Plan?cies de inunda??o: onde e como renaturalizar fun??es h?dricas

Detalhes bibliográficos
Autor(a) principal: Baptista, Marcelle Nardelli
Data de Publicação: 2020
Tipo de documento: Tese
Idioma: por
Título da fonte: Biblioteca Digital de Teses e Dissertações da UFRRJ
Texto Completo: https://tede.ufrrj.br/jspui/handle/jspui/6251
Resumo: The floodplains are made up of biodiverse and multifunctional environments that interact with each other and play an important role in the water regulation of large hydrographic basins. This study aimed to establish theoretical bases for a new form of management, using the concept of renaturalization of water functions in parts of an anthropized floodplain as a strategy to increase the supply of ecosystem services related to water regularization of hydrographic basins. It was subdivided into the following specific objectives: i) To choose alternatives for disciplining floods promoted through renaturalization measures; ii) Characterize the hydrodynamics of the floodplain in urbanized and non-urbanized soils; iii) To raise the spatio-temporal dynamics of the water table level in the production of ecosystem services in the connectivity zone; and iv) Spatialize sectors with hydrological expertise to provide distinct ecosystem services via the concept of renaturalization measures. The studied floodplain is 217.84 km? (0.38% of the basin) and is in the upper third. It is artificially regulated by the Funil Hydroelectric Power Plant and has been losing its water functions over time, both due to human interferences and climate change. It is the second largest plain on the Para?ba do Sul River and has the greatest potential for management via the renaturalization of hydrological functions. Water level meters were installed in groundwater at points with different distances from the lithostructural control point, both inside the plain and in the connectivity zone. Although the physiognomic aspects of the landscape are similar in the 50 km long hydrological section, a difference was found between the water table level in areas with different degrees of urbanization. The results indicated that urbanization changed the depth of the water table by more than 2.5 m. Sectors closer to the lithostructural control point have a higher saturation frequency than the more distant sectors located in the upstream, being more apt to receive measures for the renaturalization of water functions and having regulated urban growth. In these sectors, greater connectivity between the plain and the river was observed, and with this, greater saturation during floods and humidity in the droughts. As a main result, it was found that the plain subdivided into 09 sectors with similar expertise can make the planning process feasible and increase the offer of ecosystem services through renaturalization measures. Areas more distant to the lithostructural control point are more important for the storage of water during the droughts, while the areas closer allow water regularization in the floods during the rainy season. Both operate in an integrated manner, improving the management of water resources within the plain and benefiting the population living downstream. The sectorization of the floodplain based on water functionality and its division into sub sectors facilitates the perception of hydrological processes and allows the management of the territory taking into account the water interconnections between river and floodplain in less anthropized spaces, an essential base for establishing as measures of renaturalization of its water functions
id UFRRJ-1_3990268bfe978ffaa781b4d34d823ab9
oai_identifier_str oai:localhost:jspui/6251
network_acronym_str UFRRJ-1
network_name_str Biblioteca Digital de Teses e Dissertações da UFRRJ
repository_id_str
spelling Valcarcel, Ricardo475.124.827-87http://lattes.cnpq.br/6414014329218207Valcarcel, Ricardo475.124.827-87http://lattes.cnpq.br/6414014329218207Cortines, Erikahttp://lattes.cnpq.br/1020062257227266Salemi, Luiz Felippehttps://orcid.org/0000-0003-2271-5712http://lattes.cnpq.br/2422077073578660Cunha, Sandra Baptista dahttp://lattes.cnpq.br/9402896675191214Freitas, Welington Kiffer dehttp://lattes.cnpq.br/9066118046924125099.179.607-16http://lattes.cnpq.br/1661671959103375Baptista, Marcelle Nardelli2023-01-24T12:15:23Z2020-12-19BAPTISTA, Marcelle Nardelli. Plan?cies de inunda??o: onde e como renaturalizar fun??es h?dricas. 2020. 95 f. Tese (Doutorado em Ci?ncias Ambientais e Florestais) - Instituto de Florestas, Universidade Federal Rural do Rio de Janeiro, Serop?dica, 2020.https://tede.ufrrj.br/jspui/handle/jspui/6251The floodplains are made up of biodiverse and multifunctional environments that interact with each other and play an important role in the water regulation of large hydrographic basins. This study aimed to establish theoretical bases for a new form of management, using the concept of renaturalization of water functions in parts of an anthropized floodplain as a strategy to increase the supply of ecosystem services related to water regularization of hydrographic basins. It was subdivided into the following specific objectives: i) To choose alternatives for disciplining floods promoted through renaturalization measures; ii) Characterize the hydrodynamics of the floodplain in urbanized and non-urbanized soils; iii) To raise the spatio-temporal dynamics of the water table level in the production of ecosystem services in the connectivity zone; and iv) Spatialize sectors with hydrological expertise to provide distinct ecosystem services via the concept of renaturalization measures. The studied floodplain is 217.84 km? (0.38% of the basin) and is in the upper third. It is artificially regulated by the Funil Hydroelectric Power Plant and has been losing its water functions over time, both due to human interferences and climate change. It is the second largest plain on the Para?ba do Sul River and has the greatest potential for management via the renaturalization of hydrological functions. Water level meters were installed in groundwater at points with different distances from the lithostructural control point, both inside the plain and in the connectivity zone. Although the physiognomic aspects of the landscape are similar in the 50 km long hydrological section, a difference was found between the water table level in areas with different degrees of urbanization. The results indicated that urbanization changed the depth of the water table by more than 2.5 m. Sectors closer to the lithostructural control point have a higher saturation frequency than the more distant sectors located in the upstream, being more apt to receive measures for the renaturalization of water functions and having regulated urban growth. In these sectors, greater connectivity between the plain and the river was observed, and with this, greater saturation during floods and humidity in the droughts. As a main result, it was found that the plain subdivided into 09 sectors with similar expertise can make the planning process feasible and increase the offer of ecosystem services through renaturalization measures. Areas more distant to the lithostructural control point are more important for the storage of water during the droughts, while the areas closer allow water regularization in the floods during the rainy season. Both operate in an integrated manner, improving the management of water resources within the plain and benefiting the population living downstream. The sectorization of the floodplain based on water functionality and its division into sub sectors facilitates the perception of hydrological processes and allows the management of the territory taking into account the water interconnections between river and floodplain in less anthropized spaces, an essential base for establishing as measures of renaturalization of its water functionsAs plan?cies de inunda??o s?o constitu?das por ambientes biodiversos e multifuncionais que interagem entre si e desempenham importante papel na regula??o h?drica das grandes bacias hidrogr?ficas. Este estudo objetivou estabelecer bases te?ricas para uma nova forma de manejo, usando o conceito de renaturaliza??o de fun??es h?dricas em partes de uma plan?cie de inunda??o antropizada como estrat?gia para aumentar a oferta de servi?os ecossist?micos relacionados ? regulariza??o h?drica de bacias hidrogr?ficas. Ele foi subdividido nos seguintes objetivos espec?ficos: i) Avaliar alternativas para disciplinamento de enchentes, promovido atrav?s de medidas de renaturaliza??o; ii) Caracterizar a hidrodin?mica da plan?cie de inunda??o em solos urbanizado e n?o urbanizado; iii) Levantar din?mica espa?o-temporal do n?vel de len?ol fre?tico na produ??o de servi?os ecossist?micos na zona de conectividade; e iv) Espacializar setores com habilidades hidrol?gicas de prestar servi?os ecossist?micos distintos via o conceito de medidas de renaturaliza??o. A plan?cie de inunda??o estudada tem 217,84 km? (0,38% da bacia) e est? no ter?o superior. Ela ? regulada artificialmente pela Represa Hidrel?trica de Funil e vem perdendo suas fun??es h?dricas no tempo, tanto pelas interven??es antr?picas, como pelas mudan?as clim?ticas. ? a segunda maior plan?cie do Rio Para?ba do Sul e possui o maior potencial de manejo via renaturaliza??o de fun??es hidrol?gicas. Foram instalados medidores de n?vel de ?gua do len?ol fre?tico em pontos com diferentes dist?ncias do controle litoestrutural, tanto no interior da plan?cie como na zona de conectividade. Apesar dos aspectos fision?micos de paisagem serem similares no trecho hidrol?gico de 50 km de extens?o, encontrou-se diferen?a significativa entre o n?vel do len?ol fre?tico em ?reas com diferentes graus de urbaniza??o e caracter?sticas geo-ambientais. Os resultados indicaram que a urbaniza??o alterou a profundidade do len?ol fre?tico em mais de 2,5 m. Setores mais pr?ximos ao controle litoestrutural t?m uma frequ?ncia de satura??o mais alta que os setores mais afastados situados a montante, sendo mais aptos a receberem medidas de renaturaliza??o de fun??es h?dricas e terem regula??o do crescimento urbano. Nestes setores se observou maior conectividade entre plan?cie e calha e, com isto, maior satura??o durante as cheias e umidade nas estiagens. Como principal resultado, se encontrou que a plan?cie, subdividida em 09 setores com habilidades funcionais similares, pode viabilizar o processo de planejamento e aumentar a oferta de servi?os ecossist?micos oferecidos atrav?s de medidas de renaturaliza??o. ?reas mais distantes ao controle litoestrutural apresentam maior import?ncia para o armazenamento das chuvas durante as estiagens, enquanto ?reas mais pr?ximas oferecem regulariza??o h?drica nas cheias durante per?odo chuvoso. Ambas operam de forma integrada entre si, aperfei?oando a gest?o dos recursos h?dricos dentro da plan?cie e beneficiando a popula??o que vive a jusante. A setoriza??o da plan?cie de inunda??o baseada na funcionalidade h?drica e sua divis?o em subsetores facilita a percep??o dos processos hidrol?gicos e permite gest?o do territ?rio, tomando em considera??o as interliga??es h?dricas entre calha e plan?cie de inunda??o nos espa?os menos antropizados, base imprescind?vel para se estabelecer as medidas de renaturaliza??o de suas fun??es h?dricasSubmitted by Celso Magalhaes (celsomagalhaes@ufrrj.br) on 2023-01-24T12:15:23Z No. of bitstreams: 1 2020 - Marcelle Nardelli Baptista.pdf: 2718397 bytes, checksum: bf15a7411fb7acbc3fe485fd3cb1b7d4 (MD5)Made available in DSpace on 2023-01-24T12:15:23Z (GMT). No. of bitstreams: 1 2020 - Marcelle Nardelli Baptista.pdf: 2718397 bytes, checksum: bf15a7411fb7acbc3fe485fd3cb1b7d4 (MD5) Previous issue date: 2020-12-19CAPES - Coordena??o de Aperfei?oamento de Pessoal de N?vel Superiorapplication/pdfhttps://tede.ufrrj.br/retrieve/71882/2020%20-%20Marcelle%20Nardelli%20Baptista.pdf.jpgporUniversidade Federal Rural do Rio de JaneiroPrograma de P?s-Gradua??o em Ci?ncias Ambientais e FlorestaisUFRRJBrasilInstituto de FlorestasALEXANDER, L. C. et al. Featured Collection Introduction: Connectivity of Streams and Wetlands to Downstream Waters. Journal of the American Water Resources Association, v. 54, n. 2, p. 287?297, 2018. ALSDORF, D. et al. Seasonal water storage on the Amazon floodplain measured from satellites. Remote Sensing of Environment, v. 114, p. 2448?2456, 2010. Dispon?vel em: <http://www.sciencedirect.com/science/article/pii/S0034425710001768>. AMOATENG, P. et al. A multi-faceted analysis of annual flood incidences in Kumasi, Ghana. International Journal of Disaster Risk Reduction, v. 27, n. June 2017, p. 105?117, 2018. Dispon?vel em: <https://doi.org/10.1016/j.ijdrr.2017.09.044>. ANDERSON, M. G. et al. Assessing Floodplain Forests: Using Flow Modeling and Remote Sensing to Determine the Best Places for Conservation. Natural Areas Journal, v. 30, n. 1, p. 39?52, 2010. BALDOTTO, M.; CANELLAS, L.; VELLOSO, A. Propriedades redox da mat?ria org?nica isolada de material ultrafiltrado das ?guas do rio Para?ba do Sul. Qu?mica Nova, v. 32, n. 4, p. 891?896, 2009. Dispon?vel em: <http://www.scielo.br/pdf/qn/v32n4/v32n4a12.pdf>. Acesso em: 3 abr. 2013. BALDWIN, A. H. Restoring complex vegetation in urban settings: The case of tidal freshwater marshes. Urban Ecosystems, v. 7, p. 125?137, 2004. BAPTISTA, M.N. et al. Selection of Preferred Floodplains for the Renaturalization of Hydrologic Functions: A Case Study of the Para?ba do Sul River Basin, Brazil. Water Resources Management, v. 28, n. 13, 2014. BAPTISTA, M.N. et al. Impact of Urbanization on the Hydrodynamics of a Water Table in a Floodplain with High Potential for Renaturation. Water Resources Management, v. 31, n. 13, p. 4091?4102, 2017. Dispon?vel em: <http://link.springer.com/10.1007/s11269-017-1731-5>. BARBOZA, R. S. et al. Air Basins of Rio de Janeiro State, Brazil. Journal of Water Resource and Protection, v. 07, n. 10, p. 781?791, 2015. BAYLEY, P. Understading large river: floodplain ecossystems. BioScience, v. 45, p. 153?158, 1995. BELTRAME, A. V. Diagn?stico do meio ambiente f?sico de bacias hidrogr?ficas: modelo de aplica??o. Associa??o Brasileira das Editoras Universit?rias. Florian?polis: UFSC, 112 p. 1994. BERNHARDT, E. S. et al. Synthesizing U.S. river restoration efforts. Science, v. 308, n. 5722, p. 636?637, 2005. BINDER, W., The Restoration of the Isar South of Munich. Wasserwirtschaft. 2010. BINO, G. et al. Floodplain ecosystem dynamics under extreme dry and wet phases in semi-arid Australia. Freshwater Biology, n. November 2017, p. 224?241, 2017. BIZERRIL, C. A ictiofauna da bacia do rio Para?ba do Sul. Biodiversidade e padr?es biogeogr?ficos. Brazilian Archives of Biology and Technology, v. 42, n. 2, p. 233?250, 1999. BLACKWELL, M.S.A.. MALTBY, E., Ecoflood Guidelines. How to Use Floodplains for Flood Risk Reduction - Annual Report. Environment and Climate Change. 2006. BRADLEY, W. T. Effective flood alleviation design and construction. Proceedings of the Institution of Civil Engineers - Municipal Engineer, v. 158, n. 2, p. 107?113, 2005. 71 BRAGA, B. et al. Pacto federativo e gest?o de ?guas. Estudos Avan?ados, v. 22, n. Figura 1, p. 17?42, 2008. BRANDT, S. A. Classification of geomorphological effects downstream of dams. Catena, v. 40, n. 4, p. 375?401, 2000. BUIJSE, A. D. et al. Restoration strategies for river floodplains along large lowland rivers in Europe. Freshwater Biology, v. 47, n. 4, p. 889?907, 2002. BUISSON, E. et al. Resilience and restoration of tropical and subtropical grasslands, savannas, and grassy woodlands. Biological Reviews, v. 94, n. 2, p. 590?609, 2019. CADOL, D.; WINE, M. L. Geomorphology as a first order control on the connectivity of riparian ecohydrology. Geomorphology, v. 277, p. 154?170, 2017. CALDAS, A. DA S.; MELO, A. DE; VALCARCEL, R. An?lise da gest?o dos recursos h?dricos da bacia hidrogr?fica do Rio Para?ba do Sul com base nas normas legais. Floresta e Ambiente, p. 1?14, 2005. CALHOUN, A. J. K. et al. The Significant Surface-Water Connectivity of ?Geographically Isolated Wetlands?. Wetlands, v. 37, n. 4, p. 801?806, 2017. CARVALHO, N. O.; et al. Guia de avalia??o de assoreamento de reservat?rios. ANEEL. Bras?lia. 106 p. 2000. CARVALHO FILHO, A. de; et al. Levantamento de reconhecimento de baixa intensidade dos solos do estado do Rio de Janeiro. Rio de Janeiro: Embrapa Solos (Rio de Janeiro, RJ). 2003. Cont?m texto e mapa colorido. Escala 1:250.000. (Embrapa Solos. Boletim de Pesquisa e Desenvolvimento. 32). 2003. CEIVAP. Plano de Recursos H?dricos da Bacia do Rio Para?ba do Sul: Diagn?stico dos Recursos H?dricos - Relat?rio Final. Rio de Janeiro, 2006. 201 p. CHOU, C.S., et al. Assessment of Climate Change over South America under RCP 4.5 and 8.5 Downscaling Scenarios. American Journal of Climate Change, v. 3, p. 512-525. 2014 COELHO, A. L. N. Geomorfologia fluvial de rios impactados por barragens 1. Caminhos de Geografia, v. 9, n. 26, p. 16?32, 2008. COHEN, M. J. et al. Do geographically isolated wetlands influence landscape functions? Proceedings of the National Academy of Sciences, v. 113, n. 8, p. 1978?1986, 2016. COOK, B. J.; HAUER, F. R. Effects of hydrologic connectivity on water chemistry, soils, and vegetation structure and function in an intermontane depressional wetland landscape. Wetlands, v. 27, n. 3, p. 719?738, 2007. CORREIA, F.; SILVA, F. DA; RAMOS, I. Floodplain management in urban developing areas. Part I. Urban growth scenarios and land-use controls. Water Resources Management, v. 13, p. 1?21, 1999. COSTA, A.; Volta Redonda ontem e hoje. Volta Redonda: Jader Costa, 2004. CD-ROM COSTA, D. DE A. et al. Dos instrumentos de gest?o de recursos h?dricos - o Enquadramento - como ferramenta para reabilita??o de rios. Sa?de em Debate, v. 43, n. spe3, p. 35?50, 2019. COSTANZA, R. et al. The value of the world?s ecosystem services and natural capital. Nature, v. 387, n. 6630, p. 253?260, 1997. 72 CPRM - SERVI?O GEOL?GICO DO BRASIL Geologia e recursos minerais do Estado do Rio de Janeiro: texto explicativo do mapa geol?gico e de recursos minerais. Rio de Janeiro, 2016. 182 p. il. mapas. Dispon?vel em www.cprm.gov.br/geologia b?sica ________. Relat?rio Anual. Bras?lia, 2004. 131 p. il. color DADE, W. B.; RENSHAW, C. E.; MAGILLIGAN, F. J. Sediment transport constraints on river response to regulation. Geomorphology, v. 126, n. 1?2, p. 245?251, 2011. DUNNE, T.; BLACK, R.D. Partial ?rea contribuitions to storm runoff in a small New England watershed. Water Resources Research, v.6, p. 1296-1311, 1970. DURANEL, A.J. et al. Assessing the hydrological suitability of floodplains for species- rich meadow restoration : a case study of the Thames floodplain, UK. Hydrology and Earth System Sciences. v.11, p. 170?179. 2007. DWORK, T.; GORLAC, B. Flood risk management in Europe: The development of a common EU policy. International Journal of River Basin Management. v. 3, p. 97?103. 2005. ELOSEGI, A.; SABATER, S. Effects of hydromorphological impacts on river ecosystem functioning: a review and suggestions for assessing ecological impacts. Hydrobiologia, v. 712, p. 129?143, 2013. FAULKNER, S. Urbanization impacts on the structure and function of forested wetlands. Urban Ecosystems, v. 7, p. 89?106, 2004. FELD, C. K. et al. From Natural to Degraded Rivers and Back Again. A Test of Restoration Ecology Theory and Practice. 1. ed. Elsevier Ltd., v. 44. 2011. Dispon?vel em: <http://dx.doi.org/10.1016/B978-0-12-374794-5.00003-1>. FIGUEROA, F.E.V. Avalia??o econ?mica de ambientes naturais - o caso das ?reas alagadas - uma proposta para a represa do lobo (Broa). 143 f. Disserta??o (Mestrado em Engenharia) - UFSCar, S?o Carlos, 1996. FOX, G. A. et al. Sediment transport model for seepage erosion of streambank sediment. Journal of Hydrologic Engineering, v. 11, n. 6, p. 603?611, 2006. FRAPPART, F. et al. Floodplain water storage in the Negro River basin estimated from microwave remote sensing of inundation area and water levels. Remote Sensing of Environment, v. 99, n. 4, p. 387?399, 2005. FRAPPART, F. et al. Satellite-based estimates of groundwater storage variations in large drainage basins with extensive floodplains. Remote Sensing of Environment, v. 115, n. 6, p. 1588?1594, 2011. FURNAS. Usina Hidrel?trica de Furnas. Dispon?vel em: http://www.furnas.com.br/hotsites/sistemafurnas/usina_hidr_furnas.asp. Acesso em: 05/03/2019 GARCIA, A. C. et al. Water Monitoring of Para?ba do Sul River in the City of Lorena - SP, Brazil. International Journal of Environmental Pollution and Remediation, v. 1, n. 1, p. 31?37, 2012. GOODARZI, M. et al. Evaluation of the Effects of Climate Change on Groundwater Recharge Using a Hybrid Method. Water Resources Management, v. 30, p. 133?148, 2016. GRAF, W. L. Downstream hydrologic and geomorphic effects of large dams on American rivers. Geomorphology, v. 79, n. 3?4, p. 336?360, 2006. 73 GROFFMAN, P. M. et al. Down by the Riveside: Urban Riparian Ecology. The Ecological Society of America, v. 1, n. 6, p. 315?321, 2003. HAMILTON, S. Comparison of inundation patterns among major South American floodplains.Journal of Geophysical Research Atmospheres, v. 107, p. 1?14, 2002. HAYNES, R. J., MOORE L., 1988. Reestablishment of bottomland hardwoods within National Wildlife Refuges in the Southeast. In J. Zelazny and J. S. Feierabend 403 (eds.) Washington, DC, USA. p. 95?103, 1988. HEIN, T. et al. Current status and restoration options for floodplains along the Danube River. Science of the Total Environment, v. 543, p. 778?790, 2016. Dispon?vel em: <http://dx.doi.org/10.1016/j.scitotenv.2015.09.073>. HESTER, E. T. et al. Vertical surface water?groundwater exchange processes within a headwater floodplain induced by experimental floods. Hydrological Processes, v. 30, n. 21, p. 3770?3787, 2016. HEWLETT J.D.; HIBBERT, E. Factors affecting the response of small watersheds to precipitation in Humid Areas. In: SOPPER W.E.; LULL H.W. (Ed). International Symposium on Forest Hydrology. Oxford: Pergamon Press, 1967. p. 275-290. HORNUNG, L. K.; PODSCHUN, S. A.; PUSCH, M. Linking ecosystem services and measures in river and floodplain management. Ecosystems and People, v. 15, n. 1, p. 214?231, 2019. Dispon?vel em: <https://doi.org/10.1080/26395916.2019.1656287>. HORTON, R. E. Erosional development of streams and their drainage basins: hydrophysical approach to quantitative morphology. Geological Society of America Bulletin, v. 56, n. 3, p. 275-370, 1945. http://dx.doi.org/10.1130/0016-7606 IBGE - Instituto Brasileiro de Geografia e Estat?stica. Manual t?cnico da vegeta??o brasileira. Rio de Janeiro. Funda??o Instituto Brasileiro de Geografia e Estat?stica, 1992. 92 p. (S?rie Manuais T?cnicos em Geoci?ncias n 1). ___________. S?ntese de Indicadores Sociais. Rio de Janeiro: IBGE, 2006. ___________. Censo Demogr?fico 2010. Rio de Janeiro: IBGE, 2011. JACOBSON, R. B.; JANKE, T. P.; SKOLD, J. J. Hydrologic and geomorphic considerations in restoration of river-floodplain connectivity in a highly altered river system, Lower Missouri River, USA. Wetlands Ecology and Management, v. 19, n. 4, p. 295?316, 2011. JIN, H. et al. Monitoring of wetland inundation dynamics in the Delmarva Peninsula using Landsat time-series imagery from 1985 to 2011. Remote Sensing of Environment, v. 190, p. 26?41, 2017. Dispon?vel em: <http://dx.doi.org/10.1016/j.rse.2016.12.001>. JORDAN, S. J.; BENSON, W. H. Sustainable Watersheds: Integrating Ecosystem Services and Public Health. Environmental Health Insights, v. 9, n. S2, p. 1?7, 2015. JUNG, H. C. et al. Analysis of the relationship between flooding area and water height in the Logone floodplain. Physics and Chemistry of the Earth, v. 36, n. 7?8, p. 232?240, 2011. Dispon?vel em: <http://dx.doi.org/10.1016/j.pce.2011.01.010>. JUNK, W.; BAYLEY, P.; SPARKS, R. The flood pulse concept in river-floodplain systems. Canadian Journal of Fisheries and Aquatic Sciences, v. 106, p. 110?127, 1989. KINGSFORD, R. T. Review Ecological impacts of dams , water diversions and river management on floodplain wetlands in Australia. Austral Ecology, v. 25, p. 109?127, 2000. 74 KNIGHTON, D. Fluvial forms and process: a new perspective. Londres, Nova York: Arnold, 1998. 383 p. KOZLOWSKI, T. T. Physiological-ecological impacts of flooding on riparian forest ecosystems. Wetlands, v. 22, n. 3, p. 550?561, 2002. KRAUSE, S.; BRONSTERT, A.; ZEHE, E. Groundwater-surface water interactions in a North German lowland floodplain - Implications for the river discharge dynamics and riparian water balance. Journal of Hydrology, v. 347, n. 3?4, p. 404?417, 2007. KRISTENSEN, E. A. et al. 10 years after the largest river restoration project in Northern Europe : Hydromorphological changes on multiple scales in River Skjern. Ecological Engineering, v. 66, p. 141?149, 2014. Dispon?vel em: <http://dx.doi.org/10.1016/j.ecoleng.2013.10.001>. LEIBOWITZ, S. G. et al. Connectivity of streams and wetlands to downstream waters: an integrated systems framework. Journal of the American Water Resources Association, v. 54, n. 2, 2018. LEIBOWITZ, S. G. Geographically Isolated Wetlands: Why We Should Keep the Term. Wetlands, v. 35, n. 5, p. 997?1003, 2015. LEIBOWITZ, S. G.; MUSHET, D. M.; NEWTON, W. E. Intermittent Surface Water Connectivity: Fill and Spill Vs. Fill and Merge Dynamics. Wetlands, v. 36, p. 323?342, 2016. Dispon?vel em: <http://dx.doi.org/10.1007/s13157-016-0830-z>. LOCKABY, B. G. Floodplain ecosystems of the Southeast: Linkages between forests and people. Wetlands, v. 29, n. 2, p. 407?412, 2009. MARENGO, J.; ALVES, L. Tend?ncias hidrol?gicas da bacia do rio Para?ba do Sul. Revista Brasileira de Meteorologia, p. 215?226, 2005. MALTBY, E., BLACKWELL, M.S.A., Managing riverine environments in the context of new water policy in Europe. International Journal River Basin Management. v. 3, p. 133?141. 2005. MCCARTHY, T. S. Groundwater in the wetlands of the Okavango Delta , Botswana , and its contribution to the structure and function of the ecosystem. Journal of Hydrology, v. 320, p. 264?282, 2006. MENICHINO, G. T.; HESTER, E. T. The effect of macropores on bi-directional hydrologic exchange between a stream channel and riparian groundwater. Journal of Hydrology, v. 529, n. P3, p. 830?842, 2015. Dispon?vel em: <http://dx.doi.org/10.1016/j.jhydrol.2015.09.005>. MILLER, S. W.; WOOSTER, D.; LI, J. Resistance and resilience of macroinvertebrates to irrigation water withdrawals. Freshwater Biology, v. 52, n. 12, p. 2494?2510, 2007. MITCHELL, M. G. E.; BENNETT, E. M.; GONZALEZ, A. Linking Landscape Connectivity and Ecosystem Service Provision: Current Knowledge and Research Gaps. Ecosystems, v. 16, n. 5, p. 894?908, 2013. MOSS, B. The Water Framework Directive: Total environment or political compromise? Science of the Total Environment, v. 400, n. 1?3, p. 32?41, 2008. Dispon?vel em: <http://dx.doi.org/10.1016/j.scitotenv.2008.04.029>. MUSHET, D. M. et al. Geographically Isolated Wetlands: Rethinking a Misnomer. Wetlands, v. 35, n. 3, p. 423?431, 2015. 75 NARDI, F. et al. On the investigation of the performances of a DEM-based hydrogeomorphic floodplain identification method in a large urbanized river basin: the Tiber river case study in Italy. EGU General Assembly, v. 15, p. 12931, 2013. NEIFF, J. Plan?cies de inunda??o s?o ec?tonos. Ec?tonos nas interfaces dos ecossistemas aquaticos. S?o Carlos: Rima., p. 29?46, 2003. OVALLE, A. R. C. et al. Long-term trends in hydrochemistry in the Para?ba do Sul River , southeastern Brazil. Journal of Hydrology, v. 481, p. 191?203, 2013. Dispon?vel em: <http://dx.doi.org/10.1016/j.jhydrol.2012.12.036>. PEDERSEN, T. C. M.; BAATTRUP-PEDERSEN, A.; MADSEN, T. V. Effects of stream restoration and management on plant communities in lowland streams. Freshwater Biology, v. 51, n. 1, p. 161?179, 2006. PIGNATARO NETO, I.T.; Qualidade f?sica e qu?mica de um latossolo vermelho-amarelo sob pastagens com diferentes per?odos de usos. Disserta??o (Mestrado em Ci?ncias Agr?rias)-Universidade de Bras?lia, Bras?lia, 80f. 2008. POFF, N. L. et al. Homogenization of regional river dynamics by dams and global biodiversity implications. Proceedings of the National Academy of Sciences, v. 104, n. 14, p. 5732?5737, 2007. POFF, N. L. R. et al. The natural flow regime: A paradigm for river conservation and restoration. BioScience, v. 47, n. 11, p. 769?784, 1997. POUDEVIGNE, I. et al. A systems approach to river restoration: A case study in the Lower Seine Valley, France. River Research and Applications, v. 18, n. 3, p. 239?247, 2002. RECKENDORFER, W. et al. The Integrated River Engineering Project for the free-flowing Danube in the Austrian Alluvial Zone National Park: contradictory goals and mutual solutions. Arch. Hydrobiol. Suppl., v. 155, n. 1, p. 613?630, 2005. RICHARDS, K.; BRASINGTON, J.; HUGHES, F. Geomorphic dynamics of floodplains: Ecological implications and a potential modelling strategy. Freshwater Biology, v. 47, n. 4, p. 559?579, 2002. RIQUIER, J.; PI?GAY, H.; ?ULC MICHALKOV?, M. Hydromorphological conditions in eighteen restored floodplain channels of a large river: Linking patterns to processes. Freshwater Biology, v. 60, n. 6, p. 1085?1103, 2015. RODRIGUES, F. M.; PISSARRA, T. C. T.; CAMPOS, S. Caracteriza??o morfom?trica da microbacia hidrogr?fica C?rrego da Fazenda Gl?ria, Munic?pio de Taquaritinga. Irriga, v. 13, n. 3, p. 310-322, 2008. Dispon?vel em: <http://hdl.handle.net/11449/70443>. RUSSI, D., et al. The Economics of Ecosystems and Biodiversity (TEEB) for Water and Wetlands. IEEP, Ramsar Secretariat Gland, London and Brussels. 2013 SANON, S. et al. Quantifying ecosystem service trade-offs: The case of an urban floodplain in Vienna, Austria. Journal of Environmental Management, v. 111, p. 159?172, 2012. Dispon?vel em: <http://dx.doi.org/10.1016/j.jenvman.2012.06.008>. SANTOS, H. G., et al. Sistema Brasileiro de Classifica??o de Solos, Bras?lia, 187p. 2018. (https://www.embrapa.br/solos/busca-de-publicacoes/-/publicacao/1094003/sistema-brasileirode-classificacao-de-solos). SCHIEMER, F.; HEIN, T.; RECKENDORFER, W. Ecohydrology, key-concept for large river 76 restoration. Ecohydrology & Hydrobiology, v. 7, n. 2, p. 101?111, 2007. Dispon?vel em: <http://www.sciencedirect.com/science/article/pii/S1642359307701763>. SCHIEMER, F.; WAIDBACHER, H. Strategies for conservation of a Danubian fish fauna. River conservation and management, n. April 2016, p. 363?382, 1992. SCHIEMER, FRITZ; BAUMGARTNER, C.; TOCKNER, K. REstoration of floodplain in rivers: the "Danube Restoration Project". Regulated Rivers: Research & Managementsearch & Management, v. 15, p. 231?244, 1999. SCHINDLER, S. et al. Multifunctional floodplain management and biodiversity effects: a knowledge synthesis for six European countries. Biodiversity and Conservation, v. 25, n. 7, p. 1349?1382, 2016. SCHINDLER, S. et al. Multifunctionality of floodplain landscapes: Relating management options to ecosystem services. Landscape Ecology, v. 29, n. 2, p. 229?244, 2014. SCHOBER, B.; HAUER, C.; HABERSACK, H. A novel assessment of the role of Danube floodplains in flood hazard reduction (FEM method). Natural Hazards, v. 75, n. 1, p. 33?50, 2015. SCHOT, P.; WINTER, T. Groundwater ? surface water interactions in wetlands for integrated water resources management. Journal of Hydrology, v. 320, p. 261?263, 2006. SHIELDS, F. D.; SIMON, A.; STEFFEN, L. J. Reservoir effects on downstream river channel migration. Environmental Conservation, v. 27, n. 1, p. 54?66, 2000. STANFORD, J. A. et al. A general protocol for restoration of regulated rivers. Regulated Rivers: Research and Management, v. 12, n. 4?5, p. 391?413, 1996. TECLAFF, L.A., The river basin in history and Law. La Haya. 1967. TOCKNER, K.; MALARD, F.; WARD, J. V. An extension of the food pulse concept. Hydrological Processes, v. 2883, n. July 1999, p. 2861?2883, 2000. TOCKNER, K.; STANFORD, J. A. Riverine flood plains: present state and future trends. Environmental conservation, v. 29, n. 3, p. 308?330, 2002. TONELLO, K. C.; DIAS, H. C. T.; SOUZA, A. L. de.; RIBEIRO, C. A. A.S. R.; LEITE, F. P. An?lise hidroambiental da bacia hidrogr?fica da Cachoeira das Pombas, Guanh?es, MG. Revista ?rvore, Vi?osa-MG, v. 30, n. 5, p. 849-857, 2006. VALCARCEL, R. Propostas de a??o para o manejo da bacia hidrogr?fica do rio Para?ba do Sul. Revista Floresta e Ambiente, v. 5, n. 1, p. 68?88, 1998. VEIGA, L. B. E.; MAGRINI, A. The Brazilian Water Resources Management Policy: Fifteen Years of Success and Challenges. Water Resources Management, v. 27, n. 7, p. 2287?2302, 7 fev. 2013. Dispon?vel em: <http://link.springer.com/10.1007/s11269-013-0288-1>. VILLELA, S. M.; MATTOS, A. Hidrologia aplicada. S?o Paulo: Mc Graw-Hill do Brasil, 1975. WARD, J. V.; TOCKNER, K.; SCHIEMER, F. Biodiversity of floodplain river ecosystems: ecotones and connectivity1. Regulated Rivers: Research & Management, v. 15, n. 1?3, p. 125?139, 1999. WEIGELHOFER, G. et al. The hydrochemical response of small and shallow floodplain water bodies to temporary surface water connections with the main river. Freshwater Biology, v. 60, 77 n. 4, p. 781?793, 2015. WELCH, C. et al. Propagation of solutes and pressure into aquifers following river stage rise. Water Resources Research, v. 49, n. 9, p. 5246?5259, 2013. WIGINGTON, P. J.; MOSER, T. J.; LINDEMAN, D. R. Stream network expansion: A riparian water quality factor. Hydrological Processes, v. 19, n. 8, p. 1715?1721, 2005Len?ol fre?ticoRegulariza??o h?dricaServi?os ecossist?micosWater tableWater regulationEcosystem servicesRecursos Florestais e Engenharia FlorestalPlan?cies de inunda??o: onde e como renaturalizar fun??es h?dricasFloodplains: where and how renaturalization water functionsinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/openAccessreponame:Biblioteca Digital de Teses e Dissertações da UFRRJinstname:Universidade Federal Rural do Rio de Janeiro (UFRRJ)instacron:UFRRJTHUMBNAIL2020 - Marcelle Nardelli Baptista.pdf.jpg2020 - Marcelle Nardelli Baptista.pdf.jpgimage/jpeg1943http://localhost:8080/tede/bitstream/jspui/6251/4/2020+-+Marcelle+Nardelli+Baptista.pdf.jpgcc73c4c239a4c332d642ba1e7c7a9fb2MD54TEXT2020 - Marcelle Nardelli Baptista.pdf.txt2020 - Marcelle Nardelli Baptista.pdf.txttext/plain224788http://localhost:8080/tede/bitstream/jspui/6251/3/2020+-+Marcelle+Nardelli+Baptista.pdf.txt706dd22edbab09579aa48a52674cb8c0MD53ORIGINAL2020 - Marcelle Nardelli Baptista.pdf2020 - Marcelle Nardelli Baptista.pdfapplication/pdf2718397http://localhost:8080/tede/bitstream/jspui/6251/2/2020+-+Marcelle+Nardelli+Baptista.pdfbf15a7411fb7acbc3fe485fd3cb1b7d4MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-82089http://localhost:8080/tede/bitstream/jspui/6251/1/license.txt7b5ba3d2445355f386edab96125d42b7MD51jspui/62512023-01-25 02:00:34.676oai:localhost:jspui/6251Tk9UQTogQ09MT1FVRSBBUVVJIEEgU1VBIFBSP1BSSUEgTElDRU4/QQpFc3RhIGxpY2VuP2EgZGUgZXhlbXBsbyA/IGZvcm5lY2lkYSBhcGVuYXMgcGFyYSBmaW5zIGluZm9ybWF0aXZvcy4KCkxJQ0VOP0EgREUgRElTVFJJQlVJPz9PIE4/Ty1FWENMVVNJVkEKCkNvbSBhIGFwcmVzZW50YT8/byBkZXN0YSBsaWNlbj9hLCB2b2M/IChvIGF1dG9yIChlcykgb3UgbyB0aXR1bGFyIGRvcyBkaXJlaXRvcyBkZSBhdXRvcikgY29uY2VkZSA/IFVuaXZlcnNpZGFkZSAKWFhYIChTaWdsYSBkYSBVbml2ZXJzaWRhZGUpIG8gZGlyZWl0byBuP28tZXhjbHVzaXZvIGRlIHJlcHJvZHV6aXIsICB0cmFkdXppciAoY29uZm9ybWUgZGVmaW5pZG8gYWJhaXhvKSwgZS9vdSAKZGlzdHJpYnVpciBhIHN1YSB0ZXNlIG91IGRpc3NlcnRhPz9vIChpbmNsdWluZG8gbyByZXN1bW8pIHBvciB0b2RvIG8gbXVuZG8gbm8gZm9ybWF0byBpbXByZXNzbyBlIGVsZXRyP25pY28gZSAKZW0gcXVhbHF1ZXIgbWVpbywgaW5jbHVpbmRvIG9zIGZvcm1hdG9zID91ZGlvIG91IHY/ZGVvLgoKVm9jPyBjb25jb3JkYSBxdWUgYSBTaWdsYSBkZSBVbml2ZXJzaWRhZGUgcG9kZSwgc2VtIGFsdGVyYXIgbyBjb250ZT9kbywgdHJhbnNwb3IgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YT8/byAKcGFyYSBxdWFscXVlciBtZWlvIG91IGZvcm1hdG8gcGFyYSBmaW5zIGRlIHByZXNlcnZhPz9vLgoKVm9jPyB0YW1iP20gY29uY29yZGEgcXVlIGEgU2lnbGEgZGUgVW5pdmVyc2lkYWRlIHBvZGUgbWFudGVyIG1haXMgZGUgdW1hIGM/cGlhIGEgc3VhIHRlc2Ugb3UgCmRpc3NlcnRhPz9vIHBhcmEgZmlucyBkZSBzZWd1cmFuP2EsIGJhY2stdXAgZSBwcmVzZXJ2YT8/by4KClZvYz8gZGVjbGFyYSBxdWUgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YT8/byA/IG9yaWdpbmFsIGUgcXVlIHZvYz8gdGVtIG8gcG9kZXIgZGUgY29uY2VkZXIgb3MgZGlyZWl0b3MgY29udGlkb3MgCm5lc3RhIGxpY2VuP2EuIFZvYz8gdGFtYj9tIGRlY2xhcmEgcXVlIG8gZGVwP3NpdG8gZGEgc3VhIHRlc2Ugb3UgZGlzc2VydGE/P28gbj9vLCBxdWUgc2VqYSBkZSBzZXUgCmNvbmhlY2ltZW50bywgaW5mcmluZ2UgZGlyZWl0b3MgYXV0b3JhaXMgZGUgbmluZ3U/bS4KCkNhc28gYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YT8/byBjb250ZW5oYSBtYXRlcmlhbCBxdWUgdm9jPyBuP28gcG9zc3VpIGEgdGl0dWxhcmlkYWRlIGRvcyBkaXJlaXRvcyBhdXRvcmFpcywgdm9jPyAKZGVjbGFyYSBxdWUgb2J0ZXZlIGEgcGVybWlzcz9vIGlycmVzdHJpdGEgZG8gZGV0ZW50b3IgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIHBhcmEgY29uY2VkZXIgPyBTaWdsYSBkZSBVbml2ZXJzaWRhZGUgCm9zIGRpcmVpdG9zIGFwcmVzZW50YWRvcyBuZXN0YSBsaWNlbj9hLCBlIHF1ZSBlc3NlIG1hdGVyaWFsIGRlIHByb3ByaWVkYWRlIGRlIHRlcmNlaXJvcyBlc3Q/IGNsYXJhbWVudGUgCmlkZW50aWZpY2FkbyBlIHJlY29uaGVjaWRvIG5vIHRleHRvIG91IG5vIGNvbnRlP2RvIGRhIHRlc2Ugb3UgZGlzc2VydGE/P28gb3JhIGRlcG9zaXRhZGEuCgpDQVNPIEEgVEVTRSBPVSBESVNTRVJUQT8/TyBPUkEgREVQT1NJVEFEQSBURU5IQSBTSURPIFJFU1VMVEFETyBERSBVTSBQQVRST0M/TklPIE9VIApBUE9JTyBERSBVTUEgQUc/TkNJQSBERSBGT01FTlRPIE9VIE9VVFJPIE9SR0FOSVNNTyBRVUUgTj9PIFNFSkEgQSBTSUdMQSBERSAKVU5JVkVSU0lEQURFLCBWT0M/IERFQ0xBUkEgUVVFIFJFU1BFSVRPVSBUT0RPUyBFIFFVQUlTUVVFUiBESVJFSVRPUyBERSBSRVZJUz9PIENPTU8gClRBTUI/TSBBUyBERU1BSVMgT0JSSUdBPz9FUyBFWElHSURBUyBQT1IgQ09OVFJBVE8gT1UgQUNPUkRPLgoKQSBTaWdsYSBkZSBVbml2ZXJzaWRhZGUgc2UgY29tcHJvbWV0ZSBhIGlkZW50aWZpY2FyIGNsYXJhbWVudGUgbyBzZXUgbm9tZSAocykgb3UgbyhzKSBub21lKHMpIGRvKHMpIApkZXRlbnRvcihlcykgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIGRhIHRlc2Ugb3UgZGlzc2VydGE/P28sIGUgbj9vIGZhcj8gcXVhbHF1ZXIgYWx0ZXJhPz9vLCBhbD9tIGRhcXVlbGFzIApjb25jZWRpZGFzIHBvciBlc3RhIGxpY2VuP2EuCg==Biblioteca Digital de Teses e Dissertaçõeshttps://tede.ufrrj.br/PUBhttps://tede.ufrrj.br/oai/requestbibliot@ufrrj.br||bibliot@ufrrj.bropendoar:2023-01-25T04:00:34Biblioteca Digital de Teses e Dissertações da UFRRJ - Universidade Federal Rural do Rio de Janeiro (UFRRJ)false
dc.title.por.fl_str_mv Plan?cies de inunda??o: onde e como renaturalizar fun??es h?dricas
dc.title.alternative.eng.fl_str_mv Floodplains: where and how renaturalization water functions
title Plan?cies de inunda??o: onde e como renaturalizar fun??es h?dricas
spellingShingle Plan?cies de inunda??o: onde e como renaturalizar fun??es h?dricas
Baptista, Marcelle Nardelli
Len?ol fre?tico
Regulariza??o h?drica
Servi?os ecossist?micos
Water table
Water regulation
Ecosystem services
Recursos Florestais e Engenharia Florestal
title_short Plan?cies de inunda??o: onde e como renaturalizar fun??es h?dricas
title_full Plan?cies de inunda??o: onde e como renaturalizar fun??es h?dricas
title_fullStr Plan?cies de inunda??o: onde e como renaturalizar fun??es h?dricas
title_full_unstemmed Plan?cies de inunda??o: onde e como renaturalizar fun??es h?dricas
title_sort Plan?cies de inunda??o: onde e como renaturalizar fun??es h?dricas
author Baptista, Marcelle Nardelli
author_facet Baptista, Marcelle Nardelli
author_role author
dc.contributor.advisor1.fl_str_mv Valcarcel, Ricardo
dc.contributor.advisor1ID.fl_str_mv 475.124.827-87
dc.contributor.advisor1Lattes.fl_str_mv http://lattes.cnpq.br/6414014329218207
dc.contributor.referee1.fl_str_mv Valcarcel, Ricardo
dc.contributor.referee1ID.fl_str_mv 475.124.827-87
dc.contributor.referee1Lattes.fl_str_mv http://lattes.cnpq.br/6414014329218207
dc.contributor.referee2.fl_str_mv Cortines, Erika
dc.contributor.referee2Lattes.fl_str_mv http://lattes.cnpq.br/1020062257227266
dc.contributor.referee3.fl_str_mv Salemi, Luiz Felippe
dc.contributor.referee3ID.fl_str_mv https://orcid.org/0000-0003-2271-5712
dc.contributor.referee3Lattes.fl_str_mv http://lattes.cnpq.br/2422077073578660
dc.contributor.referee4.fl_str_mv Cunha, Sandra Baptista da
dc.contributor.referee4Lattes.fl_str_mv http://lattes.cnpq.br/9402896675191214
dc.contributor.referee5.fl_str_mv Freitas, Welington Kiffer de
dc.contributor.referee5Lattes.fl_str_mv http://lattes.cnpq.br/9066118046924125
dc.contributor.authorID.fl_str_mv 099.179.607-16
dc.contributor.authorLattes.fl_str_mv http://lattes.cnpq.br/1661671959103375
dc.contributor.author.fl_str_mv Baptista, Marcelle Nardelli
contributor_str_mv Valcarcel, Ricardo
Valcarcel, Ricardo
Cortines, Erika
Salemi, Luiz Felippe
Cunha, Sandra Baptista da
Freitas, Welington Kiffer de
dc.subject.por.fl_str_mv Len?ol fre?tico
Regulariza??o h?drica
Servi?os ecossist?micos
topic Len?ol fre?tico
Regulariza??o h?drica
Servi?os ecossist?micos
Water table
Water regulation
Ecosystem services
Recursos Florestais e Engenharia Florestal
dc.subject.eng.fl_str_mv Water table
Water regulation
Ecosystem services
dc.subject.cnpq.fl_str_mv Recursos Florestais e Engenharia Florestal
description The floodplains are made up of biodiverse and multifunctional environments that interact with each other and play an important role in the water regulation of large hydrographic basins. This study aimed to establish theoretical bases for a new form of management, using the concept of renaturalization of water functions in parts of an anthropized floodplain as a strategy to increase the supply of ecosystem services related to water regularization of hydrographic basins. It was subdivided into the following specific objectives: i) To choose alternatives for disciplining floods promoted through renaturalization measures; ii) Characterize the hydrodynamics of the floodplain in urbanized and non-urbanized soils; iii) To raise the spatio-temporal dynamics of the water table level in the production of ecosystem services in the connectivity zone; and iv) Spatialize sectors with hydrological expertise to provide distinct ecosystem services via the concept of renaturalization measures. The studied floodplain is 217.84 km? (0.38% of the basin) and is in the upper third. It is artificially regulated by the Funil Hydroelectric Power Plant and has been losing its water functions over time, both due to human interferences and climate change. It is the second largest plain on the Para?ba do Sul River and has the greatest potential for management via the renaturalization of hydrological functions. Water level meters were installed in groundwater at points with different distances from the lithostructural control point, both inside the plain and in the connectivity zone. Although the physiognomic aspects of the landscape are similar in the 50 km long hydrological section, a difference was found between the water table level in areas with different degrees of urbanization. The results indicated that urbanization changed the depth of the water table by more than 2.5 m. Sectors closer to the lithostructural control point have a higher saturation frequency than the more distant sectors located in the upstream, being more apt to receive measures for the renaturalization of water functions and having regulated urban growth. In these sectors, greater connectivity between the plain and the river was observed, and with this, greater saturation during floods and humidity in the droughts. As a main result, it was found that the plain subdivided into 09 sectors with similar expertise can make the planning process feasible and increase the offer of ecosystem services through renaturalization measures. Areas more distant to the lithostructural control point are more important for the storage of water during the droughts, while the areas closer allow water regularization in the floods during the rainy season. Both operate in an integrated manner, improving the management of water resources within the plain and benefiting the population living downstream. The sectorization of the floodplain based on water functionality and its division into sub sectors facilitates the perception of hydrological processes and allows the management of the territory taking into account the water interconnections between river and floodplain in less anthropized spaces, an essential base for establishing as measures of renaturalization of its water functions
publishDate 2020
dc.date.issued.fl_str_mv 2020-12-19
dc.date.accessioned.fl_str_mv 2023-01-24T12:15:23Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv BAPTISTA, Marcelle Nardelli. Plan?cies de inunda??o: onde e como renaturalizar fun??es h?dricas. 2020. 95 f. Tese (Doutorado em Ci?ncias Ambientais e Florestais) - Instituto de Florestas, Universidade Federal Rural do Rio de Janeiro, Serop?dica, 2020.
dc.identifier.uri.fl_str_mv https://tede.ufrrj.br/jspui/handle/jspui/6251
identifier_str_mv BAPTISTA, Marcelle Nardelli. Plan?cies de inunda??o: onde e como renaturalizar fun??es h?dricas. 2020. 95 f. Tese (Doutorado em Ci?ncias Ambientais e Florestais) - Instituto de Florestas, Universidade Federal Rural do Rio de Janeiro, Serop?dica, 2020.
url https://tede.ufrrj.br/jspui/handle/jspui/6251
dc.language.iso.fl_str_mv por
language por
dc.relation.references.por.fl_str_mv ALEXANDER, L. C. et al. Featured Collection Introduction: Connectivity of Streams and Wetlands to Downstream Waters. Journal of the American Water Resources Association, v. 54, n. 2, p. 287?297, 2018. ALSDORF, D. et al. Seasonal water storage on the Amazon floodplain measured from satellites. Remote Sensing of Environment, v. 114, p. 2448?2456, 2010. Dispon?vel em: <http://www.sciencedirect.com/science/article/pii/S0034425710001768>. AMOATENG, P. et al. A multi-faceted analysis of annual flood incidences in Kumasi, Ghana. International Journal of Disaster Risk Reduction, v. 27, n. June 2017, p. 105?117, 2018. Dispon?vel em: <https://doi.org/10.1016/j.ijdrr.2017.09.044>. ANDERSON, M. G. et al. Assessing Floodplain Forests: Using Flow Modeling and Remote Sensing to Determine the Best Places for Conservation. Natural Areas Journal, v. 30, n. 1, p. 39?52, 2010. BALDOTTO, M.; CANELLAS, L.; VELLOSO, A. Propriedades redox da mat?ria org?nica isolada de material ultrafiltrado das ?guas do rio Para?ba do Sul. Qu?mica Nova, v. 32, n. 4, p. 891?896, 2009. Dispon?vel em: <http://www.scielo.br/pdf/qn/v32n4/v32n4a12.pdf>. Acesso em: 3 abr. 2013. BALDWIN, A. H. Restoring complex vegetation in urban settings: The case of tidal freshwater marshes. Urban Ecosystems, v. 7, p. 125?137, 2004. BAPTISTA, M.N. et al. Selection of Preferred Floodplains for the Renaturalization of Hydrologic Functions: A Case Study of the Para?ba do Sul River Basin, Brazil. Water Resources Management, v. 28, n. 13, 2014. BAPTISTA, M.N. et al. Impact of Urbanization on the Hydrodynamics of a Water Table in a Floodplain with High Potential for Renaturation. Water Resources Management, v. 31, n. 13, p. 4091?4102, 2017. Dispon?vel em: <http://link.springer.com/10.1007/s11269-017-1731-5>. BARBOZA, R. S. et al. Air Basins of Rio de Janeiro State, Brazil. Journal of Water Resource and Protection, v. 07, n. 10, p. 781?791, 2015. BAYLEY, P. Understading large river: floodplain ecossystems. BioScience, v. 45, p. 153?158, 1995. BELTRAME, A. V. Diagn?stico do meio ambiente f?sico de bacias hidrogr?ficas: modelo de aplica??o. Associa??o Brasileira das Editoras Universit?rias. Florian?polis: UFSC, 112 p. 1994. BERNHARDT, E. S. et al. Synthesizing U.S. river restoration efforts. Science, v. 308, n. 5722, p. 636?637, 2005. BINDER, W., The Restoration of the Isar South of Munich. Wasserwirtschaft. 2010. BINO, G. et al. Floodplain ecosystem dynamics under extreme dry and wet phases in semi-arid Australia. Freshwater Biology, n. November 2017, p. 224?241, 2017. BIZERRIL, C. A ictiofauna da bacia do rio Para?ba do Sul. Biodiversidade e padr?es biogeogr?ficos. Brazilian Archives of Biology and Technology, v. 42, n. 2, p. 233?250, 1999. BLACKWELL, M.S.A.. MALTBY, E., Ecoflood Guidelines. How to Use Floodplains for Flood Risk Reduction - Annual Report. Environment and Climate Change. 2006. BRADLEY, W. T. Effective flood alleviation design and construction. Proceedings of the Institution of Civil Engineers - Municipal Engineer, v. 158, n. 2, p. 107?113, 2005. 71 BRAGA, B. et al. Pacto federativo e gest?o de ?guas. Estudos Avan?ados, v. 22, n. Figura 1, p. 17?42, 2008. BRANDT, S. A. Classification of geomorphological effects downstream of dams. Catena, v. 40, n. 4, p. 375?401, 2000. BUIJSE, A. D. et al. Restoration strategies for river floodplains along large lowland rivers in Europe. Freshwater Biology, v. 47, n. 4, p. 889?907, 2002. BUISSON, E. et al. Resilience and restoration of tropical and subtropical grasslands, savannas, and grassy woodlands. Biological Reviews, v. 94, n. 2, p. 590?609, 2019. CADOL, D.; WINE, M. L. Geomorphology as a first order control on the connectivity of riparian ecohydrology. Geomorphology, v. 277, p. 154?170, 2017. CALDAS, A. DA S.; MELO, A. DE; VALCARCEL, R. An?lise da gest?o dos recursos h?dricos da bacia hidrogr?fica do Rio Para?ba do Sul com base nas normas legais. Floresta e Ambiente, p. 1?14, 2005. CALHOUN, A. J. K. et al. The Significant Surface-Water Connectivity of ?Geographically Isolated Wetlands?. Wetlands, v. 37, n. 4, p. 801?806, 2017. CARVALHO, N. O.; et al. Guia de avalia??o de assoreamento de reservat?rios. ANEEL. Bras?lia. 106 p. 2000. CARVALHO FILHO, A. de; et al. Levantamento de reconhecimento de baixa intensidade dos solos do estado do Rio de Janeiro. Rio de Janeiro: Embrapa Solos (Rio de Janeiro, RJ). 2003. Cont?m texto e mapa colorido. Escala 1:250.000. (Embrapa Solos. Boletim de Pesquisa e Desenvolvimento. 32). 2003. CEIVAP. Plano de Recursos H?dricos da Bacia do Rio Para?ba do Sul: Diagn?stico dos Recursos H?dricos - Relat?rio Final. Rio de Janeiro, 2006. 201 p. CHOU, C.S., et al. Assessment of Climate Change over South America under RCP 4.5 and 8.5 Downscaling Scenarios. American Journal of Climate Change, v. 3, p. 512-525. 2014 COELHO, A. L. N. Geomorfologia fluvial de rios impactados por barragens 1. Caminhos de Geografia, v. 9, n. 26, p. 16?32, 2008. COHEN, M. J. et al. Do geographically isolated wetlands influence landscape functions? Proceedings of the National Academy of Sciences, v. 113, n. 8, p. 1978?1986, 2016. COOK, B. J.; HAUER, F. R. Effects of hydrologic connectivity on water chemistry, soils, and vegetation structure and function in an intermontane depressional wetland landscape. Wetlands, v. 27, n. 3, p. 719?738, 2007. CORREIA, F.; SILVA, F. DA; RAMOS, I. Floodplain management in urban developing areas. Part I. Urban growth scenarios and land-use controls. Water Resources Management, v. 13, p. 1?21, 1999. COSTA, A.; Volta Redonda ontem e hoje. Volta Redonda: Jader Costa, 2004. CD-ROM COSTA, D. DE A. et al. Dos instrumentos de gest?o de recursos h?dricos - o Enquadramento - como ferramenta para reabilita??o de rios. Sa?de em Debate, v. 43, n. spe3, p. 35?50, 2019. COSTANZA, R. et al. The value of the world?s ecosystem services and natural capital. Nature, v. 387, n. 6630, p. 253?260, 1997. 72 CPRM - SERVI?O GEOL?GICO DO BRASIL Geologia e recursos minerais do Estado do Rio de Janeiro: texto explicativo do mapa geol?gico e de recursos minerais. Rio de Janeiro, 2016. 182 p. il. mapas. Dispon?vel em www.cprm.gov.br/geologia b?sica ________. Relat?rio Anual. Bras?lia, 2004. 131 p. il. color DADE, W. B.; RENSHAW, C. E.; MAGILLIGAN, F. J. Sediment transport constraints on river response to regulation. Geomorphology, v. 126, n. 1?2, p. 245?251, 2011. DUNNE, T.; BLACK, R.D. Partial ?rea contribuitions to storm runoff in a small New England watershed. Water Resources Research, v.6, p. 1296-1311, 1970. DURANEL, A.J. et al. Assessing the hydrological suitability of floodplains for species- rich meadow restoration : a case study of the Thames floodplain, UK. Hydrology and Earth System Sciences. v.11, p. 170?179. 2007. DWORK, T.; GORLAC, B. Flood risk management in Europe: The development of a common EU policy. International Journal of River Basin Management. v. 3, p. 97?103. 2005. ELOSEGI, A.; SABATER, S. Effects of hydromorphological impacts on river ecosystem functioning: a review and suggestions for assessing ecological impacts. Hydrobiologia, v. 712, p. 129?143, 2013. FAULKNER, S. Urbanization impacts on the structure and function of forested wetlands. Urban Ecosystems, v. 7, p. 89?106, 2004. FELD, C. K. et al. From Natural to Degraded Rivers and Back Again. A Test of Restoration Ecology Theory and Practice. 1. ed. Elsevier Ltd., v. 44. 2011. Dispon?vel em: <http://dx.doi.org/10.1016/B978-0-12-374794-5.00003-1>. FIGUEROA, F.E.V. Avalia??o econ?mica de ambientes naturais - o caso das ?reas alagadas - uma proposta para a represa do lobo (Broa). 143 f. Disserta??o (Mestrado em Engenharia) - UFSCar, S?o Carlos, 1996. FOX, G. A. et al. Sediment transport model for seepage erosion of streambank sediment. Journal of Hydrologic Engineering, v. 11, n. 6, p. 603?611, 2006. FRAPPART, F. et al. Floodplain water storage in the Negro River basin estimated from microwave remote sensing of inundation area and water levels. Remote Sensing of Environment, v. 99, n. 4, p. 387?399, 2005. FRAPPART, F. et al. Satellite-based estimates of groundwater storage variations in large drainage basins with extensive floodplains. Remote Sensing of Environment, v. 115, n. 6, p. 1588?1594, 2011. FURNAS. Usina Hidrel?trica de Furnas. Dispon?vel em: http://www.furnas.com.br/hotsites/sistemafurnas/usina_hidr_furnas.asp. Acesso em: 05/03/2019 GARCIA, A. C. et al. Water Monitoring of Para?ba do Sul River in the City of Lorena - SP, Brazil. International Journal of Environmental Pollution and Remediation, v. 1, n. 1, p. 31?37, 2012. GOODARZI, M. et al. Evaluation of the Effects of Climate Change on Groundwater Recharge Using a Hybrid Method. Water Resources Management, v. 30, p. 133?148, 2016. GRAF, W. L. Downstream hydrologic and geomorphic effects of large dams on American rivers. Geomorphology, v. 79, n. 3?4, p. 336?360, 2006. 73 GROFFMAN, P. M. et al. Down by the Riveside: Urban Riparian Ecology. The Ecological Society of America, v. 1, n. 6, p. 315?321, 2003. HAMILTON, S. Comparison of inundation patterns among major South American floodplains.Journal of Geophysical Research Atmospheres, v. 107, p. 1?14, 2002. HAYNES, R. J., MOORE L., 1988. Reestablishment of bottomland hardwoods within National Wildlife Refuges in the Southeast. In J. Zelazny and J. S. Feierabend 403 (eds.) Washington, DC, USA. p. 95?103, 1988. HEIN, T. et al. Current status and restoration options for floodplains along the Danube River. Science of the Total Environment, v. 543, p. 778?790, 2016. Dispon?vel em: <http://dx.doi.org/10.1016/j.scitotenv.2015.09.073>. HESTER, E. T. et al. Vertical surface water?groundwater exchange processes within a headwater floodplain induced by experimental floods. Hydrological Processes, v. 30, n. 21, p. 3770?3787, 2016. HEWLETT J.D.; HIBBERT, E. Factors affecting the response of small watersheds to precipitation in Humid Areas. In: SOPPER W.E.; LULL H.W. (Ed). International Symposium on Forest Hydrology. Oxford: Pergamon Press, 1967. p. 275-290. HORNUNG, L. K.; PODSCHUN, S. A.; PUSCH, M. Linking ecosystem services and measures in river and floodplain management. Ecosystems and People, v. 15, n. 1, p. 214?231, 2019. Dispon?vel em: <https://doi.org/10.1080/26395916.2019.1656287>. HORTON, R. E. Erosional development of streams and their drainage basins: hydrophysical approach to quantitative morphology. Geological Society of America Bulletin, v. 56, n. 3, p. 275-370, 1945. http://dx.doi.org/10.1130/0016-7606 IBGE - Instituto Brasileiro de Geografia e Estat?stica. Manual t?cnico da vegeta??o brasileira. Rio de Janeiro. Funda??o Instituto Brasileiro de Geografia e Estat?stica, 1992. 92 p. (S?rie Manuais T?cnicos em Geoci?ncias n 1). ___________. S?ntese de Indicadores Sociais. Rio de Janeiro: IBGE, 2006. ___________. Censo Demogr?fico 2010. Rio de Janeiro: IBGE, 2011. JACOBSON, R. B.; JANKE, T. P.; SKOLD, J. J. Hydrologic and geomorphic considerations in restoration of river-floodplain connectivity in a highly altered river system, Lower Missouri River, USA. Wetlands Ecology and Management, v. 19, n. 4, p. 295?316, 2011. JIN, H. et al. Monitoring of wetland inundation dynamics in the Delmarva Peninsula using Landsat time-series imagery from 1985 to 2011. Remote Sensing of Environment, v. 190, p. 26?41, 2017. Dispon?vel em: <http://dx.doi.org/10.1016/j.rse.2016.12.001>. JORDAN, S. J.; BENSON, W. H. Sustainable Watersheds: Integrating Ecosystem Services and Public Health. Environmental Health Insights, v. 9, n. S2, p. 1?7, 2015. JUNG, H. C. et al. Analysis of the relationship between flooding area and water height in the Logone floodplain. Physics and Chemistry of the Earth, v. 36, n. 7?8, p. 232?240, 2011. Dispon?vel em: <http://dx.doi.org/10.1016/j.pce.2011.01.010>. JUNK, W.; BAYLEY, P.; SPARKS, R. The flood pulse concept in river-floodplain systems. Canadian Journal of Fisheries and Aquatic Sciences, v. 106, p. 110?127, 1989. KINGSFORD, R. T. Review Ecological impacts of dams , water diversions and river management on floodplain wetlands in Australia. Austral Ecology, v. 25, p. 109?127, 2000. 74 KNIGHTON, D. Fluvial forms and process: a new perspective. Londres, Nova York: Arnold, 1998. 383 p. KOZLOWSKI, T. T. Physiological-ecological impacts of flooding on riparian forest ecosystems. Wetlands, v. 22, n. 3, p. 550?561, 2002. KRAUSE, S.; BRONSTERT, A.; ZEHE, E. Groundwater-surface water interactions in a North German lowland floodplain - Implications for the river discharge dynamics and riparian water balance. Journal of Hydrology, v. 347, n. 3?4, p. 404?417, 2007. KRISTENSEN, E. A. et al. 10 years after the largest river restoration project in Northern Europe : Hydromorphological changes on multiple scales in River Skjern. Ecological Engineering, v. 66, p. 141?149, 2014. Dispon?vel em: <http://dx.doi.org/10.1016/j.ecoleng.2013.10.001>. LEIBOWITZ, S. G. et al. Connectivity of streams and wetlands to downstream waters: an integrated systems framework. Journal of the American Water Resources Association, v. 54, n. 2, 2018. LEIBOWITZ, S. G. Geographically Isolated Wetlands: Why We Should Keep the Term. Wetlands, v. 35, n. 5, p. 997?1003, 2015. LEIBOWITZ, S. G.; MUSHET, D. M.; NEWTON, W. E. Intermittent Surface Water Connectivity: Fill and Spill Vs. Fill and Merge Dynamics. Wetlands, v. 36, p. 323?342, 2016. Dispon?vel em: <http://dx.doi.org/10.1007/s13157-016-0830-z>. LOCKABY, B. G. Floodplain ecosystems of the Southeast: Linkages between forests and people. Wetlands, v. 29, n. 2, p. 407?412, 2009. MARENGO, J.; ALVES, L. Tend?ncias hidrol?gicas da bacia do rio Para?ba do Sul. Revista Brasileira de Meteorologia, p. 215?226, 2005. MALTBY, E., BLACKWELL, M.S.A., Managing riverine environments in the context of new water policy in Europe. International Journal River Basin Management. v. 3, p. 133?141. 2005. MCCARTHY, T. S. Groundwater in the wetlands of the Okavango Delta , Botswana , and its contribution to the structure and function of the ecosystem. Journal of Hydrology, v. 320, p. 264?282, 2006. MENICHINO, G. T.; HESTER, E. T. The effect of macropores on bi-directional hydrologic exchange between a stream channel and riparian groundwater. Journal of Hydrology, v. 529, n. P3, p. 830?842, 2015. Dispon?vel em: <http://dx.doi.org/10.1016/j.jhydrol.2015.09.005>. MILLER, S. W.; WOOSTER, D.; LI, J. Resistance and resilience of macroinvertebrates to irrigation water withdrawals. Freshwater Biology, v. 52, n. 12, p. 2494?2510, 2007. MITCHELL, M. G. E.; BENNETT, E. M.; GONZALEZ, A. Linking Landscape Connectivity and Ecosystem Service Provision: Current Knowledge and Research Gaps. Ecosystems, v. 16, n. 5, p. 894?908, 2013. MOSS, B. The Water Framework Directive: Total environment or political compromise? Science of the Total Environment, v. 400, n. 1?3, p. 32?41, 2008. Dispon?vel em: <http://dx.doi.org/10.1016/j.scitotenv.2008.04.029>. MUSHET, D. M. et al. Geographically Isolated Wetlands: Rethinking a Misnomer. Wetlands, v. 35, n. 3, p. 423?431, 2015. 75 NARDI, F. et al. On the investigation of the performances of a DEM-based hydrogeomorphic floodplain identification method in a large urbanized river basin: the Tiber river case study in Italy. EGU General Assembly, v. 15, p. 12931, 2013. NEIFF, J. Plan?cies de inunda??o s?o ec?tonos. Ec?tonos nas interfaces dos ecossistemas aquaticos. S?o Carlos: Rima., p. 29?46, 2003. OVALLE, A. R. C. et al. Long-term trends in hydrochemistry in the Para?ba do Sul River , southeastern Brazil. Journal of Hydrology, v. 481, p. 191?203, 2013. Dispon?vel em: <http://dx.doi.org/10.1016/j.jhydrol.2012.12.036>. PEDERSEN, T. C. M.; BAATTRUP-PEDERSEN, A.; MADSEN, T. V. Effects of stream restoration and management on plant communities in lowland streams. Freshwater Biology, v. 51, n. 1, p. 161?179, 2006. PIGNATARO NETO, I.T.; Qualidade f?sica e qu?mica de um latossolo vermelho-amarelo sob pastagens com diferentes per?odos de usos. Disserta??o (Mestrado em Ci?ncias Agr?rias)-Universidade de Bras?lia, Bras?lia, 80f. 2008. POFF, N. L. et al. Homogenization of regional river dynamics by dams and global biodiversity implications. Proceedings of the National Academy of Sciences, v. 104, n. 14, p. 5732?5737, 2007. POFF, N. L. R. et al. The natural flow regime: A paradigm for river conservation and restoration. BioScience, v. 47, n. 11, p. 769?784, 1997. POUDEVIGNE, I. et al. A systems approach to river restoration: A case study in the Lower Seine Valley, France. River Research and Applications, v. 18, n. 3, p. 239?247, 2002. RECKENDORFER, W. et al. The Integrated River Engineering Project for the free-flowing Danube in the Austrian Alluvial Zone National Park: contradictory goals and mutual solutions. Arch. Hydrobiol. Suppl., v. 155, n. 1, p. 613?630, 2005. RICHARDS, K.; BRASINGTON, J.; HUGHES, F. Geomorphic dynamics of floodplains: Ecological implications and a potential modelling strategy. Freshwater Biology, v. 47, n. 4, p. 559?579, 2002. RIQUIER, J.; PI?GAY, H.; ?ULC MICHALKOV?, M. Hydromorphological conditions in eighteen restored floodplain channels of a large river: Linking patterns to processes. Freshwater Biology, v. 60, n. 6, p. 1085?1103, 2015. RODRIGUES, F. M.; PISSARRA, T. C. T.; CAMPOS, S. Caracteriza??o morfom?trica da microbacia hidrogr?fica C?rrego da Fazenda Gl?ria, Munic?pio de Taquaritinga. Irriga, v. 13, n. 3, p. 310-322, 2008. Dispon?vel em: <http://hdl.handle.net/11449/70443>. RUSSI, D., et al. The Economics of Ecosystems and Biodiversity (TEEB) for Water and Wetlands. IEEP, Ramsar Secretariat Gland, London and Brussels. 2013 SANON, S. et al. Quantifying ecosystem service trade-offs: The case of an urban floodplain in Vienna, Austria. Journal of Environmental Management, v. 111, p. 159?172, 2012. Dispon?vel em: <http://dx.doi.org/10.1016/j.jenvman.2012.06.008>. SANTOS, H. G., et al. Sistema Brasileiro de Classifica??o de Solos, Bras?lia, 187p. 2018. (https://www.embrapa.br/solos/busca-de-publicacoes/-/publicacao/1094003/sistema-brasileirode-classificacao-de-solos). SCHIEMER, F.; HEIN, T.; RECKENDORFER, W. Ecohydrology, key-concept for large river 76 restoration. Ecohydrology & Hydrobiology, v. 7, n. 2, p. 101?111, 2007. Dispon?vel em: <http://www.sciencedirect.com/science/article/pii/S1642359307701763>. SCHIEMER, F.; WAIDBACHER, H. Strategies for conservation of a Danubian fish fauna. River conservation and management, n. April 2016, p. 363?382, 1992. SCHIEMER, FRITZ; BAUMGARTNER, C.; TOCKNER, K. REstoration of floodplain in rivers: the "Danube Restoration Project". Regulated Rivers: Research & Managementsearch & Management, v. 15, p. 231?244, 1999. SCHINDLER, S. et al. Multifunctional floodplain management and biodiversity effects: a knowledge synthesis for six European countries. Biodiversity and Conservation, v. 25, n. 7, p. 1349?1382, 2016. SCHINDLER, S. et al. Multifunctionality of floodplain landscapes: Relating management options to ecosystem services. Landscape Ecology, v. 29, n. 2, p. 229?244, 2014. SCHOBER, B.; HAUER, C.; HABERSACK, H. A novel assessment of the role of Danube floodplains in flood hazard reduction (FEM method). Natural Hazards, v. 75, n. 1, p. 33?50, 2015. SCHOT, P.; WINTER, T. Groundwater ? surface water interactions in wetlands for integrated water resources management. Journal of Hydrology, v. 320, p. 261?263, 2006. SHIELDS, F. D.; SIMON, A.; STEFFEN, L. J. Reservoir effects on downstream river channel migration. Environmental Conservation, v. 27, n. 1, p. 54?66, 2000. STANFORD, J. A. et al. A general protocol for restoration of regulated rivers. Regulated Rivers: Research and Management, v. 12, n. 4?5, p. 391?413, 1996. TECLAFF, L.A., The river basin in history and Law. La Haya. 1967. TOCKNER, K.; MALARD, F.; WARD, J. V. An extension of the food pulse concept. Hydrological Processes, v. 2883, n. July 1999, p. 2861?2883, 2000. TOCKNER, K.; STANFORD, J. A. Riverine flood plains: present state and future trends. Environmental conservation, v. 29, n. 3, p. 308?330, 2002. TONELLO, K. C.; DIAS, H. C. T.; SOUZA, A. L. de.; RIBEIRO, C. A. A.S. R.; LEITE, F. P. An?lise hidroambiental da bacia hidrogr?fica da Cachoeira das Pombas, Guanh?es, MG. Revista ?rvore, Vi?osa-MG, v. 30, n. 5, p. 849-857, 2006. VALCARCEL, R. Propostas de a??o para o manejo da bacia hidrogr?fica do rio Para?ba do Sul. Revista Floresta e Ambiente, v. 5, n. 1, p. 68?88, 1998. VEIGA, L. B. E.; MAGRINI, A. The Brazilian Water Resources Management Policy: Fifteen Years of Success and Challenges. Water Resources Management, v. 27, n. 7, p. 2287?2302, 7 fev. 2013. Dispon?vel em: <http://link.springer.com/10.1007/s11269-013-0288-1>. VILLELA, S. M.; MATTOS, A. Hidrologia aplicada. S?o Paulo: Mc Graw-Hill do Brasil, 1975. WARD, J. V.; TOCKNER, K.; SCHIEMER, F. Biodiversity of floodplain river ecosystems: ecotones and connectivity1. Regulated Rivers: Research & Management, v. 15, n. 1?3, p. 125?139, 1999. WEIGELHOFER, G. et al. The hydrochemical response of small and shallow floodplain water bodies to temporary surface water connections with the main river. Freshwater Biology, v. 60, 77 n. 4, p. 781?793, 2015. WELCH, C. et al. Propagation of solutes and pressure into aquifers following river stage rise. Water Resources Research, v. 49, n. 9, p. 5246?5259, 2013. WIGINGTON, P. J.; MOSER, T. J.; LINDEMAN, D. R. Stream network expansion: A riparian water quality factor. Hydrological Processes, v. 19, n. 8, p. 1715?1721, 2005
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal Rural do Rio de Janeiro
dc.publisher.program.fl_str_mv Programa de P?s-Gradua??o em Ci?ncias Ambientais e Florestais
dc.publisher.initials.fl_str_mv UFRRJ
dc.publisher.country.fl_str_mv Brasil
dc.publisher.department.fl_str_mv Instituto de Florestas
publisher.none.fl_str_mv Universidade Federal Rural do Rio de Janeiro
dc.source.none.fl_str_mv reponame:Biblioteca Digital de Teses e Dissertações da UFRRJ
instname:Universidade Federal Rural do Rio de Janeiro (UFRRJ)
instacron:UFRRJ
instname_str Universidade Federal Rural do Rio de Janeiro (UFRRJ)
instacron_str UFRRJ
institution UFRRJ
reponame_str Biblioteca Digital de Teses e Dissertações da UFRRJ
collection Biblioteca Digital de Teses e Dissertações da UFRRJ
bitstream.url.fl_str_mv http://localhost:8080/tede/bitstream/jspui/6251/4/2020+-+Marcelle+Nardelli+Baptista.pdf.jpg
http://localhost:8080/tede/bitstream/jspui/6251/3/2020+-+Marcelle+Nardelli+Baptista.pdf.txt
http://localhost:8080/tede/bitstream/jspui/6251/2/2020+-+Marcelle+Nardelli+Baptista.pdf
http://localhost:8080/tede/bitstream/jspui/6251/1/license.txt
bitstream.checksum.fl_str_mv cc73c4c239a4c332d642ba1e7c7a9fb2
706dd22edbab09579aa48a52674cb8c0
bf15a7411fb7acbc3fe485fd3cb1b7d4
7b5ba3d2445355f386edab96125d42b7
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da UFRRJ - Universidade Federal Rural do Rio de Janeiro (UFRRJ)
repository.mail.fl_str_mv bibliot@ufrrj.br||bibliot@ufrrj.br
_version_ 1800313563273756672