Síntese, Caracterização e Avaliação Biológica de Aril- Sidnonas e Novos Híbridos Sulfonamidas-Sidnonas
Autor(a) principal: | |
---|---|
Data de Publicação: | 2021 |
Tipo de documento: | Dissertação |
Idioma: | por |
Título da fonte: | Repositório Institucional da UFRRJ |
Texto Completo: | https://rima.ufrrj.br/jspui/handle/20.500.14407/17684 |
Resumo: | As leishmanioses são um conjunto de doenças causadas por parasitos do gênero Leishamania. São endêmicas em cerca de 98 países e territórios e classificadas pela OMS como Doenças Tropicais Negligenciadas. Afetam milhares de pessoas todo ano, causando alta mortalidade e morbidade. Os tratamentos dessas parasitoses são baseados em quimioterapia, contando com um número reduzido de fármacos disponíveis, os quais apresentam diversas limitações, como alto custo, forma de administração inconvenientes e muitas vezes dolorosas e efeitos colaterais adversos graves. Além disso, o desenvolvimento de resistência clínica tem se tornado um problema emergente, tendo sido registrados casos para todas as substâncias anti leishmania de uso clínico. Tendo em vista o gravíssimo cenário criado pelas leishmanioses e o interesse do nosso grupo de pesquisa nos compostos mesoiônicos e suas atividades biológicas, esse trabalho de dissertação apresenta o planejamento e a obtenção de duas séries de sidnonas com potenciais atividades leishmanicidas: a primeira, composta por 13 N-aril-sidnonas e N alquil-sidnonas simples (já relatadas na literatura) e a segunda, formada por 8 híbridos sulfonamidas-sidnonas inéditos. A primeira série de sidnonas foi preparada em três etapas, por meio da rota sintética clássica amplamente descrita na literatura. Os híbridos, por sua vez, foram obtidos por duas etapas adicionais, partindo da N-(4-nitro-fenil)-sidnona ou da N-(3- nitro-fenil)-sidnona. Para isso, o grupo nitro desses compostos foi inicialmente reduzido a amino, com uso de cloreto estanhoso, rendendo as N-(amino-fenil)-sidnonas. Por fim, as sulfonamidas-sidnonas foram obtidas por maceração entre as respectivas N-(amino-fenil)- sidnonas e os cloretos de sulfonila adequados, na presença de carbonato de sódio e sílica gel. Os produtos obtidos foram caracterizados por espectroscopia no infravermelho, RMN de 1H e 13C. No caso dos compostos inéditos foram realizados experimentos bidimensionais de RMN (COSY, NOESY, HSQC e HMBC) para a atribuição correta de todos os sinais observados nos espectros 1D de 1H e 13C. Este trabalho propõe uma rota viável para o preparo de sulfonamidas-sidnonas e apresenta uma discussão detalhada no que se refere a determinação estrutural desses compostos e de seus intermediários sintéticos. Todas as treze sidnonas da primeira série foram avaliadas in vitro frente à forma promastigota da L.amazonensis. Dessas, somente a fenil-sidnona não substituída e aquelas contendo um grupo nitro no anel benzênico apresentaram IC50 abaixo da maior concentração avaliada (<128 µM). A N-(3-nitro-fenil)- sidnona foi o composto mais potente, com IC50 de 18,22 µM |
id |
UFRRJ-1_321d1240a9daea04e279bcec582b7bc6 |
---|---|
oai_identifier_str |
oai:rima.ufrrj.br:20.500.14407/17684 |
network_acronym_str |
UFRRJ-1 |
network_name_str |
Repositório Institucional da UFRRJ |
repository_id_str |
|
spelling |
Barbosa, Igor ResendesLima, Aurea Echevarria Aznar Neveshttp://lattes.cnpq.br/1879077396134052Lima, Aurea Echevarria Aznar Neveshttp://lattes.cnpq.br/1879077396134052Pinheiro, Luiz Carlos da Silvahttps://orcid.org/0000-0002-6398-7717http://lattes.cnpq.br/5040259412514046Santos, Cláudio Eduardo Rodrigues doshttps://orcid.org/0000-0003-0129-2802http://lattes.cnpq.br/0890271430013129Castro, Rosane Norahttps://orcid.org/0000-0001-8983-3786http://lattes.cnpq.br/5479814788308057Marra, Roberta Katlen Fuscohttp://lattes.cnpq.br/0899105923944274http://lattes.cnpq.br/34293350810890672024-08-08T17:01:12Z2024-08-08T17:01:12Z2021-01-26ARBOSA, Igor Resendes. Síntese, Caracterização e Avaliação Biológica de Aril Sidnonas e Novos Híbridos Sulfonamidas-Sidnonas, 2021, 156 f. Dissertação (Mestrado em Química) - Instituto de Química, Universidade Federal Rural do Rio de Janeiro, Seropédica, 2021.https://rima.ufrrj.br/jspui/handle/20.500.14407/17684As leishmanioses são um conjunto de doenças causadas por parasitos do gênero Leishamania. São endêmicas em cerca de 98 países e territórios e classificadas pela OMS como Doenças Tropicais Negligenciadas. Afetam milhares de pessoas todo ano, causando alta mortalidade e morbidade. Os tratamentos dessas parasitoses são baseados em quimioterapia, contando com um número reduzido de fármacos disponíveis, os quais apresentam diversas limitações, como alto custo, forma de administração inconvenientes e muitas vezes dolorosas e efeitos colaterais adversos graves. Além disso, o desenvolvimento de resistência clínica tem se tornado um problema emergente, tendo sido registrados casos para todas as substâncias anti leishmania de uso clínico. Tendo em vista o gravíssimo cenário criado pelas leishmanioses e o interesse do nosso grupo de pesquisa nos compostos mesoiônicos e suas atividades biológicas, esse trabalho de dissertação apresenta o planejamento e a obtenção de duas séries de sidnonas com potenciais atividades leishmanicidas: a primeira, composta por 13 N-aril-sidnonas e N alquil-sidnonas simples (já relatadas na literatura) e a segunda, formada por 8 híbridos sulfonamidas-sidnonas inéditos. A primeira série de sidnonas foi preparada em três etapas, por meio da rota sintética clássica amplamente descrita na literatura. Os híbridos, por sua vez, foram obtidos por duas etapas adicionais, partindo da N-(4-nitro-fenil)-sidnona ou da N-(3- nitro-fenil)-sidnona. Para isso, o grupo nitro desses compostos foi inicialmente reduzido a amino, com uso de cloreto estanhoso, rendendo as N-(amino-fenil)-sidnonas. Por fim, as sulfonamidas-sidnonas foram obtidas por maceração entre as respectivas N-(amino-fenil)- sidnonas e os cloretos de sulfonila adequados, na presença de carbonato de sódio e sílica gel. Os produtos obtidos foram caracterizados por espectroscopia no infravermelho, RMN de 1H e 13C. No caso dos compostos inéditos foram realizados experimentos bidimensionais de RMN (COSY, NOESY, HSQC e HMBC) para a atribuição correta de todos os sinais observados nos espectros 1D de 1H e 13C. Este trabalho propõe uma rota viável para o preparo de sulfonamidas-sidnonas e apresenta uma discussão detalhada no que se refere a determinação estrutural desses compostos e de seus intermediários sintéticos. Todas as treze sidnonas da primeira série foram avaliadas in vitro frente à forma promastigota da L.amazonensis. Dessas, somente a fenil-sidnona não substituída e aquelas contendo um grupo nitro no anel benzênico apresentaram IC50 abaixo da maior concentração avaliada (<128 µM). A N-(3-nitro-fenil)- sidnona foi o composto mais potente, com IC50 de 18,22 µMConselho Nacional de Pesquisa e Desenvolvimento Científico e Tecnológico - CNPqCoordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPESFundação de Amparo à Pesquisa do Estado do Rio de Janeiro - FAPERJLeishmaniasis are a group of diseases caused by parasites from the genus Leishmania. They are endemic in about 98 countries and territories and classified by WHO as Neglected Tropical Diseases. They affect thousands of people every year, causing high mortality and morbidity. Treatments for these parasitic infections are based on chemotherapy, with a small number of available drugs, which have several limitations, such as high costs, inconvenient and often painful route of administration and serious adverse effects. In addition the surge of resistance has become an emerging problem, with reported cases for all anti-leishmania substances of clinical use. In view of the very serious scenario created by leishmaniasis and the interest of our research group in mesoionic compounds and their biological activities, this dissertation presents the design and preparation of two series of sydnones with potential leishmanicidal activities: the first, composed of 13 simple N-aryl-sydnones and N-alkyl sydnones (wich have already been reported in the literature), and the second, consisting of 8 novel sulfonamide sidnona hybrids. The first series of Sydnones was prepared in three steps, using the classic synthetic route widely described in the literature. The hybrids, in turn, were obtained by two additional steps, starting from the N-(4-nitro-phenyl)-sydnone or N-(3-nitro phenyl)-sydnone. For this, the nitro group of these compounds was initially reduced using stannous chloride, yielding the N-(amino-phenyl)-sydnones. Finally, the sulfonamide-sydnone hybrids were obtained by maceration between the respective N-(amino-phenyl)-sydnones and the appropriate sulfonyl chlorides, in the presence of sodium carbonate and silica gel. The products were characterized by infrared spectroscopy, 1H and 13C NMR. In the case of the novel compounds, two-dimensional NMR experiments (COSY, NOESY, HSQC, HMBC) were also performed to correctly assign all signals observed in the 1D 1H and 13C spectra. This work proposes a viable rout for the preparation of sulfonamide-sydnones and presents a detailed discussion regarding the structural determination of these compounds and their synthetic intermediates. All thirteen sydnones from the first series were evaluated in vitro against the promastigote form of L. amasonensis. Of these, only the unsubstituted phenyl sydnone and those containing a nitro group in the benzene ring showed IC50 values below the highest concentration tested (< 128 µM). The N-(3-nitro-phenyl)-sydnone was the most potent compound, with an IC50 of 18.22 µM.porUniversidade Federal Rural do Rio de JaneiroPrograma de Pós-Graduação em QuímicaUFRRJBrasilInstituto de QuímicaQuímicasidnonassulfonamidasmesoiônicossydnonessulfonamidesmesoionicSíntese, Caracterização e Avaliação Biológica de Aril- Sidnonas e Novos Híbridos Sulfonamidas-SidnonasSynthesis, Characterization and Biological Evaluation of Aryl-Sydnones and New Sulfonamide-Sydnone Hybridsinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisANVERSA, L.; TIBURCIO, M. G. S.; PEREIRA-RICHINI, V. B.; RAMIREZ, L. E. Human leishmaniasis in Brazil: a general review. Revista da Associação Médica Brasileira, v. 64, n. 3, p. 281-289, 2018. APPLEGATE, J.; TURNBULL, K. The efficient synthesis of 3-arylsydnones under neutral conditions. Synthesis, v. 1988, n. 12, p. 1011-1012, 1988. ASUNDARIA, S. T.; PATEL, N. S.; PATEL, K. C. Novel 3-[4-(diethylamino) phenyl]-4- substituted-1-ylsulfonyl) sydnones: Synthesis, characterization and antimicrobial studies. Organic Communications, v. 3, n. 2, p. 30, 2010. AZARIFAR, D.; GHASEMNEJAD-BOSRA, H. Catalytic activity of 1, 3-dibromo-5, 5- dimethylhydantoin (DBH) in the one-pot transformation of N-arylglycines to N-arylsydnones in the presence of NaNO2/Ac2O under neutral conditions: subsequent bromination of these sydnones to their 4-bromo derivatives. Synthesis, v. 2006, n. 7, p. 1123-1126, 2006. BAKER, W.; OLLIS, W. D. Meso-ionic compounds. Quarterly Reviews, Chemical Society, v. 11, n. 1, p. 15-29, 1957. BAKER, W.; OLLIS, W. D. Structure of the ‘Sydnones’. Nature, v. 158, n. 4020, p. 703-703, 1946. BAKER, W.; OLLIS, W. D.; POOLE, V. D. Cyclic meso-ionic compounds. Part I. The structure of the sydnones and related compounds. Journal of the Chemical Society (Resumed), p. 307-314, 1949. BAKER, W.; OLLIS, W.; POOLE, V. D. Cyclic meso-ionic compounds. Part III. Further properties of the sydnones and the mechanism of their formation. Journal of the Chemical Society, n. 0, p. 1542-1551, 1950. BARBER, M.; BROADBENT, S.J.; CONNOR, J. A.; GUEST, M. F.; HILLIER, I. H.; PUXLEY, H. J. Electronic structure of syndnones. An investigation by means of ESCA and molecular orbital calculations. Journal of the Chemical Society, Perkin Transactions 2, n. 11, p. 1517-1521, 1972. BÄRNIGHAUSEN, H.; JELLINET, F.; MUNNIK, J.; VOS, A. The structure of N-(p- bromophenyl) sydnone. Acta Crystallographica, v. 16, n. 6, p. 471-475, 1963. BELLAS, M.; SUSCHITZKY, H. Syntheses of heterocyclic compounds. Part XII. Halogen- substituted 3-arylsydnones. Journal of the Chemical Society C: Organic, p. 189-192, 1966. BRAZ, V. R.; ECHEVARRIA, A. Reactivity of 3-N-(4-chloro-3-nitrophenyl)-sydnone in SNAr reactions. Heterocyclic Communications, v. 2, n. 6, p. 507-512, 1996. EADE, R.; EARL, J. C. Further studies on the sydnones. Journal of the Chemical Society (Resumed), n. 0, p. 2307-2310, 1948. 67 BIRD, C. W. A new aromaticity index and its application to five-membered ring heterocycles. Tetrahedron, v. 41, n. 7, p. 1409-1414, 1985. BIZETTO, E. L.; NOLETO, G. R.; ECHEVARRIA, A.; CANUTO, A. V.; CADENA, S. M. S. C. Effect of sydnone SYD-1 on certain functions of LPS-stimulated macrophages. Molecular and cellular biochemistry, v. 360, n. 1-2, p. 15-21, 2012. BOOTS, S. G.; CHENG, C.-C. Structural modification studies of 3-piperonylsydnone I. synthesis of piperonyl-substituted pyrazoles, isoxazoles, triazoles, oxadiazoles and thiadiazoles. Journal of Heterocyclic Chemistry, v. 4, n. 2, p. 272-283, 1967. BROWN, A. W; FISHER, M.; TOZER, G. M.; KANTHOU, C.; HARRITY, J. P. A. Sydnone cycloaddition route to pyrazole-based analogs of combretastatin A4. Journal of Medicinal Chemistry, v. 59, n. 20, p. 9473-9488, 2016. BRYSON, A.; DAVIES, N. R.; SERJEANT, E. P. The ionization constants of N-(substituted- phenyl)-glycines. Journal of the American Chemical Society, v. 85, n. 13, p. 1933-1938, 1963. BURZA, S.; CROFT, S. L.; BOELAERT, M. Leishmaniasis. The Lancet, v. 392, n. 10151, p. 951-970, 2018. CAPELA, R.; MOREIRA, R.; LOPES, F. An Overview of Drug Resistance in Protozoal Diseases. International Journal of Molecular Sciences, v. 20, n. 22, p. 5748, 2019. CLAYDEN, J.; GREEVES, N.; WARREN, S. Organic Chemistry. Oxford: University Press, cap. 17, 2000. DA SILVA, L. E.; JOUSSEF, A. C.; PACHECO, L. K.; DA SILVA, D. G.; STEINDEL, M. REBELO, R. A. Synthesis and in vitro evaluation of leishmanicidal and trypanocidal activities of N-quinolin-8-yl-arylsulfonamides. Bioorganic & medicinal chemistry, v. 15, n. 24, p. 7553-7560, 2007. DANTAS-TORRES, F. The role of dogs as reservoirs of Leishmania parasites, with emphasis on Leishmania (Leishmania) infantum and Leishmania (Viannia) braziliensis. Veterinary parasitology, v. 149, n. 3-4, p. 139-146, 2007. DECUYPÈRE, E.; PLOUGASTEL, L.; AUDISIO, D.; TARAN, F. Sydnone–alkyne cycloaddition: applications in synthesis and bioconjugation. Chemical Communications, v. 53, n. 84, p. 11515-11527, 2017. DESJEUX, P. The increase in risk factors for leishmaniasis worldwide. Transactions of the royal society of tropical medicine and hygiene, v. 95, n. 3, p. 239-243, 2001. DORABABU, A.; KAMBLE, R. R.; SHAIKH, S. K. J.; SOMAGOND, S. M.; BAYANNAVAR, P. K.; JOSHI, S. D. Synthesis, Docking, and Pharmacological Evaluation of Derivatives of α-Aminoketones Appended to Sydnones as Potent Antitubercular and Antifungal Scaffolds. Journal of Heterocyclic Chemistry, v. 56, n. 9, p. 2430-2441, 2019. 68 EADE, R. A.; EARL, J. C. The sydnones. A new class of compound containing two adjacent nitrogen atoms. Journal of the Chemical Society (Resumed), p. 591-593, 1946. EADE, R. A.; EARL, J. C. Further studies on the sydnones. Journal of the Chemical Society (Resumed), p. 2307-2310, 1948. EARL, J. C. Structure of the sydnones. Nature, v. 158, n. 4025, p. 910-910, 1946. EARL, J. C.; LEAKE, E. M. W.; LE FEVRE, R. J. W. 460. The dipole moments of N-and C- substituted sydnones. Journal of the Chemical Society (Resumed), p. 2269-2275, 1948. EARL, J. C.; MACKNEY, A. W. The action of acetic anhydride on N-nitrosophenylglycine and some of its derivatives. Journal of the Chemical Society, p. 899-900, 1935. ELGEMEIE, G. H.; AZZAM, R. A.; ELSAYED, R. E. Sulfa drug analogs: new classes of N- sulfonyl aminated azines and their biological and preclinical importance in medicinal chemistry (2000–2018). Medicinal Chemistry Research, v. 28, p. 10990-1131, 2019. ENDRIS, M; TAKELE, Y.; WOLDEYOHANNES, D.; TIRUNEH, M.; MOHAMMED, R.; MOGES, F.; LYNEN, L.; JACOBS, J.; GRIENSVEN, J. V.; DIRO, E. Bacterial sepsis in patients with visceral leishmaniasis in Northwest Ethiopia. BioMed Research International, v. 2014, 2014. FAIÕES, V. S.; FROTA, L. C. R. M.; CUNHA-JUNIOR, E. F.; BARCELLOS, J. C. F.; DA SILVA, T.; NETTO, C. D.; DA-SILVA, S. A. G.; SILVA, A. J. M.; COSTA, P. R. R.; TORRES-SANTOS, E. C. Second-generation pterocarpanquinones: synthesis and antileishmanial activity. Journal of Venomous Animals and Toxins including Tropical Diseases, v. 24, n. 1, p. 35, 2018. FAN, J. M.; WANG, Y.; UENG, C. H. Electrostatic properties of sydnone derivatives. The Journal of Physical Chemistry, v. 97, n. 31, p. 8193-8199, 1993. FANG, Y.; WU, C.; LAROCK, R. C.; SHI, F. Synthesis of 2 H-indazoles by the [3+2] dipolar cycloaddition of sydnones with arynes. The Journal of organic chemistry, v. 76, n. 21, p. 8840-8851, 2011. FEASEY, N.; WANSBROUGH-JONES, M.; MABEY, D. C. W.; SOLOMON, A. W. Neglected tropical diseases. British medical bulletin, v. 93, n. 1, p. 179-200, 2010. FUGGER, J.; TIEN, J. M.; HUNSBERGER, I. M. The preparation of substituted hydrazines. I. Alkylhydrazines via alkylsydnones. Journal of the American Chemical Society, v. 77, n. 7, p. 1843-1848, 1955. GALUPPO, L. F.; dos REIS LÍVERO, F. A.; MARTINS, G. G.; CARDOSO, C. C.; BELTRAME, O. C.; KLASSEN, L. M. B.; CANUTO, A. V. S.; ECHEVARRIA, A.; TELLES, J. E. Q.; KLASSEN, G.; ACCO, A. Sydnone 1: a mesoionic compound with antitumoral and haematological effects in vivo. Basic & Clinical Pharmacology & Toxicology, v. 119, n. 1, p. 41-50, 2016. 69 GUIMARÃES, D. O.; MOMESSO, L. D. S.; PUPO, M. T. Antibióticos: importância terapêutica e perspectivas para a descoberta e desenvolvimento de novos agentes. Química Nova, v. 33, n. 3, p. 667-679, 2010. HAMMETT, L. P. The effect of structure upon the reactions of organic compounds. Benzene derivatives. Journal of the American Chemical Society, v. 59, n. 1, p. 96-103, 1937. HEARN, M. T. W; POTTS, K. T. Pulsed Fourier-transformed 13C nuclear magnetic resonance spectra of methylsydnone and related compounds. Journal of the Chemical Society, Perkin Transactions 2, n. 8, p. 875-877, 1974. HILAL, S. H.; KARICKHOFF, S. W.; CARREIRA, L. A. Estimation of microscopic, zwitterionic ionization constants, isoelectric point and molecular speciation of organic compounds. Talanta, v. 50, n. 4, p. 827-840, 1999. HILL, W.; SUTTON, L. E. Les moments dipolaires de quelques composés semi- ioniques. Journal de Chimie Physique, v. 46, p. 244-248, 1949. HODSON, Stephen J.; TURNBULL, Kenneth. Bromination of sydnones. II Bromination of 3-(2-aminophenyl) sydnone and related compounds. Journal of heterocyclic chemistry, v. 22, n. 5, p. 1223-1227, 1985. HUISGEN, R.; GRASHEY, R.; GOTTHARDT, H.; SCHMIDT, R. 1, 3-Dipolar Additions of Sydnones to Alkynes. A new route into the pyrazole series. Angewandte Chemie, v. 1, n. 1, p. 48-49, 1962. (a) ISOBE, T.; ISHIKAWA, T. 2-Chloro-1, 3-dimethylimidazolinium chloride. 1. A powerful dehydrating equivalent to DCC. The Journal of Organic Chemistry, v. 64, n. 19, p. 6984- 6988, 1999. (b) ISOBE, T.; ISHIKAWA, T. 2-Chloro-1, 3-dimethylimidazolinium chloride. 2. Its application to the construction of heterocycles through dehydration reactions. The Journal of Organic Chemistry, v. 64, n. 19, p. 6989-6992, 1999. KENNER, J.; MACKAY, K. Structure of the sydnones. Nature, v. 158, n. 4025, p. 909-910, 1946. KIER, L. B.; DHAWAN, D. Synthesis of sydnones as potential therapeutic agents. Journal of Pharmaceutical Sciences, v. 51, n. 11, p. 1058-1061, 1962. KIER, L. B.; ROCHE, E. B. Molecular orbital calculations of the electronic structure of the sydnones. Journal of Pharmaceutical Sciences, v. 55, n. 8, p. 807-812, 1966. KIER, L. B.; ROCHE, E. B. Medicinal chemistry of the mesoionic compounds. Journal of PharmaceuticalSciences, v. 56, n. 2, p. 149-168, 1967. KULSHRESTHA, A.; BHANDARI, V.; MUKHOPADHYAY, R.; RAMESH, V.; SUNDAR, S.; MAES, L.; DUJARDIN, J. C.; ROY, S.; SALOTRA, P. Validation of a simple resazurin- based promastigote assay for the routine monitoring of miltefosine susceptibility in clinical isolates of Leishmania donovani. Parasitology research, v. 112, n. 2, p. 825-828, 2013. 70 KUSHI, Y.; FERNANDO, Q. The crystal and molecular structure of dehydrodithizone. Journal of the Chemical Society D: Chemical Communications, n. 21, p. 1240b-1241, 1969. LESSA, M. M.; LESSA, H. A.; CASTRO, T. W. N.; OLIVEIRA, A.; SCHERIFER, A.; MACHADO, P.; CARVALHO, E. M. Mucosal leishmaniasis: epidemiological and clinical aspects. Revista Brasileira de Otorrinolaringologia, v. 73, n. 6, p. 843-847, 2007. LIMA, S. C. M.; PACHECO, J. S.; MARQUES, A. M.; VELTRI, E. R. P.; ALMEIDA- LAFETÁ, R. C.; FIGUEIREDO, M. R.; KAPLAN, M. A. C.; TORRES-SANTOS, E. C. Leishmanicidal activity of withanolides from Aureliana fasciculata var. fasciculata. Molecules, v. 23, n. 12, p. 3160, 2018. MA, S.; YEH, M. Carbon-13 NMR Studies of some sydnone derivatives. Journal of the Chinese Chemical Society, v. 32, n. 2, p. 151-156, 1985. MCCAUSTLAND, D. J.; BURTON, W. H.; CHENG, C. C. Structural modification studies of 3-piperonylsydnone. III. Some analogs of 3-piperonylsydnone and 2,4-diamino-5-piperonylpyrimidine. Journal of Heterocyclic Chemistry, v. 8, n. 1, p. 89-97, 1971. MORLEY, J. O. Theoretical studies on the structure and electronic properties of 3-(4-tolyl) sydnone. Journal of the Chemical Society, Perkin Transactions 2, n. 2, p. 253-257, 1995. NAGLE, A. S.; KHARE, S.; KUMAR, A. B.; SUPEK, F.; BUCHYNSKYY, A.; MATHISON, C. J. N.; CHENNAMANENI, N. K.; PENDEM, N.; BUCKNER, F. S.; GELB, M. H.; MOLTENI, V. Recent developments in drug discovery for leishmaniasis and human African trypanosomiasis. Chemical reviews, v. 114, n. 22, p. 11305-11347, 2014. NEWTON, C. G.; RAMSDEN, C. A. Meso-ionic heterocycles (1976–1980). Tetrahedron, v. 38, n. 20, p. 2965-3011, 1982. NYBERG, W. H.; CHENG, C. C. 3-Piperonylsydnone. A New Type of Antimalarial Agent1. Journal of medicinal chemistry, v. 8, n. 4, p. 531-533, 1965. O'BRIEN, J.; WILSON, I.; ORTON, T.; POGNAN, F. Investigation of the alamar blue (resazurin) fluorescent dye for the assessment of mammalian cell cytotoxicity. European journal of biochemistry, v. 267, n. 17, p. 5421-5426, 2000. OGILVIE, J. W.; CORWIN, A. H. The structure of dehydrodithizone: a novel synthesis of tetrazolium salts. Journal of the American Chemical Society, v. 83, n. 24, p. 5023-5027, 1961. OLIVEIRA, F. R.; PESSOA, M. C.; ALBUQUERQUE, R. F. V.; SCHALCHER, T. R.; MONTEIRO, M. C.; Clinical applications and methemoglobinemia induced by dapsone. Journal of the Brazilian Chemical Society, v. 25, n. 10, p. 1770-1779, 2014. OLLIS, W. D.; STANFORTH, S. P.; RAMSDEN, C. A. Heterocyclic mesomeric betaines. Tetrahedron, v. 41, n. 12, p. 2239-2329, 1985. 71 OLLIS, W. D.; RAMSDEN, C. A. Meso-ionic compounds. In: Advances in Heterocyclic Chemistry. Academic Press, 1976. p. 1-122. ORGEL, L. E.; COTTRELL, T.L.; DICK, W.; SUTTON, L.E. The calculation of the electric dipole moments of some conjugated heterocyclic compounds. Transactions of the Faraday Society, v. 47, p. 113-119, 1951. OZIMINSKI, W. P.; RAMSDEN, C. A. A DFT and ab initio study of conjugated and semi- conjugated mesoionic rings and their covalent isomers. Tetrahedron, v. 71, n. 39, p. 7191- 7198, 2015. PAN AMERICAN HEALTH ORGANIZATION (PAHO/WHO), Leishmanioses. Informe Epidemiológico das américas, 2020. PAN AMERICAN HEALTH ORGANIZATION (PAHO/WHO). Disponível em: <https://www.paho.org/en/topics/leishmaniasis>. Acessao em: 04/01/2021 PARRASION, S.; BRIEUX, G. A. Ultraviolet absorption spectra of N-arylglycine and derivatives. Bull. Soc. Chim. France, v. 35, 1963. PÉTRY, N.; VANDERBEEKEN, T.; MALHER, A.; BRINGER, Y.; RETAILLEAU, P.; BANTREIL, X.; LAMATY, F. Mechanosynthesis of sydnone-containing coordination complexes. Chemical Communications, v. 55, n. 64, p. 9495-9498, 2019. PINHEIRO, L. C. S.; FERREIRA, M. L. G.; SILVEIRA, F. F.; FEITOSA, L. M. BOECHAT, N. Synthetic compounds with sulfonamide moiety against Leishmaniasis: an overview. Medicinal Chemistry Research, p. 1-11, 2019. PLOUGASTEL, L.; KONIEV, O.; SPECKLIN, S.; DECUYPERE, E.; CRÉMINON, C.; BUISSON, D.-A.; WAGNER, A.; KOLODYCH, S.; TARAN, F. 4-Halogeno-sydnones for fast strain promoted cycloaddition with bicyclo-[6.1. 0]-nonyne. Chemical Communications, v. 50, n. 66, p. 9376-9378, 2014. PONTE-SUCRE, A.; GAMARRO, F.; DUJARDIN, J.-C.; BARRETT, M. P.; LÓPEZ- VÉLEZ, R.; GARCÍA-HERNÁNDEZ, R.; POUNTAIN, A. W.; MWENECHANYA, R.; PAPADOPOULOU, B. Drug resistance and treatment failure in leishmaniasis: A 21st century challenge. PLoS neglected tropical diseases, v. 11, n. 12, p. e0006052, 2017. (a) POPOFF, I. C.; SINGHAL, G. H. Antimalarial agents. I. Reduction of sydnone derivatives. Journal of medicinal chemistry, v. 11, n. 3, p. 631-633, 1968. (b) POPOFF, I. C.; SINGHAL, G. H.; Antimalarial agents. III. Bis [p-(3-sydnonyl) phenyl] sulfone. Journal of medicinal chemistry, v. 11, n. 4, p. 886-887, 1968. POPOFF, I. C.; SINGHAL, G. H.; ENGLE, A. R.; Antimalarial agents. 7. Compounds related to 4, 4'-bis (aminophenyl) sulfone. Journal of medicinal chemistry, v. 14, n. 6, p. 550-551, 1971. PURKAIT, B.; KUMAR, A.; NANDI, N.; SARDAR, A. H.; DAS, S.; KUMAR, S.; PANDEY, K.; RAVIDAS, V.; KUMAR, M.; DE, T.; SINGH, D.; DAS, P. Mechanism of 72 amphotericin B resistance in clinical isolates of Leishmania donovani. Antimicrobial agents and chemotherapy, v. 56, n. 2, p. 1031-1041, 2012. RAI, N. S.; KALLURAYA, B.; LINGAPPA, B.; SHENOY, S.; PURANIC, V. G. Convenient access to 1, 3, 4-trisubstituted pyrazoles carrying 5-nitrothiophene moiety via 1, 3-dipolar cycloaddition of sydnones with acetylenic ketones and their antimicrobial evaluation. European journal of medicinal chemistry, v. 43, n. 8, p. 1715-1720, 2008. RAKESH, K. P.; WANG, S.-M.; LENG, J.; RAVINDAR, L.; ASIRI, A. M.; MARWANI, H. M.; QIN, H.-L. Recent development of sulfonyl or sulfonamide hybrids as potential anticancer agents: a key review. Anti-CancerAgents in Medicinal Chemistry, v. 18, n. 4, p. 488-505, 2018. ROQUE, A. L. R.; JANSEN, A. M. Wild and synanthropic reservoirs of Leishmania species in the Americas. International Journal for Parasitology: Parasites and Wildlife, v. 3, n. 3, p. 251-262, 2014. SAROJINI, K.; KRISHNAN, H.; KANAKAM, C. C.; MUTHU, S. Synthesis, structural, spectroscopic studies, NBO analysis, NLO and HOMO–LUMO of 4-methyl-N-(3- nitrophenyl) benzene sulfonamide with experimental and theoretical approaches. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, v. 108, p. 159-170, 2013. SAVALIYA, P. P.; AKBARI, V. K.; PATEL, K. C. Studies on synthesis of some new sydnone containing compounds and their biological activities. Chemical Science Transactions, v. 2, p. 589-597, 2013. SCARIM, C. B.; CHELUCCI, R. C.; dos SANTOS, J. L.; CHIN, C. M. The use of sulfonamide derivatives in the treatment of trypanosomatid Parasites including Trypanosoma cruzi, Trypanosoma brucei, and Leishmania ssp. Medicinal Chemistry, v. 16, n. 1, p. 24-38, 2020. SCHÖNBERG, A. The constitution and isomerism of certain triazole derivatives of the nitron type in the light of the Bredt rule and the theory of resonance. Journal of the Chemical Society (Resumed), p. 824-825, 1938. SHAW, J. J. Animal reservoirs of Leishmania in different ecological situations and their importance in the epidemiology of the disease. Memórias do Instituto Oswaldo Cruz, v. 83, p. 486-490, 1988. SHIH, M.H.; KE, F.Y. Syntheses and evaluation of antioxidant activity of sydnonyl substituted thiazolidinone and thiazoline derivatives. Bioorganic & medicinal chemistry, v. 12, n. 17, p. 4633-4643, 2004. SILVERSTEIN, R. M.; WEBSTER, F. X.; KIEMLE, D. J.; BRYCE, D. L. Spectrometric Identification of Organic Compounds. John wiley & Sons, 2005. Cap. 2. SIMAS, A. M.; MILLER, J.; DE ATHAYADE FILHO, P. F.. Are mesoionic compounds aromatic?. Canadian journal of chemistry, v. 76, n. 6, p. 869-872, 1998. 73 (a) SOLOMONS, T. W. G.; FRYHLE, C. B. Química Orgânica. 7. ed. Rio de Janeiro: LTC, v. 2,2002. Cap. 20. (b) SOLOMONS, T. W. G.; FRYHLE, C. B. Química Orgânica. 7. ed. Rio de Janeiro: LTC, v. 2, 2002. Cap. 24. SOARES-BEZERRA, R. J.; LEON, L. L.; ECHEVARRIA, A.; REIS, C. M.; GOMES- SILVA, L.; AGOSTINHO, C. G.; FERNANDES, R. A.; CANTO-CAVALHEIRO, M. M.; GENESTRA, M. S. In vitro evaluation of 4-phenyl-5-(4′-X-phenyl)-1, 3, 4-thiadiazolium-2- phenylaminide chlorides and 3 [N-4′-X-phenyl]-1, 2, 3-oxadiazolium-5-olate derivatives on nitric oxide synthase and arginase activities of Leishmania amazonensis. Experimental parasitology, v. 135, n. 1, p. 50-54, 2013. SOUSA-PEREIRA, D.; de OLIVEIRA, T. S.; PAIVA, R. O.; CHAVES, O. A.; NETTO- FERREIRA, J. C.; ECHEVARRIA-LIMA, J.; ECHEVARRIA, A. Synthetic (E)-3-Phenyl-5- (phenylamino)-2-styryl-1, 3, 4-thiadiazol-3-ium Chloride Derivatives as Promising Chemotherapy Agents on Cell Lines Infected with HTLV-1. Molecules, v. 25, n. 11, p. 2537, 2020. SPECKLIN, S.; DECUYPERE, E.; PLOUGASTEL, L.; ALIANI, S.; TARAN, F. One-pot synthesis of 1, 4-disubstituted pyrazoles from arylglycines via copper-catalyzed sydnone– alkyne cycloaddition reaction. The Journal of Organic Chemistry, v. 79, n. 16, p. 7772- 7777, 2014. STEWART, F. H. C. The chemistry of the sydnones. Chemical Reviews, v. 64, n. 2, p. 129- 147, 1964. SUN, B.; LIANG, H.; CHE, D.; LIU, H.; GUO, S. Mechanistic investigation of CO generation by pyrolysis of furan and its main derivatives. RSC advances, v. 9, n. 16, p. 9099- 9105, 2019. TABÉLÉ, C.; FAIÕES, V. D. S.; GRIMAUD, F.; TORRES-SANTOS, E. C.; KHOUMERI, O.; CURTI, C.; VANELLE, P. Original antileishmanial hits: Variations around amidoximes. European journal of medicinal chemistry, v. 148, p. 154-164, 2018. TEIXEIRA, D. E.; BENCHIMOL, M.; RODRIGUES, J. C. F.; CREPALDI, P. H.; PIMENTA, P. F. P.; SOUZA, W. The cell biology of Leishmania: how to teach using animations. PLoS Pathog, v. 9, n. 10, p. e1003594, 2013. THANH, N. D.; DUC, H. T; HUE, N. H. M.; VAN, H. T. K. Reaction of some substituted 3- sryl-4-formylsydnones with tetra-oacetyl-β-D-galactopyranosyl thiosemicarbazide. Letters in Organic Chemistry, v. 13, n. 8, p. 541-546, 2016. THIESSEN, W. E.; HOPE, H.. Molecular geometry and bonding in the sydnone ring. Journal of the American Chemical Society, v. 89, n. 23, p. 5977-5978, 1967. TIN-LOK, C.; MILLER, J.; STANSFIELD, F. The SN mechanism in aromatic compounds. Part XXX. The sydnone ring. Journal of the Chemical Society (Resumed), p. 1213-1216, 1964. TORRES-GUERRERO, E.; QUINTANILLA-CEDILLO, M. R.; RUIZ-ESMENJAUND, J.; ARENAS, R. Leishmaniasis: a review. F1000Research, v. 6, 2017 74 TURNBULL, K. Bromination of sydnones. I. Reaction with 3-arylsydnones containing electron-donors on the aryl ring. Journal of heterocyclic chemistry, v. 22, n. 4, p. 965-968, 1985. UZARSKI, J. S.; DIVITO, M. D.; Wertheim, J. A.; Miller, W. M. Essential design considerations for the resazurin reduction assay to noninvasively quantify cell expansion within perfused extracellular matrix scaffolds. Biomaterials, v. 129, p. 163-175, 2017. VIESSER, R. V.; DUCATI, L. C.; TORMENA, C. F.; AUTSCHBACH, J. The unexpected roles of σ and π orbitals in electron donor and acceptor group effects on the 13 C NMR chemical shifts in substituted benzenes. Chemical science, v. 8, n. 9, p. 6570-6576, 2017. VON ESCHWEGE, K. G.; MULLER, A. 2, 3-Bis (2-methoxyphenyl) tetrazolium-5-thiolate– acetone–dichloromethane (1/0.4/0.1). Acta Crystallographica Section E: Structure Reports Online, v. 65, n. 1, p. o2-o2, 2009. WANG, S. P.; KUO, C. N.; MA, S.; YEH, M.-Y. 13C NMR studies on 3-aryl-4- cyanosydnones (II). NMR spectroscopy and the chain-conjugated structure of sydnones. Spectroscopy letters, v. 26, n. 3, p. 431-445, 1993. WORLD HEALTH ORGANIZATION (WHO). Disponível em: < https://www.who.int/topics/tropical_diseases/factsheets/neglected/en/>. Acesso em: 04 jan. 2021. WIECHMANN, S.; FREESE, T.; DRAFZ, M. H. H.; HÜBNER, E. G.; NAMYSLO, J. C.; NIEGER, M.; SCHMIDT, A. Sydnone anions and abnormal N-heterocyclic carbenes of O- ethylsydnones. Characterizations, calculations and catalyses. Chemical Communications, v. 50, n. 80, p. 11822-11824, 2014. WILLIAMS, R. L.; PACE, R. J.; JEACOCKE, G. J. Applications of solvent effects—I: The spectra of secondary nitrosamines. Spectrochimica Acta, v. 20, n. 2, p. 225-236, 1964. ZHANG, L.; ZHANG, X.; YAO, Z.; JIANG, S.; DENG, J.; LI, B.; YU, Z. Discovery of fluorogenic diarylsydnone-alkene photoligation: conversion of ortho-dual-twisted diarylsydnones into planar pyrazolines. Journal of the American Chemical Society, v. 140, n. 24, p. 7390-7394, 2018.reponame:Repositório Institucional da UFRRJinstname:Universidade Federal Rural do Rio de Janeiro (UFRRJ)instacron:UFRRJinfo:eu-repo/semantics/openAccessORIGINAL2021 - Igor Resendes Barbosa.pdf2021 - Igor Resendes Barbosa.pdfapplication/pdf20357017https://rima.ufrrj.br/jspui/bitstream/20.500.14407/17684/1/2021%20-%20Igor%20Resendes%20Barbosa.pdf34653e4769c5cdf598c8290f4b2f0bf4MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://rima.ufrrj.br/jspui/bitstream/20.500.14407/17684/2/license.txt8a4605be74aa9ea9d79846c1fba20a33MD52TEXT2021 - Igor Resendes Barbosa.pdf.txt2021 - Igor Resendes Barbosa.pdf.txtExtracted texttext/plain196131https://rima.ufrrj.br/jspui/bitstream/20.500.14407/17684/3/2021%20-%20Igor%20Resendes%20Barbosa.pdf.txtc62d833053f090854c8846171c191ebfMD53THUMBNAIL2021 - Igor Resendes Barbosa.pdf.jpg2021 - Igor Resendes Barbosa.pdf.jpgGenerated Thumbnailimage/jpeg1236https://rima.ufrrj.br/jspui/bitstream/20.500.14407/17684/4/2021%20-%20Igor%20Resendes%20Barbosa.pdf.jpg795df779063b9308a69282419b9afd00MD5420.500.14407/176842024-08-09 02:04:45.722oai:rima.ufrrj.br:20.500.14407/17684Tk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=Biblioteca Digital de Teses e Dissertaçõeshttps://tede.ufrrj.br/PUBhttps://tede.ufrrj.br/oai/requestbibliot@ufrrj.bropendoar:2024-08-09T05:04:45Repositório Institucional da UFRRJ - Universidade Federal Rural do Rio de Janeiro (UFRRJ)false |
dc.title.pt_BR.fl_str_mv |
Síntese, Caracterização e Avaliação Biológica de Aril- Sidnonas e Novos Híbridos Sulfonamidas-Sidnonas |
dc.title.alternative.en.fl_str_mv |
Synthesis, Characterization and Biological Evaluation of Aryl-Sydnones and New Sulfonamide-Sydnone Hybrids |
title |
Síntese, Caracterização e Avaliação Biológica de Aril- Sidnonas e Novos Híbridos Sulfonamidas-Sidnonas |
spellingShingle |
Síntese, Caracterização e Avaliação Biológica de Aril- Sidnonas e Novos Híbridos Sulfonamidas-Sidnonas Barbosa, Igor Resendes Química sidnonas sulfonamidas mesoiônicos sydnones sulfonamides mesoionic |
title_short |
Síntese, Caracterização e Avaliação Biológica de Aril- Sidnonas e Novos Híbridos Sulfonamidas-Sidnonas |
title_full |
Síntese, Caracterização e Avaliação Biológica de Aril- Sidnonas e Novos Híbridos Sulfonamidas-Sidnonas |
title_fullStr |
Síntese, Caracterização e Avaliação Biológica de Aril- Sidnonas e Novos Híbridos Sulfonamidas-Sidnonas |
title_full_unstemmed |
Síntese, Caracterização e Avaliação Biológica de Aril- Sidnonas e Novos Híbridos Sulfonamidas-Sidnonas |
title_sort |
Síntese, Caracterização e Avaliação Biológica de Aril- Sidnonas e Novos Híbridos Sulfonamidas-Sidnonas |
author |
Barbosa, Igor Resendes |
author_facet |
Barbosa, Igor Resendes |
author_role |
author |
dc.contributor.author.fl_str_mv |
Barbosa, Igor Resendes |
dc.contributor.advisor1.fl_str_mv |
Lima, Aurea Echevarria Aznar Neves |
dc.contributor.advisor1Lattes.fl_str_mv |
http://lattes.cnpq.br/1879077396134052 |
dc.contributor.referee1.fl_str_mv |
Lima, Aurea Echevarria Aznar Neves |
dc.contributor.referee1Lattes.fl_str_mv |
http://lattes.cnpq.br/1879077396134052 |
dc.contributor.referee2.fl_str_mv |
Pinheiro, Luiz Carlos da Silva |
dc.contributor.referee2ID.fl_str_mv |
https://orcid.org/0000-0002-6398-7717 |
dc.contributor.referee2Lattes.fl_str_mv |
http://lattes.cnpq.br/5040259412514046 |
dc.contributor.referee3.fl_str_mv |
Santos, Cláudio Eduardo Rodrigues dos |
dc.contributor.referee3ID.fl_str_mv |
https://orcid.org/0000-0003-0129-2802 |
dc.contributor.referee3Lattes.fl_str_mv |
http://lattes.cnpq.br/0890271430013129 |
dc.contributor.referee4.fl_str_mv |
Castro, Rosane Nora |
dc.contributor.referee4ID.fl_str_mv |
https://orcid.org/0000-0001-8983-3786 |
dc.contributor.referee4Lattes.fl_str_mv |
http://lattes.cnpq.br/5479814788308057 |
dc.contributor.referee5.fl_str_mv |
Marra, Roberta Katlen Fusco |
dc.contributor.referee5Lattes.fl_str_mv |
http://lattes.cnpq.br/0899105923944274 |
dc.contributor.authorLattes.fl_str_mv |
http://lattes.cnpq.br/3429335081089067 |
contributor_str_mv |
Lima, Aurea Echevarria Aznar Neves Lima, Aurea Echevarria Aznar Neves Pinheiro, Luiz Carlos da Silva Santos, Cláudio Eduardo Rodrigues dos Castro, Rosane Nora Marra, Roberta Katlen Fusco |
dc.subject.cnpq.fl_str_mv |
Química |
topic |
Química sidnonas sulfonamidas mesoiônicos sydnones sulfonamides mesoionic |
dc.subject.por.fl_str_mv |
sidnonas sulfonamidas mesoiônicos sydnones sulfonamides mesoionic |
description |
As leishmanioses são um conjunto de doenças causadas por parasitos do gênero Leishamania. São endêmicas em cerca de 98 países e territórios e classificadas pela OMS como Doenças Tropicais Negligenciadas. Afetam milhares de pessoas todo ano, causando alta mortalidade e morbidade. Os tratamentos dessas parasitoses são baseados em quimioterapia, contando com um número reduzido de fármacos disponíveis, os quais apresentam diversas limitações, como alto custo, forma de administração inconvenientes e muitas vezes dolorosas e efeitos colaterais adversos graves. Além disso, o desenvolvimento de resistência clínica tem se tornado um problema emergente, tendo sido registrados casos para todas as substâncias anti leishmania de uso clínico. Tendo em vista o gravíssimo cenário criado pelas leishmanioses e o interesse do nosso grupo de pesquisa nos compostos mesoiônicos e suas atividades biológicas, esse trabalho de dissertação apresenta o planejamento e a obtenção de duas séries de sidnonas com potenciais atividades leishmanicidas: a primeira, composta por 13 N-aril-sidnonas e N alquil-sidnonas simples (já relatadas na literatura) e a segunda, formada por 8 híbridos sulfonamidas-sidnonas inéditos. A primeira série de sidnonas foi preparada em três etapas, por meio da rota sintética clássica amplamente descrita na literatura. Os híbridos, por sua vez, foram obtidos por duas etapas adicionais, partindo da N-(4-nitro-fenil)-sidnona ou da N-(3- nitro-fenil)-sidnona. Para isso, o grupo nitro desses compostos foi inicialmente reduzido a amino, com uso de cloreto estanhoso, rendendo as N-(amino-fenil)-sidnonas. Por fim, as sulfonamidas-sidnonas foram obtidas por maceração entre as respectivas N-(amino-fenil)- sidnonas e os cloretos de sulfonila adequados, na presença de carbonato de sódio e sílica gel. Os produtos obtidos foram caracterizados por espectroscopia no infravermelho, RMN de 1H e 13C. No caso dos compostos inéditos foram realizados experimentos bidimensionais de RMN (COSY, NOESY, HSQC e HMBC) para a atribuição correta de todos os sinais observados nos espectros 1D de 1H e 13C. Este trabalho propõe uma rota viável para o preparo de sulfonamidas-sidnonas e apresenta uma discussão detalhada no que se refere a determinação estrutural desses compostos e de seus intermediários sintéticos. Todas as treze sidnonas da primeira série foram avaliadas in vitro frente à forma promastigota da L.amazonensis. Dessas, somente a fenil-sidnona não substituída e aquelas contendo um grupo nitro no anel benzênico apresentaram IC50 abaixo da maior concentração avaliada (<128 µM). A N-(3-nitro-fenil)- sidnona foi o composto mais potente, com IC50 de 18,22 µM |
publishDate |
2021 |
dc.date.issued.fl_str_mv |
2021-01-26 |
dc.date.accessioned.fl_str_mv |
2024-08-08T17:01:12Z |
dc.date.available.fl_str_mv |
2024-08-08T17:01:12Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.citation.fl_str_mv |
ARBOSA, Igor Resendes. Síntese, Caracterização e Avaliação Biológica de Aril Sidnonas e Novos Híbridos Sulfonamidas-Sidnonas, 2021, 156 f. Dissertação (Mestrado em Química) - Instituto de Química, Universidade Federal Rural do Rio de Janeiro, Seropédica, 2021. |
dc.identifier.uri.fl_str_mv |
https://rima.ufrrj.br/jspui/handle/20.500.14407/17684 |
identifier_str_mv |
ARBOSA, Igor Resendes. Síntese, Caracterização e Avaliação Biológica de Aril Sidnonas e Novos Híbridos Sulfonamidas-Sidnonas, 2021, 156 f. Dissertação (Mestrado em Química) - Instituto de Química, Universidade Federal Rural do Rio de Janeiro, Seropédica, 2021. |
url |
https://rima.ufrrj.br/jspui/handle/20.500.14407/17684 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.references.pt_BR.fl_str_mv |
ANVERSA, L.; TIBURCIO, M. G. S.; PEREIRA-RICHINI, V. B.; RAMIREZ, L. E. Human leishmaniasis in Brazil: a general review. Revista da Associação Médica Brasileira, v. 64, n. 3, p. 281-289, 2018. APPLEGATE, J.; TURNBULL, K. The efficient synthesis of 3-arylsydnones under neutral conditions. Synthesis, v. 1988, n. 12, p. 1011-1012, 1988. ASUNDARIA, S. T.; PATEL, N. S.; PATEL, K. C. Novel 3-[4-(diethylamino) phenyl]-4- substituted-1-ylsulfonyl) sydnones: Synthesis, characterization and antimicrobial studies. Organic Communications, v. 3, n. 2, p. 30, 2010. AZARIFAR, D.; GHASEMNEJAD-BOSRA, H. Catalytic activity of 1, 3-dibromo-5, 5- dimethylhydantoin (DBH) in the one-pot transformation of N-arylglycines to N-arylsydnones in the presence of NaNO2/Ac2O under neutral conditions: subsequent bromination of these sydnones to their 4-bromo derivatives. Synthesis, v. 2006, n. 7, p. 1123-1126, 2006. BAKER, W.; OLLIS, W. D. Meso-ionic compounds. Quarterly Reviews, Chemical Society, v. 11, n. 1, p. 15-29, 1957. BAKER, W.; OLLIS, W. D. Structure of the ‘Sydnones’. Nature, v. 158, n. 4020, p. 703-703, 1946. BAKER, W.; OLLIS, W. D.; POOLE, V. D. Cyclic meso-ionic compounds. Part I. The structure of the sydnones and related compounds. Journal of the Chemical Society (Resumed), p. 307-314, 1949. BAKER, W.; OLLIS, W.; POOLE, V. D. Cyclic meso-ionic compounds. Part III. Further properties of the sydnones and the mechanism of their formation. Journal of the Chemical Society, n. 0, p. 1542-1551, 1950. BARBER, M.; BROADBENT, S.J.; CONNOR, J. A.; GUEST, M. F.; HILLIER, I. H.; PUXLEY, H. J. Electronic structure of syndnones. An investigation by means of ESCA and molecular orbital calculations. Journal of the Chemical Society, Perkin Transactions 2, n. 11, p. 1517-1521, 1972. BÄRNIGHAUSEN, H.; JELLINET, F.; MUNNIK, J.; VOS, A. The structure of N-(p- bromophenyl) sydnone. Acta Crystallographica, v. 16, n. 6, p. 471-475, 1963. BELLAS, M.; SUSCHITZKY, H. Syntheses of heterocyclic compounds. Part XII. Halogen- substituted 3-arylsydnones. Journal of the Chemical Society C: Organic, p. 189-192, 1966. BRAZ, V. R.; ECHEVARRIA, A. Reactivity of 3-N-(4-chloro-3-nitrophenyl)-sydnone in SNAr reactions. Heterocyclic Communications, v. 2, n. 6, p. 507-512, 1996. EADE, R.; EARL, J. C. Further studies on the sydnones. Journal of the Chemical Society (Resumed), n. 0, p. 2307-2310, 1948. 67 BIRD, C. W. A new aromaticity index and its application to five-membered ring heterocycles. Tetrahedron, v. 41, n. 7, p. 1409-1414, 1985. BIZETTO, E. L.; NOLETO, G. R.; ECHEVARRIA, A.; CANUTO, A. V.; CADENA, S. M. S. C. Effect of sydnone SYD-1 on certain functions of LPS-stimulated macrophages. Molecular and cellular biochemistry, v. 360, n. 1-2, p. 15-21, 2012. BOOTS, S. G.; CHENG, C.-C. Structural modification studies of 3-piperonylsydnone I. synthesis of piperonyl-substituted pyrazoles, isoxazoles, triazoles, oxadiazoles and thiadiazoles. Journal of Heterocyclic Chemistry, v. 4, n. 2, p. 272-283, 1967. BROWN, A. W; FISHER, M.; TOZER, G. M.; KANTHOU, C.; HARRITY, J. P. A. Sydnone cycloaddition route to pyrazole-based analogs of combretastatin A4. Journal of Medicinal Chemistry, v. 59, n. 20, p. 9473-9488, 2016. BRYSON, A.; DAVIES, N. R.; SERJEANT, E. P. The ionization constants of N-(substituted- phenyl)-glycines. Journal of the American Chemical Society, v. 85, n. 13, p. 1933-1938, 1963. BURZA, S.; CROFT, S. L.; BOELAERT, M. Leishmaniasis. The Lancet, v. 392, n. 10151, p. 951-970, 2018. CAPELA, R.; MOREIRA, R.; LOPES, F. An Overview of Drug Resistance in Protozoal Diseases. International Journal of Molecular Sciences, v. 20, n. 22, p. 5748, 2019. CLAYDEN, J.; GREEVES, N.; WARREN, S. Organic Chemistry. Oxford: University Press, cap. 17, 2000. DA SILVA, L. E.; JOUSSEF, A. C.; PACHECO, L. K.; DA SILVA, D. G.; STEINDEL, M. REBELO, R. A. Synthesis and in vitro evaluation of leishmanicidal and trypanocidal activities of N-quinolin-8-yl-arylsulfonamides. Bioorganic & medicinal chemistry, v. 15, n. 24, p. 7553-7560, 2007. DANTAS-TORRES, F. The role of dogs as reservoirs of Leishmania parasites, with emphasis on Leishmania (Leishmania) infantum and Leishmania (Viannia) braziliensis. Veterinary parasitology, v. 149, n. 3-4, p. 139-146, 2007. DECUYPÈRE, E.; PLOUGASTEL, L.; AUDISIO, D.; TARAN, F. Sydnone–alkyne cycloaddition: applications in synthesis and bioconjugation. Chemical Communications, v. 53, n. 84, p. 11515-11527, 2017. DESJEUX, P. The increase in risk factors for leishmaniasis worldwide. Transactions of the royal society of tropical medicine and hygiene, v. 95, n. 3, p. 239-243, 2001. DORABABU, A.; KAMBLE, R. R.; SHAIKH, S. K. J.; SOMAGOND, S. M.; BAYANNAVAR, P. K.; JOSHI, S. D. Synthesis, Docking, and Pharmacological Evaluation of Derivatives of α-Aminoketones Appended to Sydnones as Potent Antitubercular and Antifungal Scaffolds. Journal of Heterocyclic Chemistry, v. 56, n. 9, p. 2430-2441, 2019. 68 EADE, R. A.; EARL, J. C. The sydnones. A new class of compound containing two adjacent nitrogen atoms. Journal of the Chemical Society (Resumed), p. 591-593, 1946. EADE, R. A.; EARL, J. C. Further studies on the sydnones. Journal of the Chemical Society (Resumed), p. 2307-2310, 1948. EARL, J. C. Structure of the sydnones. Nature, v. 158, n. 4025, p. 910-910, 1946. EARL, J. C.; LEAKE, E. M. W.; LE FEVRE, R. J. W. 460. The dipole moments of N-and C- substituted sydnones. Journal of the Chemical Society (Resumed), p. 2269-2275, 1948. EARL, J. C.; MACKNEY, A. W. The action of acetic anhydride on N-nitrosophenylglycine and some of its derivatives. Journal of the Chemical Society, p. 899-900, 1935. ELGEMEIE, G. H.; AZZAM, R. A.; ELSAYED, R. E. Sulfa drug analogs: new classes of N- sulfonyl aminated azines and their biological and preclinical importance in medicinal chemistry (2000–2018). Medicinal Chemistry Research, v. 28, p. 10990-1131, 2019. ENDRIS, M; TAKELE, Y.; WOLDEYOHANNES, D.; TIRUNEH, M.; MOHAMMED, R.; MOGES, F.; LYNEN, L.; JACOBS, J.; GRIENSVEN, J. V.; DIRO, E. Bacterial sepsis in patients with visceral leishmaniasis in Northwest Ethiopia. BioMed Research International, v. 2014, 2014. FAIÕES, V. S.; FROTA, L. C. R. M.; CUNHA-JUNIOR, E. F.; BARCELLOS, J. C. F.; DA SILVA, T.; NETTO, C. D.; DA-SILVA, S. A. G.; SILVA, A. J. M.; COSTA, P. R. R.; TORRES-SANTOS, E. C. Second-generation pterocarpanquinones: synthesis and antileishmanial activity. Journal of Venomous Animals and Toxins including Tropical Diseases, v. 24, n. 1, p. 35, 2018. FAN, J. M.; WANG, Y.; UENG, C. H. Electrostatic properties of sydnone derivatives. The Journal of Physical Chemistry, v. 97, n. 31, p. 8193-8199, 1993. FANG, Y.; WU, C.; LAROCK, R. C.; SHI, F. Synthesis of 2 H-indazoles by the [3+2] dipolar cycloaddition of sydnones with arynes. The Journal of organic chemistry, v. 76, n. 21, p. 8840-8851, 2011. FEASEY, N.; WANSBROUGH-JONES, M.; MABEY, D. C. W.; SOLOMON, A. W. Neglected tropical diseases. British medical bulletin, v. 93, n. 1, p. 179-200, 2010. FUGGER, J.; TIEN, J. M.; HUNSBERGER, I. M. The preparation of substituted hydrazines. I. Alkylhydrazines via alkylsydnones. Journal of the American Chemical Society, v. 77, n. 7, p. 1843-1848, 1955. GALUPPO, L. F.; dos REIS LÍVERO, F. A.; MARTINS, G. G.; CARDOSO, C. C.; BELTRAME, O. C.; KLASSEN, L. M. B.; CANUTO, A. V. S.; ECHEVARRIA, A.; TELLES, J. E. Q.; KLASSEN, G.; ACCO, A. Sydnone 1: a mesoionic compound with antitumoral and haematological effects in vivo. Basic & Clinical Pharmacology & Toxicology, v. 119, n. 1, p. 41-50, 2016. 69 GUIMARÃES, D. O.; MOMESSO, L. D. S.; PUPO, M. T. Antibióticos: importância terapêutica e perspectivas para a descoberta e desenvolvimento de novos agentes. Química Nova, v. 33, n. 3, p. 667-679, 2010. HAMMETT, L. P. The effect of structure upon the reactions of organic compounds. Benzene derivatives. Journal of the American Chemical Society, v. 59, n. 1, p. 96-103, 1937. HEARN, M. T. W; POTTS, K. T. Pulsed Fourier-transformed 13C nuclear magnetic resonance spectra of methylsydnone and related compounds. Journal of the Chemical Society, Perkin Transactions 2, n. 8, p. 875-877, 1974. HILAL, S. H.; KARICKHOFF, S. W.; CARREIRA, L. A. Estimation of microscopic, zwitterionic ionization constants, isoelectric point and molecular speciation of organic compounds. Talanta, v. 50, n. 4, p. 827-840, 1999. HILL, W.; SUTTON, L. E. Les moments dipolaires de quelques composés semi- ioniques. Journal de Chimie Physique, v. 46, p. 244-248, 1949. HODSON, Stephen J.; TURNBULL, Kenneth. Bromination of sydnones. II Bromination of 3-(2-aminophenyl) sydnone and related compounds. Journal of heterocyclic chemistry, v. 22, n. 5, p. 1223-1227, 1985. HUISGEN, R.; GRASHEY, R.; GOTTHARDT, H.; SCHMIDT, R. 1, 3-Dipolar Additions of Sydnones to Alkynes. A new route into the pyrazole series. Angewandte Chemie, v. 1, n. 1, p. 48-49, 1962. (a) ISOBE, T.; ISHIKAWA, T. 2-Chloro-1, 3-dimethylimidazolinium chloride. 1. A powerful dehydrating equivalent to DCC. The Journal of Organic Chemistry, v. 64, n. 19, p. 6984- 6988, 1999. (b) ISOBE, T.; ISHIKAWA, T. 2-Chloro-1, 3-dimethylimidazolinium chloride. 2. Its application to the construction of heterocycles through dehydration reactions. The Journal of Organic Chemistry, v. 64, n. 19, p. 6989-6992, 1999. KENNER, J.; MACKAY, K. Structure of the sydnones. Nature, v. 158, n. 4025, p. 909-910, 1946. KIER, L. B.; DHAWAN, D. Synthesis of sydnones as potential therapeutic agents. Journal of Pharmaceutical Sciences, v. 51, n. 11, p. 1058-1061, 1962. KIER, L. B.; ROCHE, E. B. Molecular orbital calculations of the electronic structure of the sydnones. Journal of Pharmaceutical Sciences, v. 55, n. 8, p. 807-812, 1966. KIER, L. B.; ROCHE, E. B. Medicinal chemistry of the mesoionic compounds. Journal of PharmaceuticalSciences, v. 56, n. 2, p. 149-168, 1967. KULSHRESTHA, A.; BHANDARI, V.; MUKHOPADHYAY, R.; RAMESH, V.; SUNDAR, S.; MAES, L.; DUJARDIN, J. C.; ROY, S.; SALOTRA, P. Validation of a simple resazurin- based promastigote assay for the routine monitoring of miltefosine susceptibility in clinical isolates of Leishmania donovani. Parasitology research, v. 112, n. 2, p. 825-828, 2013. 70 KUSHI, Y.; FERNANDO, Q. The crystal and molecular structure of dehydrodithizone. Journal of the Chemical Society D: Chemical Communications, n. 21, p. 1240b-1241, 1969. LESSA, M. M.; LESSA, H. A.; CASTRO, T. W. N.; OLIVEIRA, A.; SCHERIFER, A.; MACHADO, P.; CARVALHO, E. M. Mucosal leishmaniasis: epidemiological and clinical aspects. Revista Brasileira de Otorrinolaringologia, v. 73, n. 6, p. 843-847, 2007. LIMA, S. C. M.; PACHECO, J. S.; MARQUES, A. M.; VELTRI, E. R. P.; ALMEIDA- LAFETÁ, R. C.; FIGUEIREDO, M. R.; KAPLAN, M. A. C.; TORRES-SANTOS, E. C. Leishmanicidal activity of withanolides from Aureliana fasciculata var. fasciculata. Molecules, v. 23, n. 12, p. 3160, 2018. MA, S.; YEH, M. Carbon-13 NMR Studies of some sydnone derivatives. Journal of the Chinese Chemical Society, v. 32, n. 2, p. 151-156, 1985. MCCAUSTLAND, D. J.; BURTON, W. H.; CHENG, C. C. Structural modification studies of 3-piperonylsydnone. III. Some analogs of 3-piperonylsydnone and 2,4-diamino-5-piperonylpyrimidine. Journal of Heterocyclic Chemistry, v. 8, n. 1, p. 89-97, 1971. MORLEY, J. O. Theoretical studies on the structure and electronic properties of 3-(4-tolyl) sydnone. Journal of the Chemical Society, Perkin Transactions 2, n. 2, p. 253-257, 1995. NAGLE, A. S.; KHARE, S.; KUMAR, A. B.; SUPEK, F.; BUCHYNSKYY, A.; MATHISON, C. J. N.; CHENNAMANENI, N. K.; PENDEM, N.; BUCKNER, F. S.; GELB, M. H.; MOLTENI, V. Recent developments in drug discovery for leishmaniasis and human African trypanosomiasis. Chemical reviews, v. 114, n. 22, p. 11305-11347, 2014. NEWTON, C. G.; RAMSDEN, C. A. Meso-ionic heterocycles (1976–1980). Tetrahedron, v. 38, n. 20, p. 2965-3011, 1982. NYBERG, W. H.; CHENG, C. C. 3-Piperonylsydnone. A New Type of Antimalarial Agent1. Journal of medicinal chemistry, v. 8, n. 4, p. 531-533, 1965. O'BRIEN, J.; WILSON, I.; ORTON, T.; POGNAN, F. Investigation of the alamar blue (resazurin) fluorescent dye for the assessment of mammalian cell cytotoxicity. European journal of biochemistry, v. 267, n. 17, p. 5421-5426, 2000. OGILVIE, J. W.; CORWIN, A. H. The structure of dehydrodithizone: a novel synthesis of tetrazolium salts. Journal of the American Chemical Society, v. 83, n. 24, p. 5023-5027, 1961. OLIVEIRA, F. R.; PESSOA, M. C.; ALBUQUERQUE, R. F. V.; SCHALCHER, T. R.; MONTEIRO, M. C.; Clinical applications and methemoglobinemia induced by dapsone. Journal of the Brazilian Chemical Society, v. 25, n. 10, p. 1770-1779, 2014. OLLIS, W. D.; STANFORTH, S. P.; RAMSDEN, C. A. Heterocyclic mesomeric betaines. Tetrahedron, v. 41, n. 12, p. 2239-2329, 1985. 71 OLLIS, W. D.; RAMSDEN, C. A. Meso-ionic compounds. In: Advances in Heterocyclic Chemistry. Academic Press, 1976. p. 1-122. ORGEL, L. E.; COTTRELL, T.L.; DICK, W.; SUTTON, L.E. The calculation of the electric dipole moments of some conjugated heterocyclic compounds. Transactions of the Faraday Society, v. 47, p. 113-119, 1951. OZIMINSKI, W. P.; RAMSDEN, C. A. A DFT and ab initio study of conjugated and semi- conjugated mesoionic rings and their covalent isomers. Tetrahedron, v. 71, n. 39, p. 7191- 7198, 2015. PAN AMERICAN HEALTH ORGANIZATION (PAHO/WHO), Leishmanioses. Informe Epidemiológico das américas, 2020. PAN AMERICAN HEALTH ORGANIZATION (PAHO/WHO). Disponível em: <https://www.paho.org/en/topics/leishmaniasis>. Acessao em: 04/01/2021 PARRASION, S.; BRIEUX, G. A. Ultraviolet absorption spectra of N-arylglycine and derivatives. Bull. Soc. Chim. France, v. 35, 1963. PÉTRY, N.; VANDERBEEKEN, T.; MALHER, A.; BRINGER, Y.; RETAILLEAU, P.; BANTREIL, X.; LAMATY, F. Mechanosynthesis of sydnone-containing coordination complexes. Chemical Communications, v. 55, n. 64, p. 9495-9498, 2019. PINHEIRO, L. C. S.; FERREIRA, M. L. G.; SILVEIRA, F. F.; FEITOSA, L. M. BOECHAT, N. Synthetic compounds with sulfonamide moiety against Leishmaniasis: an overview. Medicinal Chemistry Research, p. 1-11, 2019. PLOUGASTEL, L.; KONIEV, O.; SPECKLIN, S.; DECUYPERE, E.; CRÉMINON, C.; BUISSON, D.-A.; WAGNER, A.; KOLODYCH, S.; TARAN, F. 4-Halogeno-sydnones for fast strain promoted cycloaddition with bicyclo-[6.1. 0]-nonyne. Chemical Communications, v. 50, n. 66, p. 9376-9378, 2014. PONTE-SUCRE, A.; GAMARRO, F.; DUJARDIN, J.-C.; BARRETT, M. P.; LÓPEZ- VÉLEZ, R.; GARCÍA-HERNÁNDEZ, R.; POUNTAIN, A. W.; MWENECHANYA, R.; PAPADOPOULOU, B. Drug resistance and treatment failure in leishmaniasis: A 21st century challenge. PLoS neglected tropical diseases, v. 11, n. 12, p. e0006052, 2017. (a) POPOFF, I. C.; SINGHAL, G. H. Antimalarial agents. I. Reduction of sydnone derivatives. Journal of medicinal chemistry, v. 11, n. 3, p. 631-633, 1968. (b) POPOFF, I. C.; SINGHAL, G. H.; Antimalarial agents. III. Bis [p-(3-sydnonyl) phenyl] sulfone. Journal of medicinal chemistry, v. 11, n. 4, p. 886-887, 1968. POPOFF, I. C.; SINGHAL, G. H.; ENGLE, A. R.; Antimalarial agents. 7. Compounds related to 4, 4'-bis (aminophenyl) sulfone. Journal of medicinal chemistry, v. 14, n. 6, p. 550-551, 1971. PURKAIT, B.; KUMAR, A.; NANDI, N.; SARDAR, A. H.; DAS, S.; KUMAR, S.; PANDEY, K.; RAVIDAS, V.; KUMAR, M.; DE, T.; SINGH, D.; DAS, P. Mechanism of 72 amphotericin B resistance in clinical isolates of Leishmania donovani. Antimicrobial agents and chemotherapy, v. 56, n. 2, p. 1031-1041, 2012. RAI, N. S.; KALLURAYA, B.; LINGAPPA, B.; SHENOY, S.; PURANIC, V. G. Convenient access to 1, 3, 4-trisubstituted pyrazoles carrying 5-nitrothiophene moiety via 1, 3-dipolar cycloaddition of sydnones with acetylenic ketones and their antimicrobial evaluation. European journal of medicinal chemistry, v. 43, n. 8, p. 1715-1720, 2008. RAKESH, K. P.; WANG, S.-M.; LENG, J.; RAVINDAR, L.; ASIRI, A. M.; MARWANI, H. M.; QIN, H.-L. Recent development of sulfonyl or sulfonamide hybrids as potential anticancer agents: a key review. Anti-CancerAgents in Medicinal Chemistry, v. 18, n. 4, p. 488-505, 2018. ROQUE, A. L. R.; JANSEN, A. M. Wild and synanthropic reservoirs of Leishmania species in the Americas. International Journal for Parasitology: Parasites and Wildlife, v. 3, n. 3, p. 251-262, 2014. SAROJINI, K.; KRISHNAN, H.; KANAKAM, C. C.; MUTHU, S. Synthesis, structural, spectroscopic studies, NBO analysis, NLO and HOMO–LUMO of 4-methyl-N-(3- nitrophenyl) benzene sulfonamide with experimental and theoretical approaches. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, v. 108, p. 159-170, 2013. SAVALIYA, P. P.; AKBARI, V. K.; PATEL, K. C. Studies on synthesis of some new sydnone containing compounds and their biological activities. Chemical Science Transactions, v. 2, p. 589-597, 2013. SCARIM, C. B.; CHELUCCI, R. C.; dos SANTOS, J. L.; CHIN, C. M. The use of sulfonamide derivatives in the treatment of trypanosomatid Parasites including Trypanosoma cruzi, Trypanosoma brucei, and Leishmania ssp. Medicinal Chemistry, v. 16, n. 1, p. 24-38, 2020. SCHÖNBERG, A. The constitution and isomerism of certain triazole derivatives of the nitron type in the light of the Bredt rule and the theory of resonance. Journal of the Chemical Society (Resumed), p. 824-825, 1938. SHAW, J. J. Animal reservoirs of Leishmania in different ecological situations and their importance in the epidemiology of the disease. Memórias do Instituto Oswaldo Cruz, v. 83, p. 486-490, 1988. SHIH, M.H.; KE, F.Y. Syntheses and evaluation of antioxidant activity of sydnonyl substituted thiazolidinone and thiazoline derivatives. Bioorganic & medicinal chemistry, v. 12, n. 17, p. 4633-4643, 2004. SILVERSTEIN, R. M.; WEBSTER, F. X.; KIEMLE, D. J.; BRYCE, D. L. Spectrometric Identification of Organic Compounds. John wiley & Sons, 2005. Cap. 2. SIMAS, A. M.; MILLER, J.; DE ATHAYADE FILHO, P. F.. Are mesoionic compounds aromatic?. Canadian journal of chemistry, v. 76, n. 6, p. 869-872, 1998. 73 (a) SOLOMONS, T. W. G.; FRYHLE, C. B. Química Orgânica. 7. ed. Rio de Janeiro: LTC, v. 2,2002. Cap. 20. (b) SOLOMONS, T. W. G.; FRYHLE, C. B. Química Orgânica. 7. ed. Rio de Janeiro: LTC, v. 2, 2002. Cap. 24. SOARES-BEZERRA, R. J.; LEON, L. L.; ECHEVARRIA, A.; REIS, C. M.; GOMES- SILVA, L.; AGOSTINHO, C. G.; FERNANDES, R. A.; CANTO-CAVALHEIRO, M. M.; GENESTRA, M. S. In vitro evaluation of 4-phenyl-5-(4′-X-phenyl)-1, 3, 4-thiadiazolium-2- phenylaminide chlorides and 3 [N-4′-X-phenyl]-1, 2, 3-oxadiazolium-5-olate derivatives on nitric oxide synthase and arginase activities of Leishmania amazonensis. Experimental parasitology, v. 135, n. 1, p. 50-54, 2013. SOUSA-PEREIRA, D.; de OLIVEIRA, T. S.; PAIVA, R. O.; CHAVES, O. A.; NETTO- FERREIRA, J. C.; ECHEVARRIA-LIMA, J.; ECHEVARRIA, A. Synthetic (E)-3-Phenyl-5- (phenylamino)-2-styryl-1, 3, 4-thiadiazol-3-ium Chloride Derivatives as Promising Chemotherapy Agents on Cell Lines Infected with HTLV-1. Molecules, v. 25, n. 11, p. 2537, 2020. SPECKLIN, S.; DECUYPERE, E.; PLOUGASTEL, L.; ALIANI, S.; TARAN, F. One-pot synthesis of 1, 4-disubstituted pyrazoles from arylglycines via copper-catalyzed sydnone– alkyne cycloaddition reaction. The Journal of Organic Chemistry, v. 79, n. 16, p. 7772- 7777, 2014. STEWART, F. H. C. The chemistry of the sydnones. Chemical Reviews, v. 64, n. 2, p. 129- 147, 1964. SUN, B.; LIANG, H.; CHE, D.; LIU, H.; GUO, S. Mechanistic investigation of CO generation by pyrolysis of furan and its main derivatives. RSC advances, v. 9, n. 16, p. 9099- 9105, 2019. TABÉLÉ, C.; FAIÕES, V. D. S.; GRIMAUD, F.; TORRES-SANTOS, E. C.; KHOUMERI, O.; CURTI, C.; VANELLE, P. Original antileishmanial hits: Variations around amidoximes. European journal of medicinal chemistry, v. 148, p. 154-164, 2018. TEIXEIRA, D. E.; BENCHIMOL, M.; RODRIGUES, J. C. F.; CREPALDI, P. H.; PIMENTA, P. F. P.; SOUZA, W. The cell biology of Leishmania: how to teach using animations. PLoS Pathog, v. 9, n. 10, p. e1003594, 2013. THANH, N. D.; DUC, H. T; HUE, N. H. M.; VAN, H. T. K. Reaction of some substituted 3- sryl-4-formylsydnones with tetra-oacetyl-β-D-galactopyranosyl thiosemicarbazide. Letters in Organic Chemistry, v. 13, n. 8, p. 541-546, 2016. THIESSEN, W. E.; HOPE, H.. Molecular geometry and bonding in the sydnone ring. Journal of the American Chemical Society, v. 89, n. 23, p. 5977-5978, 1967. TIN-LOK, C.; MILLER, J.; STANSFIELD, F. The SN mechanism in aromatic compounds. Part XXX. The sydnone ring. Journal of the Chemical Society (Resumed), p. 1213-1216, 1964. TORRES-GUERRERO, E.; QUINTANILLA-CEDILLO, M. R.; RUIZ-ESMENJAUND, J.; ARENAS, R. Leishmaniasis: a review. F1000Research, v. 6, 2017 74 TURNBULL, K. Bromination of sydnones. I. Reaction with 3-arylsydnones containing electron-donors on the aryl ring. Journal of heterocyclic chemistry, v. 22, n. 4, p. 965-968, 1985. UZARSKI, J. S.; DIVITO, M. D.; Wertheim, J. A.; Miller, W. M. Essential design considerations for the resazurin reduction assay to noninvasively quantify cell expansion within perfused extracellular matrix scaffolds. Biomaterials, v. 129, p. 163-175, 2017. VIESSER, R. V.; DUCATI, L. C.; TORMENA, C. F.; AUTSCHBACH, J. The unexpected roles of σ and π orbitals in electron donor and acceptor group effects on the 13 C NMR chemical shifts in substituted benzenes. Chemical science, v. 8, n. 9, p. 6570-6576, 2017. VON ESCHWEGE, K. G.; MULLER, A. 2, 3-Bis (2-methoxyphenyl) tetrazolium-5-thiolate– acetone–dichloromethane (1/0.4/0.1). Acta Crystallographica Section E: Structure Reports Online, v. 65, n. 1, p. o2-o2, 2009. WANG, S. P.; KUO, C. N.; MA, S.; YEH, M.-Y. 13C NMR studies on 3-aryl-4- cyanosydnones (II). NMR spectroscopy and the chain-conjugated structure of sydnones. Spectroscopy letters, v. 26, n. 3, p. 431-445, 1993. WORLD HEALTH ORGANIZATION (WHO). Disponível em: < https://www.who.int/topics/tropical_diseases/factsheets/neglected/en/>. Acesso em: 04 jan. 2021. WIECHMANN, S.; FREESE, T.; DRAFZ, M. H. H.; HÜBNER, E. G.; NAMYSLO, J. C.; NIEGER, M.; SCHMIDT, A. Sydnone anions and abnormal N-heterocyclic carbenes of O- ethylsydnones. Characterizations, calculations and catalyses. Chemical Communications, v. 50, n. 80, p. 11822-11824, 2014. WILLIAMS, R. L.; PACE, R. J.; JEACOCKE, G. J. Applications of solvent effects—I: The spectra of secondary nitrosamines. Spectrochimica Acta, v. 20, n. 2, p. 225-236, 1964. ZHANG, L.; ZHANG, X.; YAO, Z.; JIANG, S.; DENG, J.; LI, B.; YU, Z. Discovery of fluorogenic diarylsydnone-alkene photoligation: conversion of ortho-dual-twisted diarylsydnones into planar pyrazolines. Journal of the American Chemical Society, v. 140, n. 24, p. 7390-7394, 2018. |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
Universidade Federal Rural do Rio de Janeiro |
dc.publisher.program.fl_str_mv |
Programa de Pós-Graduação em Química |
dc.publisher.initials.fl_str_mv |
UFRRJ |
dc.publisher.country.fl_str_mv |
Brasil |
dc.publisher.department.fl_str_mv |
Instituto de Química |
publisher.none.fl_str_mv |
Universidade Federal Rural do Rio de Janeiro |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFRRJ instname:Universidade Federal Rural do Rio de Janeiro (UFRRJ) instacron:UFRRJ |
instname_str |
Universidade Federal Rural do Rio de Janeiro (UFRRJ) |
instacron_str |
UFRRJ |
institution |
UFRRJ |
reponame_str |
Repositório Institucional da UFRRJ |
collection |
Repositório Institucional da UFRRJ |
bitstream.url.fl_str_mv |
https://rima.ufrrj.br/jspui/bitstream/20.500.14407/17684/1/2021%20-%20Igor%20Resendes%20Barbosa.pdf https://rima.ufrrj.br/jspui/bitstream/20.500.14407/17684/2/license.txt https://rima.ufrrj.br/jspui/bitstream/20.500.14407/17684/3/2021%20-%20Igor%20Resendes%20Barbosa.pdf.txt https://rima.ufrrj.br/jspui/bitstream/20.500.14407/17684/4/2021%20-%20Igor%20Resendes%20Barbosa.pdf.jpg |
bitstream.checksum.fl_str_mv |
34653e4769c5cdf598c8290f4b2f0bf4 8a4605be74aa9ea9d79846c1fba20a33 c62d833053f090854c8846171c191ebf 795df779063b9308a69282419b9afd00 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional da UFRRJ - Universidade Federal Rural do Rio de Janeiro (UFRRJ) |
repository.mail.fl_str_mv |
bibliot@ufrrj.br |
_version_ |
1810107767231348736 |