgU2lnbGEgZGUgVW5pdmVyc2lkYWRlIHBvZGUgbWFudGVyIG1haXMgZGUgdW1hIGM/cGlhIGEgc3VhIHRlc2Ugb3UgCmRpc3NlcnRhPz9vIHBhcmEgZmlucyBkZSBzZWd1cmFuP2EsIGJhY2stdXAgZSBwcmVzZXJ2YT8/by4KClZvYz8gZGVjbGFyYSBxdWUgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YT8/byA/IG9yaWdpbmFsIGUgcXVlIHZvYz8gdGVtIG8gcG9kZXIgZGUgY29uY2VkZXIgb3MgZGlyZWl0b3MgY29udGlkb3MgCm5lc3RhIGxpY2VuP2EuIFZvYz8gdGFtYj9tIGRlY2xhcmEgcXVlIG8gZGVwP3NpdG8gZGEgc3VhIHRlc2Ugb3UgZGlzc2VydGE/P28gbj9vLCBxdWUgc2VqYSBkZSBzZXUgCmNvbmhlY2ltZW50bywgaW5mcmluZ2UgZGlyZWl0b3MgYXV0b3JhaXMgZGUgbmluZ3U/bS4KCkNhc28gYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YT8/byBjb250ZW5oYSBtYXRlcmlhbCBxdWUgdm9jPyBuP28gcG9zc3VpIGEgdGl0dWxhcmlkYWRlIGRvcyBkaXJlaXRvcyBhdXRvcmFpcywgdm9jPyAKZGVjbGFyYSBxdWUgb2J0ZXZlIGEgcGVybWlzcz9vIGlycmVzdHJpdGEgZG8gZGV0ZW50b3IgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIHBhcmEgY29uY2VkZXIgPyBTaWdsYSBkZSBVbml2ZXJzaWRhZGUgCm9zIGRpcmVpdG9zIGFwcmVzZW50YWRvcyBuZXN0YSBsaWNlbj9hLCBlIHF1ZSBlc3NlIG1hdGVyaWFsIGRlIHByb3ByaWVkYWRlIGRlIHRlcmNlaXJvcyBlc3Q/IGNsYXJhbWVudGUgCmlkZW50aWZpY2FkbyBlIHJlY29uaGVjaWRvIG5vIHRleHRvIG91IG5vIGNvbnRlP2RvIGRhIHRlc2Ugb3UgZGlzc2VydGE/P28gb3JhIGRlcG9zaXRhZGEuCgpDQVNPIEEgVEVTRSBPVSBESVNTRVJUQT8/TyBPUkEgREVQT1NJVEFEQSBURU5IQSBTSURPIFJFU1VMVEFETyBERSBVTSBQQVRST0M/TklPIE9VIApBUE9JTyBERSBVTUEgQUc/TkNJQSBERSBGT01FTlRPIE9VIE9VVFJPIE9SR0FOSVNNTyBRVUUgTj9PIFNFSkEgQSBTSUdMQSBERSAKVU5JVkVSU0lEQURFLCBWT0M/IERFQ0xBUkEgUVVFIFJFU1BFSVRPVSBUT0RPUyBFIFFVQUlTUVVFUiBESVJFSVRPUyBERSBSRVZJUz9PIENPTU8gClRBTUI/TSBBUyBERU1BSVMgT0JSSUdBPz9FUyBFWElHSURBUyBQT1IgQ09OVFJBVE8gT1UgQUNPUkRPLgoKQSBTaWdsYSBkZSBVbml2ZXJzaWRhZGUgc2UgY29tcHJvbWV0ZSBhIGlkZW50aWZpY2FyIGNsYXJhbWVudGUgbyBzZXUgbm9tZSAocykgb3UgbyhzKSBub21lKHMpIGRvKHMpIApkZXRlbnRvcihlcykgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIGRhIHRlc2Ugb3UgZGlzc2VydGE/P28sIGUgbj9vIGZhcj8gcXVhbHF1ZXIgYWx0ZXJhPz9vLCBhbD9tIGRhcXVlbGFzIApjb25jZWRpZGFzIHBvciBlc3RhIGxpY2VuP2EuCg==Biblioteca Digital de Teses e Dissertaçõeshttps://tede.ufrrj.br/PUBhttps://tede.ufrrj.br/oai/requestbibliot@ufrrj.br||bibliot@ufrrj.bropendoar:2023-12-21T18:59:48Biblioteca Digital de Teses e Dissertações da UFRRJ - Universidade Federal Rural do Rio de Janeiro (UFRRJ)false
dc.title.por.fl_str_mv Abordagem teórica das interações dissacarídeo-protótipo de membrana fosfolipídica
dc.title.alternative.eng.fl_str_mv Theoretical approach of dissaccharide-phospholipid membrane interactions
title Abordagem teórica das interações dissacarídeo-protótipo de membrana fosfolipídica
spellingShingle Abordagem teórica das interações dissacarídeo-protótipo de membrana fosfolipídica
Soares, Cinthia Santos
Conformação de fosfolipídios
Membrana fosfolipídica
Interação dissacarídeo-membrana
Phospholipid conformation
Phospholipid membrane
Dissaccharide- membrane interaction
Química
title_short Abordagem teórica das interações dissacarídeo-protótipo de membrana fosfolipídica
title_full Abordagem teórica das interações dissacarídeo-protótipo de membrana fosfolipídica
title_fullStr Abordagem teórica das interações dissacarídeo-protótipo de membrana fosfolipídica
title_full_unstemmed Abordagem teórica das interações dissacarídeo-protótipo de membrana fosfolipídica
title_sort Abordagem teórica das interações dissacarídeo-protótipo de membrana fosfolipídica
author Soares, Cinthia Santos
author_facet Soares, Cinthia Santos
author_role author
dc.contributor.author.fl_str_mv Soares, Cinthia Santos
dc.contributor.advisor1.fl_str_mv Silva, Clarissa Oliveira da
dc.contributor.advisor1ID.fl_str_mv 014.109.957-71
https://orcid.org/0000-0002-5640-5387
dc.contributor.advisor1Lattes.fl_str_mv http://lattes.cnpq.br/3211933004567550
dc.contributor.advisor-co1.fl_str_mv Bauerfeldt, Glauco Favilla
dc.contributor.advisor-co1ID.fl_str_mv 069.023.487-23
https://orcid.org/0000-0001-5906-7080
dc.contributor.advisor-co1Lattes.fl_str_mv http://lattes.cnpq.br/1876040291299143
dc.contributor.referee1.fl_str_mv Silva, Clarissa Oliveira da
dc.contributor.referee1ID.fl_str_mv 014.109.957-71
https://orcid.org/0000-0002-5640-5387
dc.contributor.referee1Lattes.fl_str_mv http://lattes.cnpq.br/3211933004567550
dc.contributor.referee2.fl_str_mv Riger, Cristiano Jorge
dc.contributor.referee2ID.fl_str_mv https://orcid.org/0000-0002-7579-5958
dc.contributor.referee2Lattes.fl_str_mv http://lattes.cnpq.br/8756160468801705
dc.contributor.referee3.fl_str_mv Pereira, Márcio Soares
dc.contributor.referee3ID.fl_str_mv https://orcid.org/0000-0002-7579-5958
dc.contributor.referee3Lattes.fl_str_mv http://lattes.cnpq.br/8756160468801705
dc.contributor.referee4.fl_str_mv Magalhães, Camila Silva de
dc.contributor.referee4ID.fl_str_mv 077.313.237-65
dc.contributor.referee5.fl_str_mv Baptista, Leonardo
dc.contributor.referee5ID.fl_str_mv 053.120.556-89
https://orcid.org/0000-0001-9433-3313
dc.contributor.referee5Lattes.fl_str_mv http://lattes.cnpq.br/2182432135517042
dc.contributor.authorID.fl_str_mv 099.709.887-27
dc.contributor.authorLattes.fl_str_mv http://lattes.cnpq.br/8630162009799406
contributor_str_mv Silva, Clarissa Oliveira da
Bauerfeldt, Glauco Favilla
Silva, Clarissa Oliveira da
Riger, Cristiano Jorge
Pereira, Márcio Soares
Magalhães, Camila Silva de
Baptista, Leonardo
dc.subject.por.fl_str_mv Conformação de fosfolipídios
Membrana fosfolipídica
Interação dissacarídeo-membrana
topic Conformação de fosfolipídios
Membrana fosfolipídica
Interação dissacarídeo-membrana
Phospholipid conformation
Phospholipid membrane
Dissaccharide- membrane interaction
Química
dc.subject.eng.fl_str_mv Phospholipid conformation
Phospholipid membrane
Dissaccharide- membrane interaction
dc.subject.cnpq.fl_str_mv Química
description A presente tese teve como objetivo principal estudar as interações entre uma molécula de dissacarídeo e um protótipo de membrana fosfolipídica, formado por um sistema dimérico composto por duas moléculas de fosfolipídio. Tal estudo foi feito de maneira teórica, utilizando métodos quânticos para a modelagem dos sistemas moleculares de interesse: um método baseado na Teoria do Funcional da Densidade (B97-D/6-31G(d,p)) e um método semi-empírico (PM6). Os dissacarídeos considerados foram trealose, maltose e celobiose. O fosfolipídio considerado foi dioctanoil- fosfatidilcolina. O estudo de tais interações envolveu a construção do protótipo de membrana fosfolipídica e a criação de um protocolo para a aproximação dos dissacarídeos ao protótipo e se deu por meio do cálculo da energia de interação quando na formação dos sistemas interagentes (dissacarídeo-protótipo de membrana fosfolipídica). Com base em critérios geométricos, foram identificados dois tipos de interações entre todos os dissacarídeos e o protótipo de membrana fosfolipídica: interações com grupos fosfato e com grupos trimetil-amônio. Foram obtidos os espectros de absorção no infravermelho para o protótipo de membrana fosfolipídica isolado e para todos os sistemas interagentes – quatro para a trealose, três para a maltose e dois para a celobiose, a fim de comparar o comportamento do sinal correspondente ao estiramento assimétrico do grupo fosfato para agregados fosfolipídicos secos e agregados fosfolipídicos na presença de diferentes carboidratos, indicado na literatura como diferentemente afetado pela presença de diferentes carboidratos. Utilizando uma equação que relaciona o valor da constante de acoplamento de spin heteronuclear à três ligações 3JC1,H1’ ao valor do ângulo diedro definido pela sequência de átomos C1–O–C1’–H1’, ao longo da ligação glicosídica da trealose, foram calculados os respectivos valores de 3JC1,H1’ para todos os quatro sistemas interagentes obtidos. A partir do cálculo de população de Boltzmann para os sistemas interagentes, foi obtido um valor médio para a constante de acoplamento, que foi comparado ao resultado experimental disponível na literatura. Os valores de energia de interação dissacarídeo- protótipo de membrana fosfolipídica não mostraram concordância com o comportamento do sinal correspondente ao estiramento assimétrico do grupo fosfato, isso considerando os sistemas interagentes de mais baixa energia, sem correção de ponto zero. Tal resultado foi compreendido como sendo um forte indício de que as interações com grupos trimetil-amônio também precisam ser consideradas nessa avaliação. Já o valor médio obtido para a constante de acoplamento de spin heteronuclear, comparou-se muito bem ao valor experimental disponível na literatura, sendo um indicativo de que os valores dos ângulos glicosídicos da trealose presentes nos sistemas interagentes obtidos teoricamente comparam-se àqueles assumidos pelo dissacarídeo em sistemas interagentes reais, de forma que o método PM6, utilizado para a modelagem dos sistemas interagentes, pode ser apontado como um método computacional capaz de descrever adequadamente os efeitos estabilizantes da ligação glicosídica da trealose nesse tipo de sistema.
publishDate 2022
dc.date.issued.fl_str_mv 2022-07-06
dc.date.accessioned.fl_str_mv 2023-12-21T18:59:48Z
dc.date.available.fl_str_mv 2023-12-21T18:59:48Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv SOARES, Cinthia Santos. Abordagem teórica das interações dissacarídeo-protótipo de membrana fosfolipídica. 2022. 132 f. Tese (Doutorado em Química) - Instituto de Química, Universidade Federal Rural do Rio de Janeiro, Seropédica, 2022.
dc.identifier.uri.fl_str_mv https://rima.ufrrj.br/jspui/handle/20.500.14407/10266
identifier_str_mv SOARES, Cinthia Santos. Abordagem teórica das interações dissacarídeo-protótipo de membrana fosfolipídica. 2022. 132 f. Tese (Doutorado em Química) - Instituto de Química, Universidade Federal Rural do Rio de Janeiro, Seropédica, 2022.
url https://rima.ufrrj.br/jspui/handle/20.500.14407/10266
dc.language.iso.fl_str_mv por
language por
dc.relation.references.por.fl_str_mv JAIN, M. K.; VAGNER, R. C. Introduction to Biological Membranes. John Wiley & Sons, 1980. 2 LODISH, H.; BERK, A.; MATSUDAIRA, P.; KAISER, C. A.; KRIEGER, M.; SCOTT, M. P.; ZIPURSKY, L.; DARNELL, J. Molecular Cell Biology. 5th ed. W. H. Freeman and Company, 2005. 3 BERG, J. M.; CLARKE, N.N.; STRYER, L.; TYMOCZKO, J. L. Biochemistry. W. H. Freeman and Company, 2002. 4 ALBERTS, B.; JOHNSON, A.; LEWIS, J.; RAFF, M.; ROBERTS, K.; WALTER, P. Molecular Biology of the Cell. 4th ed. Garland Science, 2002. 5 ZHANG, M.; OLDENHOF , H.; SYDYKIV, B.; BIGALK, J.; SIEME, H.; WOLKERS, W. F. Freeze-drying of mammalian cells using trehalose: preservation of DNA integrity. Scientific Reports, v. 7, p. 6198. 2017. 6 TERO, R.; FUKUMOTO, K.; MOTEGI, T.; YOSHIDA, M.; NIWANO, M.; HIRANO-IWATA, A. Formation of Cell Membrane Component Domains in Artifcial Lipid Bilayer. Scientific Reports, v. 7, p. 17905. 2017. 7 DANIELLI, J.F.; DAVSON, H. A contribution to the theory of permeability of thin films. Journal of Cellular Physiology, v. 5, p. 495˗508. 1935. 8 SINGER, S. J.; NICOLSON, G. L. The Fluid Mosaic Model of the Structure of Cell Membranes: Cell membranes are viewed as two-dimensional solutions of oriented globular proteins and lipids. Science, v. 175, p. 720˗731. 1972. 9 SIMONS, K.; IKONEN, E. Functional rafts in cell membranes. Nature, v. 387, p. 569˗572. 1997. 10 BROWN, D. A.; LONDON, E. Structure of detergent-resistant membrane domains: does phase separation occur in biological membranes? Biochemical and Biophysical Research Communications, v. 240, p. 1˗7. 1997. 11 LINGWOOD, D.; SIMONS, K. Lipid rafts as a membrane-organizing principle. Science, v. 327, p. 46˗50. 2010. 125 12 NELSON, D. L.; COX, M. M. Principles of Biochemistry. 6th ed. W. H. Freeman and Company, 2012. 13CASARES, D.; ESCRIBÁ, P. V.; ROSSELLÓ, C. A. Membrane Lipid Composition: Effect on Membrane and Organelle Structure, Function and Compartmentalization and Therapeutic Avenues. International Journal of Molecular Sciences, v. 20, p. 2167. 2019. 14KOYNOVA, R.; TENCHOV, B. Phase Transitions and Phase Behavior of Lipids. In: ROBERTS, G. C. K. Encyclopedia of Biophysics. Springer, 2013, 1841˗1854. 15 MUELLER, P.; RUDIN, D. O.; TIEN, H. T.; WESCOTT, W. C. Reconstitution of Cell Membrane Structure in vitro and its Transformation into an Excitable System. Nature, v. 194, p. 979˗980. 1962. 16 METZLER, D. E. Biochemistry: The Chemical Reactions of Living Cells. 2nd ed. Academic Press, 2003. 17 VANCE, J. E.; VANCE, D. Biochemistry of Lipids, Lipoproteins and Membranes. 4th ed. Elsevier, 2002. 18 ROTHMAN J. E.; LENARD, J. Membrane asymmetry. Science, v. 195, p. 743˗753. 1977. 19 WIENER, M. C.; WHITE, S. H. Structure of a fluid dioleoylphosphatidylcholine bilayer determined by joint refinement of x-ray and neutron diffraction data. III. Complete structure. Biophysical Journal, v. 61, p. 434˗447. 1992. 20 KARPLUS, M. J. Contact Electron‐Spin Coupling of Nuclear Magnetic Moments. The Journal of Chemical Physics, v. 30, p. 11. 1959. 126 21 RAMSEY, N. F. Electron Coupled Interactions between Nuclear Spins in Molecules. Physical Review, v. 91, p. 303. 1953. 22 COXON, B. Model parameters for the analysis of skew conformations of carbohydrates by p.m.r. spectroscopy. Carbohydrate Research, v. 13, p. 321˗330. 1970. 23 GUSCHLBAUER, W. Conformational analysis of ribonucleosides from proton- proton coupling constants. Biochimica et Biophysica Acta, v. 610, p. 47˗55. 1980. 24 LÖHR, F.; BLÜMEL, M.; SCHMIDT, J. M.; RÜTERJANS, H. Application of H(N)CA,CO-E.COSY experiments for calibrating the φ angular dependences of vicinal couplings J(C′i−1,Hi α), J(C′i−1,Ci β) and J(C′i−1,C′i) in proteins. Journal of Biomolecular NMR, v. 10, 107˗118. 1997. 25 PASSEY, R. F.; FAIRBAIRN, D. The conversion of fat to carbohydrate during embryonation os ascaris eggs. Canadian Journal of Biochemistry and Physiology, v. 35, p. 511˗525. 1957. 26 SUSSMAN, A. S.; LINGAPPA, B. T. Role of Trehalose in Ascosporos of Neurospora Tetrasperma. Science, v.130, p. 1343. 1959. 27 DUTRIEU, J. Variations du trehalose au cours de Lembryogenese Chez Bombyx Mori et de la metamorphose Chez Calliphora Erythrocephala. Comptes Rendus Hebdomadairesdes Seances de l’AcadémiedesSciences, v. 252, p. 347. 1961. 28 MADIN, K. A. C.; CROWE, J. H. Anhydrobiosis in nematodes: carbohydrate and lipid metabolism during dehydration. Journal of Experimental Zoology, v. 193, p. 335˗342. 1975. 29 CLEGG, J. S. Free glycerol in dormant cysts of the brine shrimp Artemia salina, and its disappearance during development. The Biological Bulletin, v. 123, p. 295˗301. 1962. 30 DUTRIEU, J. Observations biochimiques et physiologiques sur le développement d’Artemiasalina Leach. Archives de Zoologie Expérimentale et Générale, v. 99, p. 3˗128. 1960. 127 31 CROWE, J. H. Anhydrobiosis: An Unsolved Problem. The American Naturalist, v. 105, p. 563˗573. 1971. 32 CROWE, J. H.; CROWE, L. M.; JACKSON, S. A. Preservation of Structural and Functional Activity in Lyophilized Sarcoplasmic Reticulum. Archives of Biochemistry and Biophysics, v. 220, p. 477˗484. 1983. 33 CROWE, J. H.; CROWE, L. M.; MOURADIAN, R. Stabilization of Biological Membranes at Low Water Activities. Cryobiology, v. 20, p. 346˗356. 1983. 34 CROWE, J. H.; CROWE, L. M.; CHAPMAN, D. Preservation of Membranes in Anhydrobiotic Organisms: the Role of Trehalose. Science, v. 223, p. 701˗703. 1984. 35 CROWE, L. M.; MOURADIAN, R.; CROWE, J. H.; JACKSON, S. A.; WOMERSLEY, C. Effects of carbohydrates on membrane stability at low water activities. Biochimica et Biophysica Acta, v. 769, 141˗150. 1984. 36 LUZZATI, V.; HUSSON, F. The structure of the liquid-crystalline phases of lipid-water systems. The Journal of Cell Biology, v. 12, p. 207˗219. 1962. 37 CROWE, L. M.; CROWE, J. H. Hydration-Dependent Hexagonal Phase Lipid in a Biological Membrane. Archives of Biochemistry and Biophysics, v. 217, p. 582˗587. 1982. 38 CROWE, L. M.; CROWE, J. H.; CHAPMAN, D. Interaction of carbohydrates with dry dipalmitoylphosphatidylcholine. Archives of Biochemistry and Biophysics, v. 236, p. 289˗296. 1985. 39 GREEN, J. L.; ANGELL, C. A. Phase relations and vitrification in saccharide-water solutions and the trehalose anomaly. The Journal of Physical Chemistry, v. 93, p. 2880˗2882. 1989. 40 KOSTER, K. L.; WEBB, M. S.; BRYANT, G.; LYNCH, D. V. Interactions between soluble sugars and POPC (1-palmitoyl-2-oleoylphosphatidylcholine) during dehydration: vitrification of sugars alters the phase behavior of the phospholipid. Biochimica et Biophysica Acta, v. 1193, p. 143˗150. 1994. 128 41 CROWE, J. H.; LESLIE, S. B.; CROWE, L. M. Is vitrification sufficient to preserve liposomes during freeze-drying? Cryobiology, v. 31, p. 355˗366. 1994. 42 CROWE, L. M.; REID, D. S.; CROWE, J. H. Is Trehalose Special for Preserving Dry Biomaterials? Biophysical Journal, v. 71, p. 2087˗2093. 1996. 43 ALBERTORIO, F.; CHAPA, V. A.; CHEN, X.; DIAZ, A. J.; CREMER, P.S. The α,α-(1→1) Linkage of Trehalose Is Key to Anhydrobiotic Preservation. Journal of the American Chemical Society, v. 129, p. 10567˗10574. 2007. 44 KAPLA, J.; ENGSTRÖM, O.; STEVENSSON, B.; WOHLERT, J.; WIDMALM, G.; MALINIAK, A. Molecular dynamics simulations and NMR spectroscopy studies of trehalose˗lipid bilayer systems. Physical Chemistry and Chemical Physics, v. 17, p. 22438˗22447. 2015. 45 CRAMER, C. J. Essentials of Computational Chemistry: Theories and Models. 2nd ed. John Wiley & Sons, 2004. 46 SZABO, A.; OSTLUND, N. S. Modern Quantum Chemistry: Introduction to Advanced Electronic Structure Theory. Dover Publications, 1996. 47 ATKINS, P. W.; FRIEDMAN, R. S. Molecular Quantum Mechanics. 5th ed. Oxford University Press, 2010. 48 LEACH, A. R. Molecular Modelling: Principles and Applications. 2nd ed. Prentice Hall, 2001. 49 DEWAR, M. J. S.; THIEL, W. Ground states of molecules. 38. The MNDO method. Approximations and parameters. Journal of the American Chemical Society, v. 99, p. 4899-4907. 1977. 50 STEWART, J. J. P. Optimization of parameters for semi-empirical methods V: Modification of NDDO approximations and application to 70 elements. Journal of Molecular Modeling, v. 13, p. 1173˗1213. 2007. 51 TSCHUMPER, G.S.; LEININGER, M. L.; HOFFMAN, B. C.; VALEEV, E. F.; SCHAEFER, H. F.; QUACK, M. Anchoring the water dimer potential energy surface 129 with explicitly correlated computations and focal point analyses. Journal of Chemical Physics, v. 116, p. 690˗701. 2002. 52 JENSEN, F. Introduction to Computational Chemistry. John Wiley & Sons, 1999. 53 KOHN, W.; SHAM, L. S. Self-Consistent Equations Including Exchange and Correlation Effects. Physical Reviews, v. 140, p. A1133˗A1138. 1965. 54 GRIMME, S. Accurate description of van der Waals complexes by density functional theory including empirical corrections. Journal of Computational Chemistry, v. 25, p. 1463˗1473. 2004. 55 GRIMME, S. Semiempirical GGA-type density functional constructed with a long- range dispersion correction. Journal of Computational Chemistry, v. 27, p. 1787˗1799. 2006. 56 BECKE, A. D. Density-functional thermochemistry. V. Systematic optimization of exchange-correlation functionals. Journal of Chemical Physics, v. 107, p. 8554˗8560. 1997. 57 BECKE, A. D. Correlation energy of an inhomogeneous electron gas: A coordinate- space model. Journal of Chemical Physics, v. 88, p. 1053˗1062. 1988. 58 DIRAC, P. A. M. Exchange phenomena in the Thomas atom. Proceedings of the Cambridge Philosophical Society, v. 26, p. 376˗385. 1930. 59 STOLL, H.; GOLKA, E.; PREUSS, H. Correlation energies in the spin-density functional formalism. Theoretica Chimica Acta, v. 55, p. 29˗41. 1980. 60 VOSKO, S. H.; WILK, L.; NUSAIR, M. Accurate spin-dependent electron liquid correlation energies from local spin density calculations: a critical analysis. Canadian Journal of Physics, v. 58, p. 1200˗1211. 1980. 61 PERDEW, J. P.; WANG, Y. Accurate and simple analytic representation of the electron-gas correlation energy. Physical Review B, v. 45, p. 13244˗13249. 1992. 62 ALEM, M.; TOZER, D. J. Helium dimer dispersion forces and correlation potentials in density functional theory. Journal of Chemical Physics, v. 117, p. 11113˗11120. 2002. 130 63 ZIMMERLI, U.; PARRINELLO, M.; KOUMOUTSAKOS, P. Dispersion corrections to density functionals for water aromatic interactions. Journal of Chemical Physics, v. 120, p. 2693˗2699. 2004. 64 TSUZUKI, S.; LUETHI, H. P. Interaction energies of van der Waals and hydrogen bonded systems calculated using density functional theory: Assessing the PW91 model. Journal of Chemical Physics, v. 114, p. 3949˗3957. 2001. 65 WU, Q.; YANG, W. Empirical correction to density functional theory for van der Waals interactions. Journal of Chemical Physics, v. 116, p. 515˗524. 2002. 66 WU, X.; VARGAS, M. C.; NAYAK, S.; LOTRICH, V.; SCOLES, G. Towards extending the applicability of density functional theory to weakly bound systems. Journal of Chemical Physics, v. 115, p. 8748˗8757. 2001. 67 DA SILVA, C. O.; MENEZES, A. O.; COELHO, A. V.; DE OLIVEIRA, V. P.; SOARES, C. S. Quantum mechanical calculations on carbohydrates: What they can tell us? In: VERLI, H. Strategies for the Determination of Carbohydrates Structure and Conformation. Transworld Research Network, 2010. 68 HAUSER, H.; PASCHER, I.; PEARSON, R. H.; SUNDELL, S. Preferred conformation and molecular packing of phosphatidylethanolamine and phosphatidylcholine. Biochimica et Biophysica Acta, v. 650, p. 21˗51. 1981. 69 BARTLETT, R. J. Coupled-cluster approach to molecular structure and spectra: a step toward predictive quantum chemistry. Journal of Physical Chemistry, v. 93, p. 1697˗1708. 1989. 70 MOLLER, C.; PLESSET, M. S. Note on an Approximation Treatment for Many- Electron Systems. Physical Review, v. 46, p. 618˗622. 1934. 71 HOHENBERG, P.; KOHN, W. Inhomogeneous Electron Gas. Physical Reviews, v. 136, p. B864˗B871. 1964. 72 BAUSCHLICHER, C. W., Jr.; RICCA, A.; PARTRIDGE, H.; LANGHOFF, S. R. Chemistry by Density Functional Theory. In: CHANG, D. P. Recent Advances in Density Functional Methods, part II. World Scientific, 1997. 131 73 MARTIN, J. M. L. Some observations and cases studies on basis set convergence in Density Functional Theory. In: GEERLINGS, P.; DEPROFT, F.; LANGENAEKER, W. Density Functional Theory: a bridge between Chemistry and Physics. Vrije Universiteit Brussel, 2000. 74 JOHNSON, E. R.; WOLKOW, R. A.; DILABIO, G. A. Application of 25 density functionals to dispersion-bound homomolecular dimers. Chemical Physics Letters, v. 394, p. 334˗338. 2004. 75 PEVERATI, R.; BALDRIDGE, K. K. Implementation and performance of DFT-D with respect to basis set and functional for study of dispersion interactions in nanoscale aromatic hydrocarbons. Journal of Chemical Theory and Computation, v. 4, p. 2030˗2048. 2008. 76 DITCHFIELD, R.; HEHRE, W. J.; POPLE, J. A. Self Consistent Molecular Orbital Methods. IX. An Extended Gaussian Type Basis for Molecular Orbital Studies of Organic Molecules. Journal of Chemical Physics, v. 54, p. 724˗728. 1971. 77 HEHRE, W. J.; DITCHFIELD, R.; POPLE, J. A. Self-Consistent Molecular Orbital Methods. XII. Further Extensions of Gaussian-Type Basis Sets for Use in Molecular Orbital Studies of Organic Molecules. Journal of Chemical Physics, v. 56, p. 2257˗2261. 1972. 78 SOARES, C. S.; da SILVA, C. O. Conformational study of methylphosphocholine: a prototype for phospholipid headgroups in membranes. Journal of Molecular Graphs and Modelling, v. 29, p. 82˗92. 2010. 79 KRISHNAMURTY, S.; STEFANOV, M.; MINEVA, T.; BÉGU, S.; DEVOISSELLE, J. M.; GOURSOT, A.; ZHU, R.; SALAHUB, D. R. Density Functional Theory-Based Conformational Analysis of a Phospholipid Molecule (Dimyristoyl Phosphatidylcholine). Journal of Physical Chemistry B, v. 112, p. 13433˗13442. 2008. 80 TVAROŠKA, I.; TARAVEL, F. R.; UTILLE, J. P.; CARVER, J. P. Quantum mechanical and NMR spectroscopy studies on the conformations of the hydroxymethyl and methoxymethyl groups in aldohexosides. Carbohydrate Research, v. 337, p. 353˗367. 2002. 132 81 HARMON, K. H.; GENNICK, I.; MADEIRA, S. L. Hydrogen bonding. IV. Correlation of infrared spectral properties with C-H...X hydrogen bonding and crystal habit in tetramethylammonium ion salts. Journal of Physical Chemistry, v. 78, p. 2585˗2591. 1974. 82 KABISCH, G. Raman spectra and crystal structure of polycrystalline tetramethylammonium salts. Journal of Raman Spectroscopy, v. 9, p. 279˗285. 1980. 83 GRDADOLNIK, J.; HADŽI, D. FT infrared and Raman investigation of saccharide-phosphatidylcholine interactions using novelstructure probes. Spectrochimica Acta Part A, v. 54, p. 1989˗2000. 1998.
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal Rural do Rio de Janeiro
dc.publisher.program.fl_str_mv Programa de Pós-Graduação em Química
dc.publisher.initials.fl_str_mv UFRRJ
dc.publisher.country.fl_str_mv Brasil
dc.publisher.department.fl_str_mv Instituto de Química
publisher.none.fl_str_mv Universidade Federal Rural do Rio de Janeiro
dc.source.none.fl_str_mv reponame:Biblioteca Digital de Teses e Dissertações da UFRRJ
instname:Universidade Federal Rural do Rio de Janeiro (UFRRJ)
instacron:UFRRJ
instname_str Universidade Federal Rural do Rio de Janeiro (UFRRJ)
instacron_str UFRRJ
institution UFRRJ
reponame_str Biblioteca Digital de Teses e Dissertações da UFRRJ
collection Biblioteca Digital de Teses e Dissertações da UFRRJ
bitstream.url.fl_str_mv https://rima.ufrrj.br/jspui/bitstream/20.500.14407/10266/1/2022%20-%20Cinthia%20Santos%20Soares.pdf.jpg
https://rima.ufrrj.br/jspui/bitstream/20.500.14407/10266/2/2022%20-%20Cinthia%20Santos%20Soares.pdf.txt
https://rima.ufrrj.br/jspui/bitstream/20.500.14407/10266/3/2022%20-%20Cinthia%20Santos%20Soares.pdf
https://rima.ufrrj.br/jspui/bitstream/20.500.14407/10266/4/license.txt
bitstream.checksum.fl_str_mv cc73c4c239a4c332d642ba1e7c7a9fb2
f2612b098274638b8598d66f8a5fed96
45eb6cda77e7db0d56e6a4c20745b2f5
7b5ba3d2445355f386edab96125d42b7
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da UFRRJ - Universidade Federal Rural do Rio de Janeiro (UFRRJ)
repository.mail.fl_str_mv bibliot@ufrrj.br||bibliot@ufrrj.br
_version_ 1810107828543684608