Oxidação de ésteres metílicos de ácidos graxos insaturados por óxido de Nióbio (v): um estudo da atividade do catalisador

Detalhes bibliográficos
Autor(a) principal: Cecchi, Christian Marcelo Paraguassú
Data de Publicação: 2018
Tipo de documento: Tese
Idioma: por
Título da fonte: Biblioteca Digital de Teses e Dissertações da UFRRJ
Texto Completo: https://rima.ufrrj.br/jspui/handle/20.500.14407/10231
Resumo: Os ácidos graxos naturais e seus ésteres estão se tornando uma fonte alternativa e promissora como substitutos para reagentes em rotas sintéticas. Nos ácidos graxos insaturados as ligações duplas são centros reativos atraentes para vários tipos de reações. Entre os processos mais relevantes estão os derivados da oxidação parcial ou total dessas ligações duplas pelo uso de metais de transição como catalisadores, os quais incluem a reação de epoxidação, e outras oxidações parciais, que levam à produção de dióis, aldeídos e/ou cetonas, ou oxidação total, com a produção de ácidos carboxílicos como produtos finais. As propriedades catalíticas do óxido de nióbio (V) (Nb2O5–CBMM) de diferentes graus – amorfo, ótico e ultra puro, não tratado ou tratado termicamente a 400, 500, 700 e 900 °C – foram estudadas – antes e após de interação com peróxido de hidrogênio (H2O2) –, por espectroscopias de UV–Visível em modo de reflectância difusa, Raman e FTIR–ATR. Caracterizou–se a presença de sistemas do tipo NbO7 e NbO8, que está diretamente relacionada aos sítios reacionais superficiais presentes em diferentes estados de cristalização, caracterizados pela formação de sitemas do tipo η1–hidroperoxo e η2–peroxo. A atividade dos diferentes catalisadores obtidos a partir do óxido de nióbio (V) foi investigada utilizando a oxidação de oleato e do linoleato de metila na presença de H2O2, funcionando como sonda reacional. A reação foi acompanhada por CG e técnicas como CG–EM e espectrometrias de RMN de 1H e 13C foram utilizadas para determinar o produto dominante da reação como sendo o éster metílico do ácido 9–oxo–nonanóico, sendo reativo somente o linoleato de metila. Com base nesses resultados foi proposto um mecanismo de reação envolvendo um processo de auto–oxidação que leva inicialmente à formação de hidroperóxidos, que se decompõem rapidamente via rearranjo do tipo Hock, levando à formação de aldeídos, indicando como espécie oxidante o sitema η1–hidroperoxo.
id UFRRJ-1_61a22f38be7c4059cfa41bfa8fe85ad3
oai_identifier_str oai:rima.ufrrj.br:20.500.14407/10231
network_acronym_str UFRRJ-1
network_name_str Repositório Institucional da UFRRJ
repository_id_str
spelling Cecchi, Christian Marcelo ParaguassúFerreira, José Carlos Netto149460177-04http://lattes.cnpq.br/2496613154167269Ferreira, Aurélio Baird BuarqueCesarín Sobrinho, DaríFerreira, Aurélio Baird BuarqueRocha, Angela SanchesSilva Júnior, Antônio Marques daLachter, Elizabeth RoditiHerbst, Marcelo Hawrylak073997997-33http://lattes.cnpq.br/72744181429868922023-12-21T18:59:14Z2023-12-21T18:59:14Z2018-08-17CECCHI, Christian Marcelo Paraguassú. Oxidação de ésteres metílicos de ácidos graxos insaturados por óxido de Nióbio (v): um estudo da atividade do catalisador. 2018. [147 f.]. Tese( Programa de Pós-Graduação em Química) - Universidade Federal Rural do Rio de Janeiro, [Seropédica - RJ] .https://rima.ufrrj.br/jspui/handle/20.500.14407/10231Os ácidos graxos naturais e seus ésteres estão se tornando uma fonte alternativa e promissora como substitutos para reagentes em rotas sintéticas. Nos ácidos graxos insaturados as ligações duplas são centros reativos atraentes para vários tipos de reações. Entre os processos mais relevantes estão os derivados da oxidação parcial ou total dessas ligações duplas pelo uso de metais de transição como catalisadores, os quais incluem a reação de epoxidação, e outras oxidações parciais, que levam à produção de dióis, aldeídos e/ou cetonas, ou oxidação total, com a produção de ácidos carboxílicos como produtos finais. As propriedades catalíticas do óxido de nióbio (V) (Nb2O5–CBMM) de diferentes graus – amorfo, ótico e ultra puro, não tratado ou tratado termicamente a 400, 500, 700 e 900 °C – foram estudadas – antes e após de interação com peróxido de hidrogênio (H2O2) –, por espectroscopias de UV–Visível em modo de reflectância difusa, Raman e FTIR–ATR. Caracterizou–se a presença de sistemas do tipo NbO7 e NbO8, que está diretamente relacionada aos sítios reacionais superficiais presentes em diferentes estados de cristalização, caracterizados pela formação de sitemas do tipo η1–hidroperoxo e η2–peroxo. A atividade dos diferentes catalisadores obtidos a partir do óxido de nióbio (V) foi investigada utilizando a oxidação de oleato e do linoleato de metila na presença de H2O2, funcionando como sonda reacional. A reação foi acompanhada por CG e técnicas como CG–EM e espectrometrias de RMN de 1H e 13C foram utilizadas para determinar o produto dominante da reação como sendo o éster metílico do ácido 9–oxo–nonanóico, sendo reativo somente o linoleato de metila. Com base nesses resultados foi proposto um mecanismo de reação envolvendo um processo de auto–oxidação que leva inicialmente à formação de hidroperóxidos, que se decompõem rapidamente via rearranjo do tipo Hock, levando à formação de aldeídos, indicando como espécie oxidante o sitema η1–hidroperoxo.Coordenação de Aperfeiçoamento de Pessoal de Nível Superior, CAPES, Brasil.Natural fatty acids and their esters are becoming an alternative and promising source as substitutes for reagents in synthetic routes. In unsaturated fatty acids, double bonds are attractive reactive centers for various types of reactions. Among the most relevant processes are those derived from the partial or total oxidation of these double bonds by the use of transition metals as catalysts, which include the epoxidation reaction, and other partial oxidations, which lead to the production of diols, aldehydes and/or ketones, or total oxidation, with the production of carboxylic acids as final products. The catalytic properties of niobium oxide (V) (Nb2O5–CBMM) of different degrees – amorphous, optical and ultra pure, untreated or heat treated at 400, 500, 700 and 900 °C – were studied – before and after interaction with hydrogen peroxide (H2O2) –, by UV–Visible in diffuse reflectance mode, Raman and FTIR spectroscopies. The presence of NbO7 and NbO8 systems, which is directly related to the surface reaction sites present in different crystallization states, is characterized by the formation of η1–hydroperoxide and η2–peroxo type systems. The activity of the different catalysts obtained from the niobium oxide (V) was investigated using the oxidation of oleate and methyl linoleate in the presence of H2O2, acting as a reaction probe. The reaction was monitored by GC and techniques such as GC–MS and 1H and 13C NMR spectrometry were used to determine the dominant product of the reaction as 9–oxo–nonanoic acid methyl ester and only methyl linoleate was reactive. Based on these results, a reaction mechanism was proposed involving an auto–oxidation process that initially leads to the formation of hydroperoxides, which decompose rapidly via Hock–type rearrangement, leading to the formation of aldehydes, pointing to the η1–hydroperoxide system as the oxidizing species.application/pdfporUniversidade Federal Rural do Rio de JaneiroPrograma de Pós-Graduação em QuímicaUFRRJBrasilInstituto de Ciências Exataslinoleato de metilaEspectroscopia Ramanoxidaçãomethyl linoleateRaman spectroscopyoxidationQuímicaOxidação de ésteres metílicos de ácidos graxos insaturados por óxido de Nióbio (v): um estudo da atividade do catalisadorinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesis1. Mbaraka, I.K.; Shanks, B.H. J. Am. Oil Chem. Soc. 2006, 83, 79-91, doi:10.1007/s11746-006-1179-x. 2. Biermann, U.; Bornscheuer, U.; Meier, M.A.; Metzger, J.O.; Schäfer, H.J. Angew. Chem. Int. 2011, 50, 3854-3871, doi:10.1002/anie.201002767. 3. Anneken, D.J.; Both, S.; Christoph, R.; Fieg, G.; Steinberner, U.; Westfechtel, A. Ullmann's Encycl. Ind. Chem. 2006, 14, 73-116, doi:10.1002/14356007.a10_245.pub2. 4. Godard, A.; De Caro, P.; Thiebaud-Roux, S.; Vedrenne, E.; Mouloungui, Z. J. Am. Oil Chem. Soc. 2013, 90, 133-140, doi:10.1007/s11746-012-2134-7. 5. Samarth, N.B.; Mahanwar, P.A. Open J. Org. Polym. Mater. 2015, 5, 1-22, doi:10.4236/ojopm.2015.51001. 6. Kerenkan, A.E.; Béland, F.; Do, T.-O. Catal. Sci. Technol. 2016, 6, 971-987, doi:10.1039/C5CY01118C. 7. Holleben, M.L.A.V.; Schuch, C.M. Quim. Nova 1997, 20, 58-71, doi:10.1590/S0100-40421997000100008. 8. Spannring, P.; Bruijnincx, P.C.A.; Weckhuysen, B.M.; Gebbink, R.J.M.K. Catal. Sci. Technol. 2014, 4, 2182-2209, doi:10.1039/C3CY01095C. 9. Khlebnikova, T.B.; Pai, Z.P.; Fedoseeva, L.A.; Mattsat, Y.V. React. Kinet. Catal. Lett. 2009, 98, 9-17, doi:10.1007/s11144-009-0054-9. 10. Pérez, J.E.; Haagenson, D.M.; Pryor, S.W.; Ulven, C.A.; Wiesenborn, D.P. Trans. ASABE 2009, 52, 1289-1297, doi:10.13031/2013.27772. 11. Mungroo, R.; Goud, V.V.; Pradhan, N.C.; Dalai, A.K. Asia‐Pac. J. Chem. Eng. 2011, 6, 14-22, doi:10.1002/apj.448. 12. Tan, S.G.; Chow, W.S. Polym.-Plast. Technol. Eng. 2010, 49, 1581-1590, doi:10.1080/03602559.2010.512338. 13. Santacesaria, E.; Renken, A.; Russo, V.; Turco, R.; Tesser, R.; Di Serio, M. Ind. Eng. Chem. Res. 2011, 51, 8760-8767, doi:10.1021/ie2016174. 14. Oakley, M.A.; Woodward, S.; Coupland, K.; Parker, D.; Temple-Heald, C. J. Mol. Catal. A Chem. 1999, 150, 105-111, doi:10.1016/S1381-116900213-7. 15. Köckritz, A.; Martin, A. Eur. J. Lipid Sci. Technol. 2011, 113, 83-91, doi:10.1002/ejlt.201000117. 16. Kulik, A.; Janz, A.; Pohl, M.M.; Martin, A.; Köckritz, A. Eur. J. Lipid Sci. Technol. 2012, 114, 1327-1332, doi:10.1002/ejlt.201200027. 17. Santacesaria, E.; Sorrentino, A.; Rainone, F.; Di Serio, M.; Speranza, F. Ind. Eng. Chem. Res. 2000, 39, 2766-2771, doi:10.1021/ie990920u. 18. Zaldman, B.; Kisilev, A.; Sasson, Y.; Garti, N. J. Am. Oil Chem. Soc. 1988, 65, 611-615, doi:10.1007/BF02540689. 19. Turnwald, S.E.; Lorier, M.A.; Wright, L.J.; Mucalo, M.R. J. Mater. Sci. Lett. 1998, 17, 1305-1307, doi:10.1023/A:1006532314593. 20. Schaich, K.M.; Borg, D.C. Lipids 1988, 23, 570-579, doi:10.1007/BF02535600. 119 21. Noureddini, H.; Kanabur, M. J. Am. Oil Chem. Soc. 1999, 76, 305-312, doi:10.1007/s11746-999-0236-7. 22. Rup, S.; Zimmermann, F.; Meux, E.; Schneider, M.; Sindt, M.; Oget, N. Ultrason. Sonochem. 2009, 16, 266-272, doi:10.1016/j.ultsonch.2008.08.003. 23. Otte, K.B.; Kirtz, M.; Nestl, B.M.; Hauer, B. ChemSusChem 2013, 6, 2149-2156, doi:10.1002/cssc.201300183. 24. Liguori, A.; Belsito, E.L.; Gioia, M.L.; Leggio, A.; Malagrinò, F.; Romio, E.; Siciliano, C.; Tagarelli, A. Open Food Sci. J. 2015, 9, 5-13, doi:10.2174/1874256401509010005. 25. Sun, Y.-E.; Wang, W.-D.; Chen, H.-W.; Li, C. Crit. Rev. Food Sci. Nutr. 2011, 51, 453-466, doi:10.1080/10408391003672086. 26. Iizuka, T.; Ogasawara, K.; Tanabe, K. Bull. Chem. Soc. Jpn. 1983, 56, 2927-2931, doi:10.1246/bcsj.56.2927. 27. Nakajima, K.; Baba, Y.; Noma, R.; Kitano, M.; Kondo, J.N.; Hayashi, S.; Hara, M. J. Am. Chem. Soc. 2011, 133, 4224-4227, doi:10.1021/ja110482r. 28. Nico, C.; Monteiro, T.; Graça, M.P.F. Prog. Mater. Sci. 2016, 80, 1-37, doi:10.1016/j.pmatsci.2016.02.001. 29. Valencia-Balvín, C.; Pérez-Walton, S.; Dalpian, G.M.; Osorio-Guillén, J.M. Comp. Mater. Sci. 2014, 81, 133-140, doi:10.1016/j.commatsci.2013.07.032. 30. Aleshina, L.A.; Malinenko, V.P.; Phouphanov, A.D.; Jakovleva, N.M. J. Non-Cryst. Solids 1986, 87, 350-360, doi:10.1016/S0022-309380008-4. 31. Frevel, L.K.; Rlnn, H.W. Anal. Chem. 1955, 1329-1330, doi:10.1021/ac60104a035. 32. Holtzberg, F.; Reisman, A.; Berry, M.; Berkenblit, M. J. Am. Chem. Soc. 1957, 79, 2039-2043, doi:10.1021/ja01566a004. 33. Kato, V.K.; Tamura, S. Acta Cryst. 1975, B31, 673-677, doi:10.1107/S0567740875003603. 34. Gatehouse, B.M.; Wadsley, A.D. Acta Cryst. 1964, 17, 1545-1554, doi:10.1107/S0365110X6400384X. 35. Guerrero-Perez, M.O.; Banares, M.A. Catal. Today 2009, 142, 245-251, doi:10.1016/j.cattod.2008.10.041 36. Chen, C.; Zhao, X.; Chen, J.; Hua, L.; Zhang, R.; Guo, L.; Hou, Z ChemCatChem 2014, 6, 3231-3238, doi:10.1002/cctc.201402545. 37. Marchetti, F.; Pampaloni, G.; Zacchini, S. Polyhedron 2009, 28, 1235-1240, doi:10.1016/j.poly.2009.02.037. 38. Marin-Astorga, N.; Martinez, J.J.; Suarez, D.N; Cubillos, J.; Rojas, H.; Ortiz, C.A. Curr. Org. Chem. 2012, 16, 2797-2801, doi:10.2174/138527212804546813. 39. Nowak, I.; Kilos, B.; Ziolek, M.; Lewandowska, A. Catal. Today 2003, 78, 487-498, doi:10.1016/S0920-586100332-2. 40. Tiozzo, C.; Bisio, C.; Carniato, F.; Guidotti, M. Catal. Today 2014, 235, 49-57, doi:10.1016/j.cattod.2014.02.027. 120 41. Tiozzo, C.; Palumbo, C.; Psaro, R.; Bisio, C.; Carniato, F.; Gervasini, A.; Guidotti, M. Inorg. Chim. Acta 2015, 431, 190-196, doi:10.1016/j.ica.2015.01.048. 42. Turco, R.; Aronne, A.; Carniti, P.; Gervasini, A.; Minieri, L.; Pernice, P.; Di Serio, M. Catal. Today 2015, 254, 99-103, doi:10.1016/j.cattod.2014.11.033. 43. Hill, J.; Nelson, E.; Tilman, D.; Polasky, S. Tiffany, D. PNAS 2006, 103, 11206-11210, doi:10.1073/pnas.0604600103. 44. Baumann, H.; Bühler, M; Fochem, H.; Hirsinger, F.; Zoebelein H.; Falbe, J. Angew. Chem. 1988, 27, 41-62, doi: 10.1002/anie.198800411. 45. Bierman, U.; Friedt, W.; Lang, S.; Lühs, W.; Machmüller, G.; Metzger, J.O.; Klaas, M.R.; Schäfer, H.J.; Schneider, M.P. Angew. Chem. Int. Ed. 2000, 39, 2206-2224, doi: 10.1002/1521-3773(20000703)39:13<2206::AID-ANIE2206>3.0.CO;2-P. 46. [http://biodieselmagazine.com/articles/3241/animal-fat-based-biodiesel-explore-its-untapped-potential, acesso 14/5/2018]. 47. Huang, D.; Zhou, H.;Lin, L. Energy Procedia 2012, 16, 1874-1885, doi:10.1016/j.egypro.2012.01.287. 48. Ramos, L.P.; Silva, F.R.; Mangrich, A.S.; Cordeiro, C.S. Rev. Virtual Quim. 2011, 3(5), 385-405, doi: 10.5935/1984-6835.20110043. 49. Mungroo, R.; Pradhan, N.C.; Goud, V.V.; Dalai, A.K. J. Am. Oil Chem. Soc. 2008, 85, 887-896, doi:10.1007/s11746-008-1277-z. 50. Chen, C.; Yuan, H.; Wang, H.; Yao, Y.; Ma, W.; Chen, J.; Hou, Z. Catal. 2016, 6, 3354-3364, doi:10.1021/acscatal.6b00786. 51. Min, D.B.; Boff, J.M. Chapter 11, Lipid Oxidation of Edible Oil. In Food Lipids: Chemistry, Nutrition and Biotechnology, 2nd ed.; Akoh, C.C., Min, D.B., Eds.; CRC Press: New York, NY, USA, 2002; 335-364, ISBN 0-8247-0749-4, doi:10.1201/9780203908815. 52. Mattila, H.; Khorobrykh, S.; Havurinne, V.; Tyystjärvi, E. J. Photochem. Photobiol. B 2015, 152, 176-214, doi:10.1016/j.jphotobiol.2015.10.001. 53. -Luo, Y.-R. Comprehensive Handbook of Chemical Bond Energies; CRC Press: Boca Raton, FL, USA, 2007, ISBN 9780849373664. 54. Choe, E.; Min, D.B. Compr. Rev. Food Sci. Food Saf. 2006, 5, 169-186, doi:10.1111/j.1541-4337.2006.00009.x. 55. Levenspiel, O. Engenharia das reações químicas. Tradução de Verônica M. A. Calado. 3ª (edição americana). ed. São Paulo: Edgard Blüncher LTDA, 563 p. 2000, ISBN 852120275X. 56. Schmal, M. Catálise Heterogênea. Rio de Janeiro: Synergia, 376 p., 2011, ISBN 9788561325534. 57. Sheldon, R.A.; Arends, I.W.C.E.; Lempers, H.E.B. Catal. Today 1998, 41, 387-407, doi:10.1016/S09205861(98)00027-3. 58. Hagen, J. Industrial Catalysis - A Practical Approach. Second Edition, WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim, 2006, ISBN 3-527-31144-0. 59. Mimoun, H.; De Roch, I.S.; Sajus, L. Tetrahedron 1970, 26, 37-50, doi:10.1016/0040-402085005-0. 121 60. Bayot, D.; Devillers M. Coord. Chem. Rev. 2006, 250, 2610-2626, doi:10.1016/j.ccr.2006.04.011. 61. Master, C. Homogenous transition-metal Catalysis, Chapman and Hall Ltd, London, 1983. 62. Oliveira, S.A. Avaliação cinética e potencial do Nb2O5 obtido a partir de um complexo de nióbio para formação do oleato de metila através da reação de esterificação do ácido oleico 2014, 127 f. (Dissertação de Mestrado) - Departamento de Engenharia Química, Universidade Federal do Rio Grande do Norte, Natal, 2014. 63. Morais, J.F. Estudo da acidez superficial de catalisadores de óxido de nióbio 1991, 84 f. (Dissertação Mestrado) - Departamento de Engenharia Química, Universidade Federal do Rio Grande do Norte, Natal, 1991. 64. [https://en.wikipedia.org/wiki/Jacobsen_epoxidation, acesso 21/06/2018]. 65. Carniti, P.; Gervasini, A.; Biella, S.; Auroux, A. Catal. Today 2006, 118, 373-378, doi:10.1016/j.cattod.2006.07.024. 66. Li, Y.; Yan, S.; Qian, L.; Yang, W.; Xie, Z.; Chen, Q.; Yue, B.; He, H. J. Catal. 2006, 241, 173-179. 67. Peters, T.A.; Benes, N.E.; Holmen, A.; Keurentjes, J.T.F. Appl. Catal. A 2006, 297, 182-188. 68. Okuhara, T.; Kimura, M.; Kawai, T.; Xu, Z.; Nakato, T. Catal. Today 1998, 45, 73-77. 69. Paulis, M.; Martin, M.; Soria, D.B.; Diaz, A.; Odriozola, J.A.; Montes, M. Appl. Catal. A 1999, 180, 411-420, doi:10.1016/S0926-860X(98)00379-2. 70. Yamashita, K.; Hirano, M.; Okumura, K.; Niwa, M. Catal. Today 2006, 118, 385-391, doi:10.1016/j.cattod.2006.07.025. 71. Paiva, J.B.; Monteiro, W.R.; Zacharias, M.A.; Rodrigues, J.A.J.; Cortez, G.G. Braz. J. Chem. Eng. 2006, 23, 517-524. 72. Braga, V.S.; Garcia, F.A.C.; Dias, J.A.; Dias, S.C.L. J. Catal. 2007, 247, 68-77. 73. Noronha, F.B.; Aranda, D.A.G.; Ordine, A.P.; Schmal, M. Catal. Today 2000, 57, 275-282. 74. Kominami, H.; Oki, K.; Kohno, M.; Onoue, S.; Kera, Y.; Ohtani, B. J. Mater. Chem. 2001, 11, 604-609, doi: 10.1039/b008745i. 75. Prado, A.G.S.; Faria, E.A.; Souza, J.R.; Torres, J.D. J. Mol. Catal. A 2005, 237, 115-119. 76. Torres, J.D.; Faria, E.A.; Souza, J.R.; Prado, A.G.S. J. Photochem. Photobiol. A 2006, 182(2), 202-206. 77. Nowak, I.; Ziolek, M. Chem. Rev. 1999, 99, 3603-3624. 78. Williams, W.S. J.O.M. 1997, 49, 38-42, doi:10.1007/BF02914655. 79. Heisterkamp, F.; Carneiro, T. Niobium: future possibilities – technology and the market place. In: Niobium sci technol proc int symp, niobium, Orlando, Florida, USA; 2001. 80. Kommel, L.; Kimmari, E.; Saarna, M.; Viljus, M. J. Mater. Sci. 2013, 48, 4723-4729, doi:10.1007/s10853-013-7210-3. 81. Halbritter, J. Appl. Phys. A 1987, 43, 1-28, doi:10.1007/BF00615201. 122 82. [http://www.anm.gov.br/dnpm/publicacoes/serie-estatisticas-e-economia-mineral/anuario-mineral/anuario-mineral-brasileiro/anuario-mineral-brasileiro-2016-metalicos/@@download/file/Anu%C3%A1rio%20Mineral%20Brasileiro%202016%20-%20Met%C3%A1licos.pdf, acesso 21/04/2018]. 83. Bach, D.; Störmer, H.; Schneider, R.; Gerthsen, D. Microsc. Microanal. 2007, 13, 1274-1275, doi:10.1017/S143192760707359X. 84. Bach, D. EELS investigations of stoichiometric niobium oxides and niobium-based capacitors. Dissertation, Universität Karlsruhe, France; 2009. 85. Cox, B.; Johnston, T. Trans. Met. Soc. AIME 1963, 227, 36-47. 86. Seeber, B. editor. Handbook of applied superconductivity, vol. 2. Bristol: CRC Press; 1998. 87. Massalski, T.B. International ASM. Binary alloy phase diagrams. 2nd ed. Materials Park (OH): ASM Intl. 1990. 88. [http:// www.mamore.net/port/niobio.htm, acesso 17/05/2006]. 89. Lide, D.R. CRC handbook of chemistry and physics. 85th ed. CRC Press; 2004. 90. Lindau, I.; Spicer, W.E. J. Appl. Phys. 1974, 45, 3720-3725, doi:10.1063/1.1663849. 91. Ziolek, M. Catal. Today 2003, 78, 47-64. 92. Momma, K.; Izumi, F. J. Appl. Crystallogr. 2011, 44, 1272-1276. 93. Bowman, A.L.; Wallace, T.C.; Yarnell, J.L.; Wenzel, R.G. Acta Crystallogr. 1966, 21, 843, doi:10.1107/S0365110X66004043. 94. Pollard Jr., E.R.; Electronic properties of niobium monoxide. Massachusetts Institute of Technology; 1968. 95. Bach, D.; Schneider, R.; Gerthsen, D.; Verbeeck, J.; Sigle, W. Microsc. Microanal. 2009, 15, 505-523, doi:10.1017/S143192760999105X. 96. Elliott, R.P. Trans. Am. Soc. Met. 1960, 52, 990-1014. 97. Hulm, J.K.; Jones, C.K.; Hein, R.A.; Gibson, J.W. J. Low Temp. Phys. 1972, 7, 291-307, doi:10.1007/BF00660068. 98. Cheetham, A.K.; Rao, C.N.R. Acta Crystallogr. B 1976, 32, 1579-1580, doi:10.1107/S0567740876005876. 99. Rimai, D.S.; Sladek, R.J. Phys. Rev. B 1978, 18, 2807-2811. doi:10.1103/PhysRevB.18.2807. 100. Oliveira, L.C.A.; Ramalho, T.C.; Gonçalves, M.; Cereda, F.; Carvalho, K.T.; Nazarro, M.S.; Sapag, K. Chem. Phys. Lett. 2007, 446, 133-137, doi:10.1016/j.cplett.2007.08.037. 101. Zhao, Y.; Zhang, Z.; Lin, Y. J. Phys. Appl. Phys. 2004, 37, 3392-3395, doi:10.1088/0022-3727/37/24/006. 102. Janninck, R.F.; Whitmore, D.H. J. Phys. Chem. Solids. 1966, 27, 1183-1187, doi:10.1016/0022-3697(66)90094-1. 103. Brayner, R.; Bozon-Verduraz, F, Phys. Chem. Chem. Phys., 2003, 5, 1457-1466, doi:10.1039/b210055j. 104. Pérez-Walton, S.; Valencia-Balvín, C.; Dalpian, G.M.; Osorio-Guillén, J.M. Phys. Status Solidi. B 2013, 250, 1644-1650, doi:10.1002/pssb.201248577. 123 105. Wachs, I.E.; Chena, Y.; Jehng, J.-M.; Briand, L.E.; Tanaka, T. Catal. Today 2003, 78, 13-24. 106. Oliveira, M.; Jansto, S.; Mohrbacher, H.; Patel, J.; Stuart, M. 30 Years of Niobium steel development in China. 2013. Available from: http://www.metal.citic.com/iwcm/UserFiles/img/zlk/03_30zn/d7.pdf. 107. Alves, A.R.; Coutinho, A.R. Mater. Res. 2015, 18, 106-112, doi:10.1590/1516-1439.276414. 108. Pereira, R.R.; Aquino, F.T.; Ferrier, A.; Goldner, P.; Gonçalves; R.R. J. Lumin. 2016, 170, 707-717, doi:10.1016/j.jlumin.2015.08.068. 109. C. G. Handbook of Inorganic Electrochromic Materials (Elsevier Science, 2002). 110. Wu, J.; Li, J.; Lü, X.; Zhang, L.; Yao, J.; Zhang, F.; Huang, F.; Xu, F. J. Mater. Chem. 2010, 20, 1942-1946, doi:10.1039/b919594g. 111. Llorde´s, A.; Garcia, G.; Gazquez, J.; Milliron, D.J. Nature 2013, 500, 323-327, doi:10.1038/nature12398. 112. Tanabe, K. Catal. Today 1990, 8, 1-11. 113. Tanabe, K.; Okazaki, S. Appl. Catal. A-Gen. 1995, 133, 191-218. 114. Tanabe, K. Catal. Today 2003, 78, 65-77. 115. Wachs, I.E.; Deo, G.; Weckhuysen, B.M.; Andreini, A.; Vuurman, M.A.; Boer, M.; Amiridis, M.D. J. Catal. 1996, 161, 211-221. 116. Zhao, S.; Liang, Z.; Song, L.; Ma, P.; Zhang, D.; Wang, J. Inorg. Chem. Commun. 2016, 73, 187-189, doi: 10.1016/j.inoche.2016.10.025. 117. Plies, V.; Gruehn, R. J. Less-Common Met. 1975, 42, 77-88. 118. Waring, J.L.; Roth, R.S.; Parker, H.S. J. Res. Nat. Bur. Stand. 1973, 6, 705-711. 119. Kodama, H.; Kikuchi T.; Goto, M. J. Less-Common Metals 1972, 29, 415-421. 120. Zibrov, I.P.; Filonenko, V.P.; Werner, P.-E.; Marinder, B.-O.; Sundberg, M. J. Solid State Chem. 1998, 141, 205-211. 121. Ko, E.I.; Weissman, J.G. Catal. Today 1990, 8, 27-36, doi:10.1016/0920-586187005-N. 122. Tamura, S. J. Mater. Sci. 1972, 7, 298-302. 123. Schafer, H.; Gruehn, R.; Schulte, F. Angew. Chem. Int. Ed. 1966, 5, 40-52, doi: 10.1002/anie.196600401. 124. Kato, K. Acta Cryst. 1976, B32, 764-767, 10.1107/S0567740876003944. 125. Brauer, G. Z. Anorg. Allg. Chem. Bd. 1941, 248, 1-104. 126. Schafer, H.; Kahlenberg, F. Z. Anorg. Allg. Chem. 1958, 294, 242-253 127. Ercit, T.S. Mineral. Petrol. 1991, 43, 217-223. 128. Laves, F.; Moser, R.; Petter, W. Naturwissenschaften 1964, 51, 356-357. 129. Mertin, W.; Andersson, S.; Gruehn, R. J. Solid State Chem. 1970, 1, 419-424. 130. Andersson, S. Chemie. Band. 1967, 351, 106-112. 131. Petter, W.; Laves, F. Eingegangen 1965, 2, 617-618. 132. Gruehn, R. J. less-common metals 1966, 11, 119-126. 124 133. Jehng, J.-M.; Wachs, I.E. Catal. Today 1990, 8, 37-55. 134. Jehng, J.-M.; Wachs, I.E. Chem. Mater. 1991, 3, 100-107, doi:10.1021/cm00013a025. 135. Jehng, J.-M.; Turek, A.M.; Wachs, I.E. Appl. Catal. A-Gen. 1992, 83, 179-200. 136. Maurer, S.M.; Ko, E.I. J. Catal. 1992, 135, 125-134. 137. Pittman, R.M.; Bell, A.T. J. Phys. Chem. 1993, 97, 12178-12185, doi:10.1021/j100149a013. 138. Yoshida, S.; Tanaka, T.; Hanada, T.; Hiraiwa, T.; Kanai, H Funabiki, T. Catal. Lett. 1992, 12, 277-286. 139. Ushikubo, T.; Koike, Y.; Wada, K.; Xie, L.; Wang, D.; Guo, X. Catal. Today 1996, 28, 59-69, doi:10.1016/0920-586100230-8. 140. Murayama, T.; Chen, J.; Hirata, J.; Matsumoto, K.; Ueda, W. Catal. Sci. Technol. 2014, 4, 4250-4257, doi:10.1039/C4CY00713A. 141. Neumann, G. Acta. Chem. Sand. 1964, 18, 278-280, doi: 10.3891/acta.chem.scand.18-0278. 142. Sen B.K.; Saha, A.V.; Chatterjee, N. Mat. Res. Bull. 1981, 16, 923-932. 143. Sen, B.K.; Saha, A.V. Mat. Res. Bull. 1982, 17, 161-169, doi:10.1016/0025-5408(82)90142-8. 144. Tanabe, K. Mater. Chem. Phys. 1987, 17, 217-225, doi:10.1016/0254-058490057-5. 145. Ushikubo, T. Catal. Today 2000, 57, 331-338. 146. Ouqour, A.; Coudurier, G.; Vedrine, J.C. J. Chem. Soc. Faraday Trans. 1993, 89, 3151-3155, doi:10.1039/FT9938903151. 147. Védrine, J.C.; Coudurier, G.; Ouqour, A.; Oliveira, P.G.P.; Volta; J.C. Catal. Today 1996, 28, 3-15. 148. Lebarbier, V.; Houalla, M.; Onfroy, T. Catal. Today 2012, 192, 123-129, doi:10.1016/j.cattod.2012.02.061. 149. Chen, Z.-H.;Iizuka, T.;Tanabe, K. Chem. Lett. 1984, 1085-1088, doi:10.1246/cl.1984.1085. 150. Vaska, L. Acc. Chem. Res. 1975, 9, 175-183, doi:10.1021/ar50101a002. 151. Sheldon, R.A.; Kochi, J.K. Activation of Molecular Oxygen by Metal Complexes. In Metal-Catalyzed Oxidations of Organic Compounds, Mechanistic Principles and Synthetic Methodology Including Biochemical Processes, 1st ed.; Academic Press: New York, NY, USA, 1981; 4, 71-119, ISBN 978-0-12-639380-4, doi:10.1016/B978-0-12-639380-4.50002-6. 152. Bayot, D.; Devillers, M.; Peeters, D. Eur. J. Inorg. Chem. 2005, 4118-4123, doi:10.1002/ejic.200500428. 153. Ziolek, M.; Sobczak, I.; Decyk, P.; Sobanska, K.; Pietrzyk, P.; Sojka, Z. Appl. Catal. B Environ. 2015, 164, 288-296, doi:10.1016/j.apcatb.2014.09.024. 154. Fan, W.; Zhang, Q.; Deng, W.; Wang, Y. Chem. Mater. 2013, 25, 3277-3287, doi:10.1021/cm400192q. 125 155. Kaim, W.; Schwederski, B.; Klein, A. Bioinorganic Chemistry - Inorganic Elements in the Chemistry of Life An Introduction and Guide, 2nd Edition, John Wiley & Sons, Ltd. Published 2013, ISBN 978-0-470-97523-7. 156. Haikarainen, A. Metal-salen catalysts in the oxidation of lignin model compounds, Academic Dissertion, University of Helsinki, Finland, 2005 157. Chagas, P.; Oliveira, H.S.; Mambrini, R.; Hyaric, M.L.; Almeida, M.V.; Oliveira, L.C.A. Appl. Catal. A-Gen. 2013, 454, 88-92, doi:10.1016/j.apcata.2013.01.007. 158. Farrell, F.J.; Mxroni, V.A.; Spiro, T.G. Inorg. Chem. 1969, 8, 12. 159. Katovic V.; Djordjevic, C. Inorg. Chem. 1970, 9, 7, 1720-1723, doi:10.1021/ic50089a022. 160. Izumi, F.; Kodama, H. Z. Anorg. Allg. Chem. 1978, 440, 155-167, doi:10.1002/zaac.19784400115. 161. Ikeya, T.; Senna, M. J. Non-Cryst. Solids 1988, 105, 243-250. 162. Orel, B.; Macek, M.; Grdadolnik, J.; Meden, A. J. Solid State Electrochem 1998, 2, 221-236. 163. Weissman, J.G.; Ko, E.I.; Wynblatt, P.; Howe, J.M. Chem. Mater. 1989, 1, 187-193, doi:10.1021/cm00002a005. 164. Rani, R.A.; Zoolfakar, A.S.; O'Mullane, A.P.; Austina, M.W.; Kalantar-Zadeh, K. J. Mater. Chem. A, 2014, 2, 15683-15703, doi:10.1039/c4ta02561j. 165. Ali, Md.A.; Siddiki, S.M.A.H.; Kon, K.; Hasegawa, J.; Shimizu, K. J. Chem. Eur. 2014, 20, 14256-14260. 166. Ali, Md.A.; Moromi, S.K.; Touchy, A.S.; Shimizu, K. ChemCatChem 2016, 8, 891-894. 167. Santos, C.G.; Marquez, D.T.; Crites, C.-O.L.; Netto-Ferreira, J.C.; Scaiano, J.C. Tetrahedron Letters 2017, 58, 427-431. 168. Gupta, N.K.; Fukuoka, A.; Nakajima, K. ACS Catal. 2017, 7, 2430-2436. 169. Adaptado de [https://fi.wikipedia.org/wiki/Niobiumpentoksidi#/media/File:Kristallstruktur_Niob(V)-oxid.png] acessado dia 01/06/2018 as 17:42 hs. 170. Rajagopalan, A.; Lara, M.; Kroutila, W. Adv. Synth. Catal. 2013, 355, 3321-3335. 171. Hill, K. Pure Appl. Chem. 2000, 72, 1255-1264. 172. Köckritz, A.; Martin, A.; Eur. J. Lipid Sci. Technol. 2008, 110, 812-824. 173. Silva, F.A.M.; Borges, M.F.M.; Ferreira, M.A. Química Nova, 22(1), 1999, 94-103. 174. Frankel, E.N. Chemistry of autoxidation: mechanism, products and flavor significance. In: Min, D.B., Smouse, T.H. Eds. Flavor chemistry of fats and oils. Champaign, Ill.: American Oil Chemistry Society 1985, 1-34. 175. Porter, N.A.; Caldwell, S.E.; Mills, K.A. Lipids 1995, 30, 277-290. 176. Allen, J.C.; Hamilton, R.J. The chemistry of rancidity in foods. In: editors. Rancidity in foods. 3rd ed. London: Blackie Academic & Professional. p 1-21, 1997, ISBN 978-0-8342-1287-9. 126 177. Min, D.B.; Bradley, G.D. Fats and oils: flavors. In: Hui YH, editor. Wiley encyclopedia of food science and technology. New York: John Wiley & Sons. p 828-32, 1992. 178. Frankel, E.N. Prog. Lipid Res. 1980, 19, 1-22, doi:10.1016/0163-7827(80)90006-5. 179. Aidos, I.; Lourenclo, S.; Padt, A.; Luten, J.B.; Boom, R.M. J. Food Sci. 2002, 67, 3314-3320, doi:10.1111/j.1365-2621.2002.tb09585.x. 180. Porter, N.A.; Mills, K.A.; Carter. R.L. J. Am. Chem. Soc. 1994, 116, 6690-6696, doi: 10.1021/ja00094a026. 181. Catalá, A. Int. J. Biochem. Cell Biol. 2006, 38, 1482-1495, doi:10.1016/j.biocel.2006.02.010. 182. Porter, N.A. Autoxidation of polyunsaturated fatty acids: Initiation, propagation, and product distribution (Basic Chemistry). In C. Vigo-Pelfrey (Ed.), Membrane lipid oxidation: vol. I, 1990, Boca Raton, FL: CRC Press. 183. Hiatt, R.; Mill, T.; Irwin, K.C; Mayo, T.R.; Gould, C.W.; Castleman, J.K. J. Org. Chem. 1968, 33(4), 1416-1420, doi: 10.1021/jo01268a022. 184. Guillen, M.D.; Cabo, N. Food Chem. 2002, 77, 503-510, doi:10.1016/S0308-8146(01)00371-5. 185. Matisova-Rychla, L.; Rychly, J. Adv. Chem. Ser. 1996, 249, 175-193, doi:10.1021/ba-1996-0249.ch012. 186. Matthaus, B.W. J. Am. Oil Chem. Soc. 1996, 73, 1039-1043, doi:10.1007/BF02523413. 187. Stenberg, C.; Svensson, M.; Johansson, M. Ind. Crop. Prod. 2005, 21, 263-272, doi:10.1016/j.indcrop.2004.04.002. 188. Köckritz, A.; Martin, A. Eur. J. Lipid Sci. Technol. 2011, 113, 83-91, doi:10.1002/ejlt.201000117. 189. Diaper, D.G.M. Can. J. Chem. 1955, 33, 1720-1723, doi:10.1139/v55-211. 190. Zaidman, B.; Klsllev, A.; Sasson, Y.; Garti, N. JAOCS, 1988, 65, 611-615. 191. Harries, C.; Thieme, C. Ber. Dtsch. Chem. Ges. 1906, 39, 2844-2846. 192. Rebek, J.; Marshall, L.; McManis, J.; Wolak, R. J. Org. Chem. 1986, 51, 1649-1653, doi:10.1021/jo00360a003. 193. Kwart, H.; Starcher, P.S.; Tinsley, S.W. Chem. Commun. 1967, 335-337, doi: 10.1039/C19670000335. 194. Rebek, J. Heterocycles 1981, 15, 517-545, doi:10.3987/S-1981-01-0517. 195. Fleming, I., In Frontier Orbitals and Organic Chemical Reactions; John Wiley & Sons, Ed.; New York, 1976. 196. Warwel, S.; Sojka, M.; Riisch. Mark. gen. Klaas, Topics in Current Chemistry, Vol. 164, Springer-Verlag Berlin Heidelberg 1993, Institute of Technical Chemistry and Petrochemistry, Aachen University of Technology, D-5100 Aachen, FRG. 197. Kitajima, N.; Akita, M.; Moro-Oka, Y.; Ando, W. Organic Peroxides, Wiley, Chichester, UK, 1992, 535-558. 127 198. Conte, V.; Di Furia, F. Catalytic Oxidations with Hydrogen Peroxide as Oxidant, edited by G. Strukul, Chapt. Kluwer, Dordrecht 1992, 7, 223-252. 199. Conte, V.; Di Furia, F.; Moro, S. J. Phys. Org. Chem. 1996, 9, 329-336. 200. Sheldon, R.A. Topics in Current Chemistry, Vol, 164 Springer-Verlag Berlin Heidelberg 1993, Faculty of Chemical Technology and Materials Science, Laboratory of Organic Chemistry, P.O. Box 5045, 2600 GA Delft, The Netherlands. 201. Arends, I.W.C.E.; Ingold, K.U.; Wayner, D.D.M. J. Am. Chem. Soc. 1995, 117, 4710-4711, 202. Arends, I.W.C.E.; Sheldon, R.A. Appl. Catal. A-Gen. 2001, 212, 175-187. 203. MacFaul, P.A.; Arends, I.W.C.E.; Ingold, K.U.; Wayner, D.D.M. J. Chem. Soc. Perkin Trans. 1997, 2, 135-145. 204. Patai, S. The Chemistry of Peroxides, John Wilcy & Sons Ltd. Universirty Hebrew, Jerusalem, 1983, doi:10.1002/9780470771730. 205. Ando, W. Organic Peroxides, Ed., Wiley, Chichester, 1992, 845 p., ISBN 0-471-93438-0. 206. Conte, V.; Furia, F.; Licini, G. Appl. Catal. A-Gen. 1997, 157, 335-361, doi:10.1016/S0926-860X(97)00023-9. 207. Campestrini, S.; Conte, V.; Furia, F. Modena, G. J. Org. Chem. 1988, 53, 5721-5724. 208. Mimoun, H.; Saussine, L.; Daire, E.; Postel, M.; Fischer, J.; Weiss, R. J. Am. Chem. Soc. 1983, 105, 3101-3110, doi:10.1021/ja00348a025. 209. Che, M.; Tench, A.J. Adv. Catal. 1982, 31, 77-133. 210. Che, M. Tench, A.J. Adv. Catal. 1983, 3, 1-148. 211. Lunsford, J.H.; Catal. Rev. 1973, 8, 135-157. 212. Maniatakou, A.; Makedonas, C.; Mitsopoulou, C.A.; Raptopoulou, C.; Rizopoulou, I.; Terzis, A.; Karaliota, A. Polyhedron 2008, 27, 3398-3408, doi:10.1016/j.poly.2008.08.006. 213. Jimenez-Morales, I.; Teckchandani-Ortiz, A.; Santamaria-Gonzalez, J.; Maireles-Torres, P.; Jimenez-Lopez, A. Appl. Catal. B Environ. 2014, 144, 22-28, doi:10.1016/j.apcatb.2013.07.002. 214. Ikeya, T.; Senna, M. J. Non-Cryst. Solids 1988, 105, 243-250, doi:10.1016/0022-309390313-4. 215. Prado, N.T.; Nogueria, F.G.E.; Nogueira, A.E.; Nunes, C.A.; Diniz, R.; Oliveira, L.C.A. Energy Fuels 2010, 24, 4793-4796, doi:10.1021/ef100876k. 216. Bayot, D.; Tinant, B.; Devillers, M. Catal. Today 2003, 78, 439-447, doi:10.1016/S0920-586100325-5. 217. Bayot, D.; Tinant, B.; Mathieu, B.; Declercq, J.P.; Devillers, M. Eur. J. Inorg. Chem. 2003, 4, 737-743, doi:10.1002/ejic.200390102. 218. Cornell, R.M.; Schwertmann, U. The Iron Oxides: Structure, Properties, Reactions, Occurrences and Uses, Second Edition, Second Edition, WILEY-VCH GmbH & Co. KGaA, 703 p., 2003, ISBN 3-527-30274-3. 128 219. Ramalho, T.C.; Oliveira, L.C.A.; Carvalho, K.T.G.; Souza, E.F.; Cunha, E.F.F.; Nazzaro, M. Mol. Phys. 2009, 107, 171-179, doi:10.1080/00268970902769489. 220. Goncalves, M.; Oliveira, L.C.A.; Guerreiro, M.C. Quím. Nova 2008, 31, 518-522, doi:10.1590/S0100-40422008000300010. 221. Ali, M.; Siddiki, S.M.A.; Kon, K.; Shimizu, K.I. ChemCatChem 2015, 7, 2705-2710, doi:10.1002/cctc.201500601. 222. Gupta, N.K.; Fukuoka, A.; Nakajima, K. ACS Catal. 2017, 7, 2430-2436, doi:10.1021/acscatal.6b03682. 223. Ziolek, M.; Sobczak, I.; Decyk, P.; Wolski, L. Catal. Commun. 2013, 37, 85-91, doi:10.1016/j.catcom.2013.03.032. 224. Wojcieszak, R.; Jasik, A.; Monteverdi, S.; Ziolek, M.; Bettahar, M.M. J. Mol. Catal. A-Chem. 2006, 256, 225-233, doi:10.1016/j.molcata.2006.04.053. 225. Ramalho, T.C.; Oliveira, L.C.A.; Carvalho, K.T.G.; Souza, E.F.; Cunha, E.F.F. Nazzaro, M. J. Mater. Sci. 2008, 43, 5982-5988, doi:10.1007/s10853-008-2748-1. 226. Carvalho, K.T.; Silva, A.C.; Oliveira, L.C.; Gonçalves, M.; Magriotis, Z.M. Quim. Nova 2009, 32, 1373-1377, doi:10.1590/S0100-40422009000600002. 227. Anpo, M.; Che, M.; Fubini, B.; Garrone, E.; Giamello, E.; Paganini, M.C. Top. Catal. 1999, 8, 189-198. 228. Che, M.; Giamello E. Stud. Surf. Sci. Catal. B 1990, 57, B265-B332. 229. Ziolek, M.; Sobczak, I.; Lewandowska, A.; Nowak, I.; Decyk, P.; Renn, M.; Jankowska, B. Catal. Today 2001, 70, 169-181, doi: 10.1016/S0920-5861(01)00416-3. 230. Ziolek, M.; Decyk, P.; Sobczak, I.; Trejda, M.; Florek, J.; Golinska, H.; Klimas, W.; Wojtaszek, A. Appl. Catal. A-Gen. 2011, 391, 194-204, doi:10.1016/j.apcata.2010.07.022. 231. Kala Raj, N.K.; Ramaswamy, A.V.; Manikandan, P. J. Mol. Catal. A: Chem. 2005, 227, 37-45, doi:10.1016/j.molcata.2004.10.005. 232. Eimer, G.A.; Chanquia, C.M.; Sapag, K.; Herrero; E.R. Micropor. Mesopor. Mat. 2008, 116, 670-676, doi:10.1016/j.micromeso.2008.05.040. 233. Fujii, S.; Tsueda, C.; Yamabe, K.; Nakajima, K.; Sakai, H. Inorg. Chim. Acta 2008, 361, 1207-1211, doi:10.1016/j.ica.2007.09.015. Maurya, M.R.; Arya, A.; Adão, P.; Pessoa, J.C. Appl. Catal. A-Gen. 2008, 351, 239-252, doi:10.1016/j.apcata.2008.09.021. 234. Buettner, G.R. Free Radical Bio. Med. 1987, 3, 259-303, doi:10.1016/S0891-5849(87)80033-3. 235. [http://www.brasil.gov.br/economia-e-emprego/2017/01/producao-brasileira-de-graos-deve-chegar-a-215-milhoes-de-toneladas] 236. [https://www.agrolink.com.br/noticias/cresce-capacidade-para-processar-oleo-vegetal-no-pais_211893.html] 129 237. Oliveira, L.C.A.; Portilho, M.F.; Silva, A.C.; Taroco, H.A.; Souza, P.P. Appl. Catal. B: Environ. 2012, 117-118, 29-35, doi:10.1016/j.apcatb.2011.12.043. 238. Voraberger, H.; Ribitsch, V.; Janotta, M.; Mizaikoff, B. Appl. Spectrosc. 2003, 57, 574-579, doi:10.1366/000370203321666623. 239. Grechkin, A.N.; Kuramshin, R.A.; Latypov, S.K.; Safonova, Y.Y.; Gafarova, T.E.; Ilyasov, A.V. FEBS J. 1991, 199, 451-457, doi:10.1111/j.1432-1033.1991.tb16143.x. 240. Miccichè, F.; van Haveren, J.; Oostveen, E.; Ming, W.; van der Linde, R. Appl. Catal. A Gen. 2006, 297, 174-181, doi:10.1016/j.apcata.2005.09.008. 241. Juita; Dlugogorski, B.Z.; Kennedy, E.M.; Mackie, J.C. Fire Sci. Rev. 2012, 1, 1-36, doi:10.1186/2193-0414-1-3. 242. Brash, A.R. Lipids 2000, 35, 947-952, doi:10.1007/s11745-000-0604-0. 243. Yanez, J.; Sevilla, C.L.; Becker, D.; Sevilla, M.D. J. Phys. Chem. 1987, 91, 487-491, doi:10.1021/j100286a044. 244. Venkataraman, S.; Schafer, F.Q.; Buettner, G.R. Antioxid. Redox Signal. 2004, 6, 631-638, doi:10.1089/152308604773934396. 245. Kremer, M.L. Int. J. Chem. Kinet. 1985, 17, 1299-1314, doi:10.1002/kin.550171207. 246. Salem, I.A.; El-Maazawi, M.; Zaki, A.B. Int. J. Chem. Kinet. 2000, 32, 643-666, doi:10.1002/1097-460132:11<643::AID-KIN1>3.0.CO;2-C. 247. Wang, Z. Hock Rearrangement. In Comprehensive Organic Name Reactions and Reagents; John Wiley & Sons: New York, NY, USA, 2010; pp. 1438-1442, ISBN 9780470638859, doi:10.1002/9780470638859.conrr321. 248. Li, Z.; Tran, V.H.; Duke, R.K.; Ng, M.C.; Yang, D.; Duke, C.C. Chem. Phys. Lipids 2009, 158, 39-45, doi:10.1016/j.chemphyslip.2008.12.004. 249. Farias, M.; Martinelli, M. Quim. Nova 2012, 35, 1538-1541, doi:10.1590/S0100-40422012000800009. 250. Bregante, D.T.; Flaherty, D.W. J. Am. Chem. Soc. 2017, 139, 6888-6898, doi:10.1021/jacs.7b01422. 251. Pai, Z.P.; Tolstikov, A.G.; Berdnikova, P.V.; Kustova, G.N.; Khlebnikova, T.B.; Selivanova, N.V.; Kostrovskii, V.G. Russ. Chem. Bull. 2005, 54, 1847-1854, doi:10.1007/s11172-006-0047-z. 252. Machulek, A.; Quina, F.H.; Gozzi, F.; Silva, V.O.; Friedrich, L.C.; Moraes, J.E. Chapter 11, Fundamental Mechanistic Studies of the Photo-Fenton Reaction for the Degradation of Organic Pollutants. In Organic Pollutants Ten Years after the Stockholm Convention-Environmental and Analytical Update; Intech: London, UK, 2012; ISBN 978-953-307-917-2, 271-293, doi:10.5772/30995.https://tede.ufrrj.br/retrieve/65176/2018%20-%20Christian%20Marcelo%20Paraguass%c3%ba%20Cecchi.pdf.jpghttps://tede.ufrrj.br/jspui/handle/jspui/4666Submitted by Sandra Pereira (srpereira@ufrrj.br) on 2021-05-21T00:46:59Z No. of bitstreams: 1 2018 - Christian Marcelo Paraguassú Cecchi.pdf: 5837736 bytes, checksum: 026fa88ea93669d52acc867f6241ab1a (MD5)Made available in DSpace on 2021-05-21T00:46:59Z (GMT). No. of bitstreams: 1 2018 - Christian Marcelo Paraguassú Cecchi.pdf: 5837736 bytes, checksum: 026fa88ea93669d52acc867f6241ab1a (MD5) Previous issue date: 2018-08-17info:eu-repo/semantics/openAccessreponame:Biblioteca Digital de Teses e Dissertações da UFRRJinstname:Universidade Federal Rural do Rio de Janeiro (UFRRJ)instacron:UFRRJTHUMBNAIL2018 - Christian Marcelo Paraguassú Cecchi.pdf.jpgGenerated Thumbnailimage/jpeg1954https://rima.ufrrj.br/jspui/bitstream/20.500.14407/10231/1/2018%20-%20Christian%20Marcelo%20Paraguass%c3%ba%20Cecchi.pdf.jpg17961371e43e2ad97e09ebdf1f492ee9MD51TEXT2018 - Christian Marcelo Paraguassú Cecchi.pdf.txtExtracted Texttext/plain228212https://rima.ufrrj.br/jspui/bitstream/20.500.14407/10231/2/2018%20-%20Christian%20Marcelo%20Paraguass%c3%ba%20Cecchi.pdf.txt84436236d7e6c09f762f3c548bcbd57eMD52ORIGINAL2018 - Christian Marcelo Paraguassú Cecchi.pdf2018 - Christian Marcelo Paraguassú Cecchiapplication/pdf5837736https://rima.ufrrj.br/jspui/bitstream/20.500.14407/10231/3/2018%20-%20Christian%20Marcelo%20Paraguass%c3%ba%20Cecchi.pdf026fa88ea93669d52acc867f6241ab1aMD53LICENSElicense.txttext/plain2089https://rima.ufrrj.br/jspui/bitstream/20.500.14407/10231/4/license.txt7b5ba3d2445355f386edab96125d42b7MD5420.500.14407/102312023-12-21 15:59:14.323oai:rima.ufrrj.br:20.500.14407/10231Tk9UQTogQ09MT1FVRSBBUVVJIEEgU1VBIFBSP1BSSUEgTElDRU4/QQpFc3RhIGxpY2VuP2EgZGUgZXhlbXBsbyA/IGZvcm5lY2lkYSBhcGVuYXMgcGFyYSBmaW5zIGluZm9ybWF0aXZvcy4KCkxJQ0VOP0EgREUgRElTVFJJQlVJPz9PIE4/Ty1FWENMVVNJVkEKCkNvbSBhIGFwcmVzZW50YT8/byBkZXN0YSBsaWNlbj9hLCB2b2M/IChvIGF1dG9yIChlcykgb3UgbyB0aXR1bGFyIGRvcyBkaXJlaXRvcyBkZSBhdXRvcikgY29uY2VkZSA/IFVuaXZlcnNpZGFkZSAKWFhYIChTaWdsYSBkYSBVbml2ZXJzaWRhZGUpIG8gZGlyZWl0byBuP28tZXhjbHVzaXZvIGRlIHJlcHJvZHV6aXIsICB0cmFkdXppciAoY29uZm9ybWUgZGVmaW5pZG8gYWJhaXhvKSwgZS9vdSAKZGlzdHJpYnVpciBhIHN1YSB0ZXNlIG91IGRpc3NlcnRhPz9vIChpbmNsdWluZG8gbyByZXN1bW8pIHBvciB0b2RvIG8gbXVuZG8gbm8gZm9ybWF0byBpbXByZXNzbyBlIGVsZXRyP25pY28gZSAKZW0gcXVhbHF1ZXIgbWVpbywgaW5jbHVpbmRvIG9zIGZvcm1hdG9zID91ZGlvIG91IHY/ZGVvLgoKVm9jPyBjb25jb3JkYSBxdWUgYSBTaWdsYSBkZSBVbml2ZXJzaWRhZGUgcG9kZSwgc2VtIGFsdGVyYXIgbyBjb250ZT9kbywgdHJhbnNwb3IgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YT8/byAKcGFyYSBxdWFscXVlciBtZWlvIG91IGZvcm1hdG8gcGFyYSBmaW5zIGRlIHByZXNlcnZhPz9vLgoKVm9jPyB0YW1iP20gY29uY29yZGEgcXVlIGEgU2lnbGEgZGUgVW5pdmVyc2lkYWRlIHBvZGUgbWFudGVyIG1haXMgZGUgdW1hIGM/cGlhIGEgc3VhIHRlc2Ugb3UgCmRpc3NlcnRhPz9vIHBhcmEgZmlucyBkZSBzZWd1cmFuP2EsIGJhY2stdXAgZSBwcmVzZXJ2YT8/by4KClZvYz8gZGVjbGFyYSBxdWUgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YT8/byA/IG9yaWdpbmFsIGUgcXVlIHZvYz8gdGVtIG8gcG9kZXIgZGUgY29uY2VkZXIgb3MgZGlyZWl0b3MgY29udGlkb3MgCm5lc3RhIGxpY2VuP2EuIFZvYz8gdGFtYj9tIGRlY2xhcmEgcXVlIG8gZGVwP3NpdG8gZGEgc3VhIHRlc2Ugb3UgZGlzc2VydGE/P28gbj9vLCBxdWUgc2VqYSBkZSBzZXUgCmNvbmhlY2ltZW50bywgaW5mcmluZ2UgZGlyZWl0b3MgYXV0b3JhaXMgZGUgbmluZ3U/bS4KCkNhc28gYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YT8/byBjb250ZW5oYSBtYXRlcmlhbCBxdWUgdm9jPyBuP28gcG9zc3VpIGEgdGl0dWxhcmlkYWRlIGRvcyBkaXJlaXRvcyBhdXRvcmFpcywgdm9jPyAKZGVjbGFyYSBxdWUgb2J0ZXZlIGEgcGVybWlzcz9vIGlycmVzdHJpdGEgZG8gZGV0ZW50b3IgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIHBhcmEgY29uY2VkZXIgPyBTaWdsYSBkZSBVbml2ZXJzaWRhZGUgCm9zIGRpcmVpdG9zIGFwcmVzZW50YWRvcyBuZXN0YSBsaWNlbj9hLCBlIHF1ZSBlc3NlIG1hdGVyaWFsIGRlIHByb3ByaWVkYWRlIGRlIHRlcmNlaXJvcyBlc3Q/IGNsYXJhbWVudGUgCmlkZW50aWZpY2FkbyBlIHJlY29uaGVjaWRvIG5vIHRleHRvIG91IG5vIGNvbnRlP2RvIGRhIHRlc2Ugb3UgZGlzc2VydGE/P28gb3JhIGRlcG9zaXRhZGEuCgpDQVNPIEEgVEVTRSBPVSBESVNTRVJUQT8/TyBPUkEgREVQT1NJVEFEQSBURU5IQSBTSURPIFJFU1VMVEFETyBERSBVTSBQQVRST0M/TklPIE9VIApBUE9JTyBERSBVTUEgQUc/TkNJQSBERSBGT01FTlRPIE9VIE9VVFJPIE9SR0FOSVNNTyBRVUUgTj9PIFNFSkEgQSBTSUdMQSBERSAKVU5JVkVSU0lEQURFLCBWT0M/IERFQ0xBUkEgUVVFIFJFU1BFSVRPVSBUT0RPUyBFIFFVQUlTUVVFUiBESVJFSVRPUyBERSBSRVZJUz9PIENPTU8gClRBTUI/TSBBUyBERU1BSVMgT0JSSUdBPz9FUyBFWElHSURBUyBQT1IgQ09OVFJBVE8gT1UgQUNPUkRPLgoKQSBTaWdsYSBkZSBVbml2ZXJzaWRhZGUgc2UgY29tcHJvbWV0ZSBhIGlkZW50aWZpY2FyIGNsYXJhbWVudGUgbyBzZXUgbm9tZSAocykgb3UgbyhzKSBub21lKHMpIGRvKHMpIApkZXRlbnRvcihlcykgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIGRhIHRlc2Ugb3UgZGlzc2VydGE/P28sIGUgbj9vIGZhcj8gcXVhbHF1ZXIgYWx0ZXJhPz9vLCBhbD9tIGRhcXVlbGFzIApjb25jZWRpZGFzIHBvciBlc3RhIGxpY2VuP2EuCg==Biblioteca Digital de Teses e Dissertaçõeshttps://tede.ufrrj.br/PUBhttps://tede.ufrrj.br/oai/requestbibliot@ufrrj.br||bibliot@ufrrj.bropendoar:2023-12-21T18:59:14Biblioteca Digital de Teses e Dissertações da UFRRJ - Universidade Federal Rural do Rio de Janeiro (UFRRJ)false
dc.title.por.fl_str_mv Oxidação de ésteres metílicos de ácidos graxos insaturados por óxido de Nióbio (v): um estudo da atividade do catalisador
title Oxidação de ésteres metílicos de ácidos graxos insaturados por óxido de Nióbio (v): um estudo da atividade do catalisador
spellingShingle Oxidação de ésteres metílicos de ácidos graxos insaturados por óxido de Nióbio (v): um estudo da atividade do catalisador
Cecchi, Christian Marcelo Paraguassú
linoleato de metila
Espectroscopia Raman
oxidação
methyl linoleate
Raman spectroscopy
oxidation
Química
title_short Oxidação de ésteres metílicos de ácidos graxos insaturados por óxido de Nióbio (v): um estudo da atividade do catalisador
title_full Oxidação de ésteres metílicos de ácidos graxos insaturados por óxido de Nióbio (v): um estudo da atividade do catalisador
title_fullStr Oxidação de ésteres metílicos de ácidos graxos insaturados por óxido de Nióbio (v): um estudo da atividade do catalisador
title_full_unstemmed Oxidação de ésteres metílicos de ácidos graxos insaturados por óxido de Nióbio (v): um estudo da atividade do catalisador
title_sort Oxidação de ésteres metílicos de ácidos graxos insaturados por óxido de Nióbio (v): um estudo da atividade do catalisador
author Cecchi, Christian Marcelo Paraguassú
author_facet Cecchi, Christian Marcelo Paraguassú
author_role author
dc.contributor.author.fl_str_mv Cecchi, Christian Marcelo Paraguassú
dc.contributor.advisor1.fl_str_mv Ferreira, José Carlos Netto
dc.contributor.advisor1ID.fl_str_mv 149460177-04
dc.contributor.advisor1Lattes.fl_str_mv http://lattes.cnpq.br/2496613154167269
dc.contributor.advisor-co1.fl_str_mv Ferreira, Aurélio Baird Buarque
dc.contributor.advisor-co2.fl_str_mv Cesarín Sobrinho, Darí
dc.contributor.referee1.fl_str_mv Ferreira, Aurélio Baird Buarque
dc.contributor.referee2.fl_str_mv Rocha, Angela Sanches
dc.contributor.referee3.fl_str_mv Silva Júnior, Antônio Marques da
dc.contributor.referee4.fl_str_mv Lachter, Elizabeth Roditi
dc.contributor.referee5.fl_str_mv Herbst, Marcelo Hawrylak
dc.contributor.authorID.fl_str_mv 073997997-33
dc.contributor.authorLattes.fl_str_mv http://lattes.cnpq.br/7274418142986892
contributor_str_mv Ferreira, José Carlos Netto
Ferreira, Aurélio Baird Buarque
Cesarín Sobrinho, Darí
Ferreira, Aurélio Baird Buarque
Rocha, Angela Sanches
Silva Júnior, Antônio Marques da
Lachter, Elizabeth Roditi
Herbst, Marcelo Hawrylak
dc.subject.por.fl_str_mv linoleato de metila
Espectroscopia Raman
oxidação
topic linoleato de metila
Espectroscopia Raman
oxidação
methyl linoleate
Raman spectroscopy
oxidation
Química
dc.subject.eng.fl_str_mv methyl linoleate
Raman spectroscopy
oxidation
dc.subject.cnpq.fl_str_mv Química
description Os ácidos graxos naturais e seus ésteres estão se tornando uma fonte alternativa e promissora como substitutos para reagentes em rotas sintéticas. Nos ácidos graxos insaturados as ligações duplas são centros reativos atraentes para vários tipos de reações. Entre os processos mais relevantes estão os derivados da oxidação parcial ou total dessas ligações duplas pelo uso de metais de transição como catalisadores, os quais incluem a reação de epoxidação, e outras oxidações parciais, que levam à produção de dióis, aldeídos e/ou cetonas, ou oxidação total, com a produção de ácidos carboxílicos como produtos finais. As propriedades catalíticas do óxido de nióbio (V) (Nb2O5–CBMM) de diferentes graus – amorfo, ótico e ultra puro, não tratado ou tratado termicamente a 400, 500, 700 e 900 °C – foram estudadas – antes e após de interação com peróxido de hidrogênio (H2O2) –, por espectroscopias de UV–Visível em modo de reflectância difusa, Raman e FTIR–ATR. Caracterizou–se a presença de sistemas do tipo NbO7 e NbO8, que está diretamente relacionada aos sítios reacionais superficiais presentes em diferentes estados de cristalização, caracterizados pela formação de sitemas do tipo η1–hidroperoxo e η2–peroxo. A atividade dos diferentes catalisadores obtidos a partir do óxido de nióbio (V) foi investigada utilizando a oxidação de oleato e do linoleato de metila na presença de H2O2, funcionando como sonda reacional. A reação foi acompanhada por CG e técnicas como CG–EM e espectrometrias de RMN de 1H e 13C foram utilizadas para determinar o produto dominante da reação como sendo o éster metílico do ácido 9–oxo–nonanóico, sendo reativo somente o linoleato de metila. Com base nesses resultados foi proposto um mecanismo de reação envolvendo um processo de auto–oxidação que leva inicialmente à formação de hidroperóxidos, que se decompõem rapidamente via rearranjo do tipo Hock, levando à formação de aldeídos, indicando como espécie oxidante o sitema η1–hidroperoxo.
publishDate 2018
dc.date.issued.fl_str_mv 2018-08-17
dc.date.accessioned.fl_str_mv 2023-12-21T18:59:14Z
dc.date.available.fl_str_mv 2023-12-21T18:59:14Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv CECCHI, Christian Marcelo Paraguassú. Oxidação de ésteres metílicos de ácidos graxos insaturados por óxido de Nióbio (v): um estudo da atividade do catalisador. 2018. [147 f.]. Tese( Programa de Pós-Graduação em Química) - Universidade Federal Rural do Rio de Janeiro, [Seropédica - RJ] .
dc.identifier.uri.fl_str_mv https://rima.ufrrj.br/jspui/handle/20.500.14407/10231
identifier_str_mv CECCHI, Christian Marcelo Paraguassú. Oxidação de ésteres metílicos de ácidos graxos insaturados por óxido de Nióbio (v): um estudo da atividade do catalisador. 2018. [147 f.]. Tese( Programa de Pós-Graduação em Química) - Universidade Federal Rural do Rio de Janeiro, [Seropédica - RJ] .
url https://rima.ufrrj.br/jspui/handle/20.500.14407/10231
dc.language.iso.fl_str_mv por
language por
dc.relation.references.por.fl_str_mv 1. Mbaraka, I.K.; Shanks, B.H. J. Am. Oil Chem. Soc. 2006, 83, 79-91, doi:10.1007/s11746-006-1179-x. 2. Biermann, U.; Bornscheuer, U.; Meier, M.A.; Metzger, J.O.; Schäfer, H.J. Angew. Chem. Int. 2011, 50, 3854-3871, doi:10.1002/anie.201002767. 3. Anneken, D.J.; Both, S.; Christoph, R.; Fieg, G.; Steinberner, U.; Westfechtel, A. Ullmann's Encycl. Ind. Chem. 2006, 14, 73-116, doi:10.1002/14356007.a10_245.pub2. 4. Godard, A.; De Caro, P.; Thiebaud-Roux, S.; Vedrenne, E.; Mouloungui, Z. J. Am. Oil Chem. Soc. 2013, 90, 133-140, doi:10.1007/s11746-012-2134-7. 5. Samarth, N.B.; Mahanwar, P.A. Open J. Org. Polym. Mater. 2015, 5, 1-22, doi:10.4236/ojopm.2015.51001. 6. Kerenkan, A.E.; Béland, F.; Do, T.-O. Catal. Sci. Technol. 2016, 6, 971-987, doi:10.1039/C5CY01118C. 7. Holleben, M.L.A.V.; Schuch, C.M. Quim. Nova 1997, 20, 58-71, doi:10.1590/S0100-40421997000100008. 8. Spannring, P.; Bruijnincx, P.C.A.; Weckhuysen, B.M.; Gebbink, R.J.M.K. Catal. Sci. Technol. 2014, 4, 2182-2209, doi:10.1039/C3CY01095C. 9. Khlebnikova, T.B.; Pai, Z.P.; Fedoseeva, L.A.; Mattsat, Y.V. React. Kinet. Catal. Lett. 2009, 98, 9-17, doi:10.1007/s11144-009-0054-9. 10. Pérez, J.E.; Haagenson, D.M.; Pryor, S.W.; Ulven, C.A.; Wiesenborn, D.P. Trans. ASABE 2009, 52, 1289-1297, doi:10.13031/2013.27772. 11. Mungroo, R.; Goud, V.V.; Pradhan, N.C.; Dalai, A.K. Asia‐Pac. J. Chem. Eng. 2011, 6, 14-22, doi:10.1002/apj.448. 12. Tan, S.G.; Chow, W.S. Polym.-Plast. Technol. Eng. 2010, 49, 1581-1590, doi:10.1080/03602559.2010.512338. 13. Santacesaria, E.; Renken, A.; Russo, V.; Turco, R.; Tesser, R.; Di Serio, M. Ind. Eng. Chem. Res. 2011, 51, 8760-8767, doi:10.1021/ie2016174. 14. Oakley, M.A.; Woodward, S.; Coupland, K.; Parker, D.; Temple-Heald, C. J. Mol. Catal. A Chem. 1999, 150, 105-111, doi:10.1016/S1381-116900213-7. 15. Köckritz, A.; Martin, A. Eur. J. Lipid Sci. Technol. 2011, 113, 83-91, doi:10.1002/ejlt.201000117. 16. Kulik, A.; Janz, A.; Pohl, M.M.; Martin, A.; Köckritz, A. Eur. J. Lipid Sci. Technol. 2012, 114, 1327-1332, doi:10.1002/ejlt.201200027. 17. Santacesaria, E.; Sorrentino, A.; Rainone, F.; Di Serio, M.; Speranza, F. Ind. Eng. Chem. Res. 2000, 39, 2766-2771, doi:10.1021/ie990920u. 18. Zaldman, B.; Kisilev, A.; Sasson, Y.; Garti, N. J. Am. Oil Chem. Soc. 1988, 65, 611-615, doi:10.1007/BF02540689. 19. Turnwald, S.E.; Lorier, M.A.; Wright, L.J.; Mucalo, M.R. J. Mater. Sci. Lett. 1998, 17, 1305-1307, doi:10.1023/A:1006532314593. 20. Schaich, K.M.; Borg, D.C. Lipids 1988, 23, 570-579, doi:10.1007/BF02535600. 119 21. Noureddini, H.; Kanabur, M. J. Am. Oil Chem. Soc. 1999, 76, 305-312, doi:10.1007/s11746-999-0236-7. 22. Rup, S.; Zimmermann, F.; Meux, E.; Schneider, M.; Sindt, M.; Oget, N. Ultrason. Sonochem. 2009, 16, 266-272, doi:10.1016/j.ultsonch.2008.08.003. 23. Otte, K.B.; Kirtz, M.; Nestl, B.M.; Hauer, B. ChemSusChem 2013, 6, 2149-2156, doi:10.1002/cssc.201300183. 24. Liguori, A.; Belsito, E.L.; Gioia, M.L.; Leggio, A.; Malagrinò, F.; Romio, E.; Siciliano, C.; Tagarelli, A. Open Food Sci. J. 2015, 9, 5-13, doi:10.2174/1874256401509010005. 25. Sun, Y.-E.; Wang, W.-D.; Chen, H.-W.; Li, C. Crit. Rev. Food Sci. Nutr. 2011, 51, 453-466, doi:10.1080/10408391003672086. 26. Iizuka, T.; Ogasawara, K.; Tanabe, K. Bull. Chem. Soc. Jpn. 1983, 56, 2927-2931, doi:10.1246/bcsj.56.2927. 27. Nakajima, K.; Baba, Y.; Noma, R.; Kitano, M.; Kondo, J.N.; Hayashi, S.; Hara, M. J. Am. Chem. Soc. 2011, 133, 4224-4227, doi:10.1021/ja110482r. 28. Nico, C.; Monteiro, T.; Graça, M.P.F. Prog. Mater. Sci. 2016, 80, 1-37, doi:10.1016/j.pmatsci.2016.02.001. 29. Valencia-Balvín, C.; Pérez-Walton, S.; Dalpian, G.M.; Osorio-Guillén, J.M. Comp. Mater. Sci. 2014, 81, 133-140, doi:10.1016/j.commatsci.2013.07.032. 30. Aleshina, L.A.; Malinenko, V.P.; Phouphanov, A.D.; Jakovleva, N.M. J. Non-Cryst. Solids 1986, 87, 350-360, doi:10.1016/S0022-309380008-4. 31. Frevel, L.K.; Rlnn, H.W. Anal. Chem. 1955, 1329-1330, doi:10.1021/ac60104a035. 32. Holtzberg, F.; Reisman, A.; Berry, M.; Berkenblit, M. J. Am. Chem. Soc. 1957, 79, 2039-2043, doi:10.1021/ja01566a004. 33. Kato, V.K.; Tamura, S. Acta Cryst. 1975, B31, 673-677, doi:10.1107/S0567740875003603. 34. Gatehouse, B.M.; Wadsley, A.D. Acta Cryst. 1964, 17, 1545-1554, doi:10.1107/S0365110X6400384X. 35. Guerrero-Perez, M.O.; Banares, M.A. Catal. Today 2009, 142, 245-251, doi:10.1016/j.cattod.2008.10.041 36. Chen, C.; Zhao, X.; Chen, J.; Hua, L.; Zhang, R.; Guo, L.; Hou, Z ChemCatChem 2014, 6, 3231-3238, doi:10.1002/cctc.201402545. 37. Marchetti, F.; Pampaloni, G.; Zacchini, S. Polyhedron 2009, 28, 1235-1240, doi:10.1016/j.poly.2009.02.037. 38. Marin-Astorga, N.; Martinez, J.J.; Suarez, D.N; Cubillos, J.; Rojas, H.; Ortiz, C.A. Curr. Org. Chem. 2012, 16, 2797-2801, doi:10.2174/138527212804546813. 39. Nowak, I.; Kilos, B.; Ziolek, M.; Lewandowska, A. Catal. Today 2003, 78, 487-498, doi:10.1016/S0920-586100332-2. 40. Tiozzo, C.; Bisio, C.; Carniato, F.; Guidotti, M. Catal. Today 2014, 235, 49-57, doi:10.1016/j.cattod.2014.02.027. 120 41. Tiozzo, C.; Palumbo, C.; Psaro, R.; Bisio, C.; Carniato, F.; Gervasini, A.; Guidotti, M. Inorg. Chim. Acta 2015, 431, 190-196, doi:10.1016/j.ica.2015.01.048. 42. Turco, R.; Aronne, A.; Carniti, P.; Gervasini, A.; Minieri, L.; Pernice, P.; Di Serio, M. Catal. Today 2015, 254, 99-103, doi:10.1016/j.cattod.2014.11.033. 43. Hill, J.; Nelson, E.; Tilman, D.; Polasky, S. Tiffany, D. PNAS 2006, 103, 11206-11210, doi:10.1073/pnas.0604600103. 44. Baumann, H.; Bühler, M; Fochem, H.; Hirsinger, F.; Zoebelein H.; Falbe, J. Angew. Chem. 1988, 27, 41-62, doi: 10.1002/anie.198800411. 45. Bierman, U.; Friedt, W.; Lang, S.; Lühs, W.; Machmüller, G.; Metzger, J.O.; Klaas, M.R.; Schäfer, H.J.; Schneider, M.P. Angew. Chem. Int. Ed. 2000, 39, 2206-2224, doi: 10.1002/1521-3773(20000703)39:13<2206::AID-ANIE2206>3.0.CO;2-P. 46. [http://biodieselmagazine.com/articles/3241/animal-fat-based-biodiesel-explore-its-untapped-potential, acesso 14/5/2018]. 47. Huang, D.; Zhou, H.;Lin, L. Energy Procedia 2012, 16, 1874-1885, doi:10.1016/j.egypro.2012.01.287. 48. Ramos, L.P.; Silva, F.R.; Mangrich, A.S.; Cordeiro, C.S. Rev. Virtual Quim. 2011, 3(5), 385-405, doi: 10.5935/1984-6835.20110043. 49. Mungroo, R.; Pradhan, N.C.; Goud, V.V.; Dalai, A.K. J. Am. Oil Chem. Soc. 2008, 85, 887-896, doi:10.1007/s11746-008-1277-z. 50. Chen, C.; Yuan, H.; Wang, H.; Yao, Y.; Ma, W.; Chen, J.; Hou, Z. Catal. 2016, 6, 3354-3364, doi:10.1021/acscatal.6b00786. 51. Min, D.B.; Boff, J.M. Chapter 11, Lipid Oxidation of Edible Oil. In Food Lipids: Chemistry, Nutrition and Biotechnology, 2nd ed.; Akoh, C.C., Min, D.B., Eds.; CRC Press: New York, NY, USA, 2002; 335-364, ISBN 0-8247-0749-4, doi:10.1201/9780203908815. 52. Mattila, H.; Khorobrykh, S.; Havurinne, V.; Tyystjärvi, E. J. Photochem. Photobiol. B 2015, 152, 176-214, doi:10.1016/j.jphotobiol.2015.10.001. 53. -Luo, Y.-R. Comprehensive Handbook of Chemical Bond Energies; CRC Press: Boca Raton, FL, USA, 2007, ISBN 9780849373664. 54. Choe, E.; Min, D.B. Compr. Rev. Food Sci. Food Saf. 2006, 5, 169-186, doi:10.1111/j.1541-4337.2006.00009.x. 55. Levenspiel, O. Engenharia das reações químicas. Tradução de Verônica M. A. Calado. 3ª (edição americana). ed. São Paulo: Edgard Blüncher LTDA, 563 p. 2000, ISBN 852120275X. 56. Schmal, M. Catálise Heterogênea. Rio de Janeiro: Synergia, 376 p., 2011, ISBN 9788561325534. 57. Sheldon, R.A.; Arends, I.W.C.E.; Lempers, H.E.B. Catal. Today 1998, 41, 387-407, doi:10.1016/S09205861(98)00027-3. 58. Hagen, J. Industrial Catalysis - A Practical Approach. Second Edition, WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim, 2006, ISBN 3-527-31144-0. 59. Mimoun, H.; De Roch, I.S.; Sajus, L. Tetrahedron 1970, 26, 37-50, doi:10.1016/0040-402085005-0. 121 60. Bayot, D.; Devillers M. Coord. Chem. Rev. 2006, 250, 2610-2626, doi:10.1016/j.ccr.2006.04.011. 61. Master, C. Homogenous transition-metal Catalysis, Chapman and Hall Ltd, London, 1983. 62. Oliveira, S.A. Avaliação cinética e potencial do Nb2O5 obtido a partir de um complexo de nióbio para formação do oleato de metila através da reação de esterificação do ácido oleico 2014, 127 f. (Dissertação de Mestrado) - Departamento de Engenharia Química, Universidade Federal do Rio Grande do Norte, Natal, 2014. 63. Morais, J.F. Estudo da acidez superficial de catalisadores de óxido de nióbio 1991, 84 f. (Dissertação Mestrado) - Departamento de Engenharia Química, Universidade Federal do Rio Grande do Norte, Natal, 1991. 64. [https://en.wikipedia.org/wiki/Jacobsen_epoxidation, acesso 21/06/2018]. 65. Carniti, P.; Gervasini, A.; Biella, S.; Auroux, A. Catal. Today 2006, 118, 373-378, doi:10.1016/j.cattod.2006.07.024. 66. Li, Y.; Yan, S.; Qian, L.; Yang, W.; Xie, Z.; Chen, Q.; Yue, B.; He, H. J. Catal. 2006, 241, 173-179. 67. Peters, T.A.; Benes, N.E.; Holmen, A.; Keurentjes, J.T.F. Appl. Catal. A 2006, 297, 182-188. 68. Okuhara, T.; Kimura, M.; Kawai, T.; Xu, Z.; Nakato, T. Catal. Today 1998, 45, 73-77. 69. Paulis, M.; Martin, M.; Soria, D.B.; Diaz, A.; Odriozola, J.A.; Montes, M. Appl. Catal. A 1999, 180, 411-420, doi:10.1016/S0926-860X(98)00379-2. 70. Yamashita, K.; Hirano, M.; Okumura, K.; Niwa, M. Catal. Today 2006, 118, 385-391, doi:10.1016/j.cattod.2006.07.025. 71. Paiva, J.B.; Monteiro, W.R.; Zacharias, M.A.; Rodrigues, J.A.J.; Cortez, G.G. Braz. J. Chem. Eng. 2006, 23, 517-524. 72. Braga, V.S.; Garcia, F.A.C.; Dias, J.A.; Dias, S.C.L. J. Catal. 2007, 247, 68-77. 73. Noronha, F.B.; Aranda, D.A.G.; Ordine, A.P.; Schmal, M. Catal. Today 2000, 57, 275-282. 74. Kominami, H.; Oki, K.; Kohno, M.; Onoue, S.; Kera, Y.; Ohtani, B. J. Mater. Chem. 2001, 11, 604-609, doi: 10.1039/b008745i. 75. Prado, A.G.S.; Faria, E.A.; Souza, J.R.; Torres, J.D. J. Mol. Catal. A 2005, 237, 115-119. 76. Torres, J.D.; Faria, E.A.; Souza, J.R.; Prado, A.G.S. J. Photochem. Photobiol. A 2006, 182(2), 202-206. 77. Nowak, I.; Ziolek, M. Chem. Rev. 1999, 99, 3603-3624. 78. Williams, W.S. J.O.M. 1997, 49, 38-42, doi:10.1007/BF02914655. 79. Heisterkamp, F.; Carneiro, T. Niobium: future possibilities – technology and the market place. In: Niobium sci technol proc int symp, niobium, Orlando, Florida, USA; 2001. 80. Kommel, L.; Kimmari, E.; Saarna, M.; Viljus, M. J. Mater. Sci. 2013, 48, 4723-4729, doi:10.1007/s10853-013-7210-3. 81. Halbritter, J. Appl. Phys. A 1987, 43, 1-28, doi:10.1007/BF00615201. 122 82. [http://www.anm.gov.br/dnpm/publicacoes/serie-estatisticas-e-economia-mineral/anuario-mineral/anuario-mineral-brasileiro/anuario-mineral-brasileiro-2016-metalicos/@@download/file/Anu%C3%A1rio%20Mineral%20Brasileiro%202016%20-%20Met%C3%A1licos.pdf, acesso 21/04/2018]. 83. Bach, D.; Störmer, H.; Schneider, R.; Gerthsen, D. Microsc. Microanal. 2007, 13, 1274-1275, doi:10.1017/S143192760707359X. 84. Bach, D. EELS investigations of stoichiometric niobium oxides and niobium-based capacitors. Dissertation, Universität Karlsruhe, France; 2009. 85. Cox, B.; Johnston, T. Trans. Met. Soc. AIME 1963, 227, 36-47. 86. Seeber, B. editor. Handbook of applied superconductivity, vol. 2. Bristol: CRC Press; 1998. 87. Massalski, T.B. International ASM. Binary alloy phase diagrams. 2nd ed. Materials Park (OH): ASM Intl. 1990. 88. [http:// www.mamore.net/port/niobio.htm, acesso 17/05/2006]. 89. Lide, D.R. CRC handbook of chemistry and physics. 85th ed. CRC Press; 2004. 90. Lindau, I.; Spicer, W.E. J. Appl. Phys. 1974, 45, 3720-3725, doi:10.1063/1.1663849. 91. Ziolek, M. Catal. Today 2003, 78, 47-64. 92. Momma, K.; Izumi, F. J. Appl. Crystallogr. 2011, 44, 1272-1276. 93. Bowman, A.L.; Wallace, T.C.; Yarnell, J.L.; Wenzel, R.G. Acta Crystallogr. 1966, 21, 843, doi:10.1107/S0365110X66004043. 94. Pollard Jr., E.R.; Electronic properties of niobium monoxide. Massachusetts Institute of Technology; 1968. 95. Bach, D.; Schneider, R.; Gerthsen, D.; Verbeeck, J.; Sigle, W. Microsc. Microanal. 2009, 15, 505-523, doi:10.1017/S143192760999105X. 96. Elliott, R.P. Trans. Am. Soc. Met. 1960, 52, 990-1014. 97. Hulm, J.K.; Jones, C.K.; Hein, R.A.; Gibson, J.W. J. Low Temp. Phys. 1972, 7, 291-307, doi:10.1007/BF00660068. 98. Cheetham, A.K.; Rao, C.N.R. Acta Crystallogr. B 1976, 32, 1579-1580, doi:10.1107/S0567740876005876. 99. Rimai, D.S.; Sladek, R.J. Phys. Rev. B 1978, 18, 2807-2811. doi:10.1103/PhysRevB.18.2807. 100. Oliveira, L.C.A.; Ramalho, T.C.; Gonçalves, M.; Cereda, F.; Carvalho, K.T.; Nazarro, M.S.; Sapag, K. Chem. Phys. Lett. 2007, 446, 133-137, doi:10.1016/j.cplett.2007.08.037. 101. Zhao, Y.; Zhang, Z.; Lin, Y. J. Phys. Appl. Phys. 2004, 37, 3392-3395, doi:10.1088/0022-3727/37/24/006. 102. Janninck, R.F.; Whitmore, D.H. J. Phys. Chem. Solids. 1966, 27, 1183-1187, doi:10.1016/0022-3697(66)90094-1. 103. Brayner, R.; Bozon-Verduraz, F, Phys. Chem. Chem. Phys., 2003, 5, 1457-1466, doi:10.1039/b210055j. 104. Pérez-Walton, S.; Valencia-Balvín, C.; Dalpian, G.M.; Osorio-Guillén, J.M. Phys. Status Solidi. B 2013, 250, 1644-1650, doi:10.1002/pssb.201248577. 123 105. Wachs, I.E.; Chena, Y.; Jehng, J.-M.; Briand, L.E.; Tanaka, T. Catal. Today 2003, 78, 13-24. 106. Oliveira, M.; Jansto, S.; Mohrbacher, H.; Patel, J.; Stuart, M. 30 Years of Niobium steel development in China. 2013. Available from: http://www.metal.citic.com/iwcm/UserFiles/img/zlk/03_30zn/d7.pdf. 107. Alves, A.R.; Coutinho, A.R. Mater. Res. 2015, 18, 106-112, doi:10.1590/1516-1439.276414. 108. Pereira, R.R.; Aquino, F.T.; Ferrier, A.; Goldner, P.; Gonçalves; R.R. J. Lumin. 2016, 170, 707-717, doi:10.1016/j.jlumin.2015.08.068. 109. C. G. Handbook of Inorganic Electrochromic Materials (Elsevier Science, 2002). 110. Wu, J.; Li, J.; Lü, X.; Zhang, L.; Yao, J.; Zhang, F.; Huang, F.; Xu, F. J. Mater. Chem. 2010, 20, 1942-1946, doi:10.1039/b919594g. 111. Llorde´s, A.; Garcia, G.; Gazquez, J.; Milliron, D.J. Nature 2013, 500, 323-327, doi:10.1038/nature12398. 112. Tanabe, K. Catal. Today 1990, 8, 1-11. 113. Tanabe, K.; Okazaki, S. Appl. Catal. A-Gen. 1995, 133, 191-218. 114. Tanabe, K. Catal. Today 2003, 78, 65-77. 115. Wachs, I.E.; Deo, G.; Weckhuysen, B.M.; Andreini, A.; Vuurman, M.A.; Boer, M.; Amiridis, M.D. J. Catal. 1996, 161, 211-221. 116. Zhao, S.; Liang, Z.; Song, L.; Ma, P.; Zhang, D.; Wang, J. Inorg. Chem. Commun. 2016, 73, 187-189, doi: 10.1016/j.inoche.2016.10.025. 117. Plies, V.; Gruehn, R. J. Less-Common Met. 1975, 42, 77-88. 118. Waring, J.L.; Roth, R.S.; Parker, H.S. J. Res. Nat. Bur. Stand. 1973, 6, 705-711. 119. Kodama, H.; Kikuchi T.; Goto, M. J. Less-Common Metals 1972, 29, 415-421. 120. Zibrov, I.P.; Filonenko, V.P.; Werner, P.-E.; Marinder, B.-O.; Sundberg, M. J. Solid State Chem. 1998, 141, 205-211. 121. Ko, E.I.; Weissman, J.G. Catal. Today 1990, 8, 27-36, doi:10.1016/0920-586187005-N. 122. Tamura, S. J. Mater. Sci. 1972, 7, 298-302. 123. Schafer, H.; Gruehn, R.; Schulte, F. Angew. Chem. Int. Ed. 1966, 5, 40-52, doi: 10.1002/anie.196600401. 124. Kato, K. Acta Cryst. 1976, B32, 764-767, 10.1107/S0567740876003944. 125. Brauer, G. Z. Anorg. Allg. Chem. Bd. 1941, 248, 1-104. 126. Schafer, H.; Kahlenberg, F. Z. Anorg. Allg. Chem. 1958, 294, 242-253 127. Ercit, T.S. Mineral. Petrol. 1991, 43, 217-223. 128. Laves, F.; Moser, R.; Petter, W. Naturwissenschaften 1964, 51, 356-357. 129. Mertin, W.; Andersson, S.; Gruehn, R. J. Solid State Chem. 1970, 1, 419-424. 130. Andersson, S. Chemie. Band. 1967, 351, 106-112. 131. Petter, W.; Laves, F. Eingegangen 1965, 2, 617-618. 132. Gruehn, R. J. less-common metals 1966, 11, 119-126. 124 133. Jehng, J.-M.; Wachs, I.E. Catal. Today 1990, 8, 37-55. 134. Jehng, J.-M.; Wachs, I.E. Chem. Mater. 1991, 3, 100-107, doi:10.1021/cm00013a025. 135. Jehng, J.-M.; Turek, A.M.; Wachs, I.E. Appl. Catal. A-Gen. 1992, 83, 179-200. 136. Maurer, S.M.; Ko, E.I. J. Catal. 1992, 135, 125-134. 137. Pittman, R.M.; Bell, A.T. J. Phys. Chem. 1993, 97, 12178-12185, doi:10.1021/j100149a013. 138. Yoshida, S.; Tanaka, T.; Hanada, T.; Hiraiwa, T.; Kanai, H Funabiki, T. Catal. Lett. 1992, 12, 277-286. 139. Ushikubo, T.; Koike, Y.; Wada, K.; Xie, L.; Wang, D.; Guo, X. Catal. Today 1996, 28, 59-69, doi:10.1016/0920-586100230-8. 140. Murayama, T.; Chen, J.; Hirata, J.; Matsumoto, K.; Ueda, W. Catal. Sci. Technol. 2014, 4, 4250-4257, doi:10.1039/C4CY00713A. 141. Neumann, G. Acta. Chem. Sand. 1964, 18, 278-280, doi: 10.3891/acta.chem.scand.18-0278. 142. Sen B.K.; Saha, A.V.; Chatterjee, N. Mat. Res. Bull. 1981, 16, 923-932. 143. Sen, B.K.; Saha, A.V. Mat. Res. Bull. 1982, 17, 161-169, doi:10.1016/0025-5408(82)90142-8. 144. Tanabe, K. Mater. Chem. Phys. 1987, 17, 217-225, doi:10.1016/0254-058490057-5. 145. Ushikubo, T. Catal. Today 2000, 57, 331-338. 146. Ouqour, A.; Coudurier, G.; Vedrine, J.C. J. Chem. Soc. Faraday Trans. 1993, 89, 3151-3155, doi:10.1039/FT9938903151. 147. Védrine, J.C.; Coudurier, G.; Ouqour, A.; Oliveira, P.G.P.; Volta; J.C. Catal. Today 1996, 28, 3-15. 148. Lebarbier, V.; Houalla, M.; Onfroy, T. Catal. Today 2012, 192, 123-129, doi:10.1016/j.cattod.2012.02.061. 149. Chen, Z.-H.;Iizuka, T.;Tanabe, K. Chem. Lett. 1984, 1085-1088, doi:10.1246/cl.1984.1085. 150. Vaska, L. Acc. Chem. Res. 1975, 9, 175-183, doi:10.1021/ar50101a002. 151. Sheldon, R.A.; Kochi, J.K. Activation of Molecular Oxygen by Metal Complexes. In Metal-Catalyzed Oxidations of Organic Compounds, Mechanistic Principles and Synthetic Methodology Including Biochemical Processes, 1st ed.; Academic Press: New York, NY, USA, 1981; 4, 71-119, ISBN 978-0-12-639380-4, doi:10.1016/B978-0-12-639380-4.50002-6. 152. Bayot, D.; Devillers, M.; Peeters, D. Eur. J. Inorg. Chem. 2005, 4118-4123, doi:10.1002/ejic.200500428. 153. Ziolek, M.; Sobczak, I.; Decyk, P.; Sobanska, K.; Pietrzyk, P.; Sojka, Z. Appl. Catal. B Environ. 2015, 164, 288-296, doi:10.1016/j.apcatb.2014.09.024. 154. Fan, W.; Zhang, Q.; Deng, W.; Wang, Y. Chem. Mater. 2013, 25, 3277-3287, doi:10.1021/cm400192q. 125 155. Kaim, W.; Schwederski, B.; Klein, A. Bioinorganic Chemistry - Inorganic Elements in the Chemistry of Life An Introduction and Guide, 2nd Edition, John Wiley & Sons, Ltd. Published 2013, ISBN 978-0-470-97523-7. 156. Haikarainen, A. Metal-salen catalysts in the oxidation of lignin model compounds, Academic Dissertion, University of Helsinki, Finland, 2005 157. Chagas, P.; Oliveira, H.S.; Mambrini, R.; Hyaric, M.L.; Almeida, M.V.; Oliveira, L.C.A. Appl. Catal. A-Gen. 2013, 454, 88-92, doi:10.1016/j.apcata.2013.01.007. 158. Farrell, F.J.; Mxroni, V.A.; Spiro, T.G. Inorg. Chem. 1969, 8, 12. 159. Katovic V.; Djordjevic, C. Inorg. Chem. 1970, 9, 7, 1720-1723, doi:10.1021/ic50089a022. 160. Izumi, F.; Kodama, H. Z. Anorg. Allg. Chem. 1978, 440, 155-167, doi:10.1002/zaac.19784400115. 161. Ikeya, T.; Senna, M. J. Non-Cryst. Solids 1988, 105, 243-250. 162. Orel, B.; Macek, M.; Grdadolnik, J.; Meden, A. J. Solid State Electrochem 1998, 2, 221-236. 163. Weissman, J.G.; Ko, E.I.; Wynblatt, P.; Howe, J.M. Chem. Mater. 1989, 1, 187-193, doi:10.1021/cm00002a005. 164. Rani, R.A.; Zoolfakar, A.S.; O'Mullane, A.P.; Austina, M.W.; Kalantar-Zadeh, K. J. Mater. Chem. A, 2014, 2, 15683-15703, doi:10.1039/c4ta02561j. 165. Ali, Md.A.; Siddiki, S.M.A.H.; Kon, K.; Hasegawa, J.; Shimizu, K. J. Chem. Eur. 2014, 20, 14256-14260. 166. Ali, Md.A.; Moromi, S.K.; Touchy, A.S.; Shimizu, K. ChemCatChem 2016, 8, 891-894. 167. Santos, C.G.; Marquez, D.T.; Crites, C.-O.L.; Netto-Ferreira, J.C.; Scaiano, J.C. Tetrahedron Letters 2017, 58, 427-431. 168. Gupta, N.K.; Fukuoka, A.; Nakajima, K. ACS Catal. 2017, 7, 2430-2436. 169. Adaptado de [https://fi.wikipedia.org/wiki/Niobiumpentoksidi#/media/File:Kristallstruktur_Niob(V)-oxid.png] acessado dia 01/06/2018 as 17:42 hs. 170. Rajagopalan, A.; Lara, M.; Kroutila, W. Adv. Synth. Catal. 2013, 355, 3321-3335. 171. Hill, K. Pure Appl. Chem. 2000, 72, 1255-1264. 172. Köckritz, A.; Martin, A.; Eur. J. Lipid Sci. Technol. 2008, 110, 812-824. 173. Silva, F.A.M.; Borges, M.F.M.; Ferreira, M.A. Química Nova, 22(1), 1999, 94-103. 174. Frankel, E.N. Chemistry of autoxidation: mechanism, products and flavor significance. In: Min, D.B., Smouse, T.H. Eds. Flavor chemistry of fats and oils. Champaign, Ill.: American Oil Chemistry Society 1985, 1-34. 175. Porter, N.A.; Caldwell, S.E.; Mills, K.A. Lipids 1995, 30, 277-290. 176. Allen, J.C.; Hamilton, R.J. The chemistry of rancidity in foods. In: editors. Rancidity in foods. 3rd ed. London: Blackie Academic & Professional. p 1-21, 1997, ISBN 978-0-8342-1287-9. 126 177. Min, D.B.; Bradley, G.D. Fats and oils: flavors. In: Hui YH, editor. Wiley encyclopedia of food science and technology. New York: John Wiley & Sons. p 828-32, 1992. 178. Frankel, E.N. Prog. Lipid Res. 1980, 19, 1-22, doi:10.1016/0163-7827(80)90006-5. 179. Aidos, I.; Lourenclo, S.; Padt, A.; Luten, J.B.; Boom, R.M. J. Food Sci. 2002, 67, 3314-3320, doi:10.1111/j.1365-2621.2002.tb09585.x. 180. Porter, N.A.; Mills, K.A.; Carter. R.L. J. Am. Chem. Soc. 1994, 116, 6690-6696, doi: 10.1021/ja00094a026. 181. Catalá, A. Int. J. Biochem. Cell Biol. 2006, 38, 1482-1495, doi:10.1016/j.biocel.2006.02.010. 182. Porter, N.A. Autoxidation of polyunsaturated fatty acids: Initiation, propagation, and product distribution (Basic Chemistry). In C. Vigo-Pelfrey (Ed.), Membrane lipid oxidation: vol. I, 1990, Boca Raton, FL: CRC Press. 183. Hiatt, R.; Mill, T.; Irwin, K.C; Mayo, T.R.; Gould, C.W.; Castleman, J.K. J. Org. Chem. 1968, 33(4), 1416-1420, doi: 10.1021/jo01268a022. 184. Guillen, M.D.; Cabo, N. Food Chem. 2002, 77, 503-510, doi:10.1016/S0308-8146(01)00371-5. 185. Matisova-Rychla, L.; Rychly, J. Adv. Chem. Ser. 1996, 249, 175-193, doi:10.1021/ba-1996-0249.ch012. 186. Matthaus, B.W. J. Am. Oil Chem. Soc. 1996, 73, 1039-1043, doi:10.1007/BF02523413. 187. Stenberg, C.; Svensson, M.; Johansson, M. Ind. Crop. Prod. 2005, 21, 263-272, doi:10.1016/j.indcrop.2004.04.002. 188. Köckritz, A.; Martin, A. Eur. J. Lipid Sci. Technol. 2011, 113, 83-91, doi:10.1002/ejlt.201000117. 189. Diaper, D.G.M. Can. J. Chem. 1955, 33, 1720-1723, doi:10.1139/v55-211. 190. Zaidman, B.; Klsllev, A.; Sasson, Y.; Garti, N. JAOCS, 1988, 65, 611-615. 191. Harries, C.; Thieme, C. Ber. Dtsch. Chem. Ges. 1906, 39, 2844-2846. 192. Rebek, J.; Marshall, L.; McManis, J.; Wolak, R. J. Org. Chem. 1986, 51, 1649-1653, doi:10.1021/jo00360a003. 193. Kwart, H.; Starcher, P.S.; Tinsley, S.W. Chem. Commun. 1967, 335-337, doi: 10.1039/C19670000335. 194. Rebek, J. Heterocycles 1981, 15, 517-545, doi:10.3987/S-1981-01-0517. 195. Fleming, I., In Frontier Orbitals and Organic Chemical Reactions; John Wiley & Sons, Ed.; New York, 1976. 196. Warwel, S.; Sojka, M.; Riisch. Mark. gen. Klaas, Topics in Current Chemistry, Vol. 164, Springer-Verlag Berlin Heidelberg 1993, Institute of Technical Chemistry and Petrochemistry, Aachen University of Technology, D-5100 Aachen, FRG. 197. Kitajima, N.; Akita, M.; Moro-Oka, Y.; Ando, W. Organic Peroxides, Wiley, Chichester, UK, 1992, 535-558. 127 198. Conte, V.; Di Furia, F. Catalytic Oxidations with Hydrogen Peroxide as Oxidant, edited by G. Strukul, Chapt. Kluwer, Dordrecht 1992, 7, 223-252. 199. Conte, V.; Di Furia, F.; Moro, S. J. Phys. Org. Chem. 1996, 9, 329-336. 200. Sheldon, R.A. Topics in Current Chemistry, Vol, 164 Springer-Verlag Berlin Heidelberg 1993, Faculty of Chemical Technology and Materials Science, Laboratory of Organic Chemistry, P.O. Box 5045, 2600 GA Delft, The Netherlands. 201. Arends, I.W.C.E.; Ingold, K.U.; Wayner, D.D.M. J. Am. Chem. Soc. 1995, 117, 4710-4711, 202. Arends, I.W.C.E.; Sheldon, R.A. Appl. Catal. A-Gen. 2001, 212, 175-187. 203. MacFaul, P.A.; Arends, I.W.C.E.; Ingold, K.U.; Wayner, D.D.M. J. Chem. Soc. Perkin Trans. 1997, 2, 135-145. 204. Patai, S. The Chemistry of Peroxides, John Wilcy & Sons Ltd. Universirty Hebrew, Jerusalem, 1983, doi:10.1002/9780470771730. 205. Ando, W. Organic Peroxides, Ed., Wiley, Chichester, 1992, 845 p., ISBN 0-471-93438-0. 206. Conte, V.; Furia, F.; Licini, G. Appl. Catal. A-Gen. 1997, 157, 335-361, doi:10.1016/S0926-860X(97)00023-9. 207. Campestrini, S.; Conte, V.; Furia, F. Modena, G. J. Org. Chem. 1988, 53, 5721-5724. 208. Mimoun, H.; Saussine, L.; Daire, E.; Postel, M.; Fischer, J.; Weiss, R. J. Am. Chem. Soc. 1983, 105, 3101-3110, doi:10.1021/ja00348a025. 209. Che, M.; Tench, A.J. Adv. Catal. 1982, 31, 77-133. 210. Che, M. Tench, A.J. Adv. Catal. 1983, 3, 1-148. 211. Lunsford, J.H.; Catal. Rev. 1973, 8, 135-157. 212. Maniatakou, A.; Makedonas, C.; Mitsopoulou, C.A.; Raptopoulou, C.; Rizopoulou, I.; Terzis, A.; Karaliota, A. Polyhedron 2008, 27, 3398-3408, doi:10.1016/j.poly.2008.08.006. 213. Jimenez-Morales, I.; Teckchandani-Ortiz, A.; Santamaria-Gonzalez, J.; Maireles-Torres, P.; Jimenez-Lopez, A. Appl. Catal. B Environ. 2014, 144, 22-28, doi:10.1016/j.apcatb.2013.07.002. 214. Ikeya, T.; Senna, M. J. Non-Cryst. Solids 1988, 105, 243-250, doi:10.1016/0022-309390313-4. 215. Prado, N.T.; Nogueria, F.G.E.; Nogueira, A.E.; Nunes, C.A.; Diniz, R.; Oliveira, L.C.A. Energy Fuels 2010, 24, 4793-4796, doi:10.1021/ef100876k. 216. Bayot, D.; Tinant, B.; Devillers, M. Catal. Today 2003, 78, 439-447, doi:10.1016/S0920-586100325-5. 217. Bayot, D.; Tinant, B.; Mathieu, B.; Declercq, J.P.; Devillers, M. Eur. J. Inorg. Chem. 2003, 4, 737-743, doi:10.1002/ejic.200390102. 218. Cornell, R.M.; Schwertmann, U. The Iron Oxides: Structure, Properties, Reactions, Occurrences and Uses, Second Edition, Second Edition, WILEY-VCH GmbH & Co. KGaA, 703 p., 2003, ISBN 3-527-30274-3. 128 219. Ramalho, T.C.; Oliveira, L.C.A.; Carvalho, K.T.G.; Souza, E.F.; Cunha, E.F.F.; Nazzaro, M. Mol. Phys. 2009, 107, 171-179, doi:10.1080/00268970902769489. 220. Goncalves, M.; Oliveira, L.C.A.; Guerreiro, M.C. Quím. Nova 2008, 31, 518-522, doi:10.1590/S0100-40422008000300010. 221. Ali, M.; Siddiki, S.M.A.; Kon, K.; Shimizu, K.I. ChemCatChem 2015, 7, 2705-2710, doi:10.1002/cctc.201500601. 222. Gupta, N.K.; Fukuoka, A.; Nakajima, K. ACS Catal. 2017, 7, 2430-2436, doi:10.1021/acscatal.6b03682. 223. Ziolek, M.; Sobczak, I.; Decyk, P.; Wolski, L. Catal. Commun. 2013, 37, 85-91, doi:10.1016/j.catcom.2013.03.032. 224. Wojcieszak, R.; Jasik, A.; Monteverdi, S.; Ziolek, M.; Bettahar, M.M. J. Mol. Catal. A-Chem. 2006, 256, 225-233, doi:10.1016/j.molcata.2006.04.053. 225. Ramalho, T.C.; Oliveira, L.C.A.; Carvalho, K.T.G.; Souza, E.F.; Cunha, E.F.F. Nazzaro, M. J. Mater. Sci. 2008, 43, 5982-5988, doi:10.1007/s10853-008-2748-1. 226. Carvalho, K.T.; Silva, A.C.; Oliveira, L.C.; Gonçalves, M.; Magriotis, Z.M. Quim. Nova 2009, 32, 1373-1377, doi:10.1590/S0100-40422009000600002. 227. Anpo, M.; Che, M.; Fubini, B.; Garrone, E.; Giamello, E.; Paganini, M.C. Top. Catal. 1999, 8, 189-198. 228. Che, M.; Giamello E. Stud. Surf. Sci. Catal. B 1990, 57, B265-B332. 229. Ziolek, M.; Sobczak, I.; Lewandowska, A.; Nowak, I.; Decyk, P.; Renn, M.; Jankowska, B. Catal. Today 2001, 70, 169-181, doi: 10.1016/S0920-5861(01)00416-3. 230. Ziolek, M.; Decyk, P.; Sobczak, I.; Trejda, M.; Florek, J.; Golinska, H.; Klimas, W.; Wojtaszek, A. Appl. Catal. A-Gen. 2011, 391, 194-204, doi:10.1016/j.apcata.2010.07.022. 231. Kala Raj, N.K.; Ramaswamy, A.V.; Manikandan, P. J. Mol. Catal. A: Chem. 2005, 227, 37-45, doi:10.1016/j.molcata.2004.10.005. 232. Eimer, G.A.; Chanquia, C.M.; Sapag, K.; Herrero; E.R. Micropor. Mesopor. Mat. 2008, 116, 670-676, doi:10.1016/j.micromeso.2008.05.040. 233. Fujii, S.; Tsueda, C.; Yamabe, K.; Nakajima, K.; Sakai, H. Inorg. Chim. Acta 2008, 361, 1207-1211, doi:10.1016/j.ica.2007.09.015. Maurya, M.R.; Arya, A.; Adão, P.; Pessoa, J.C. Appl. Catal. A-Gen. 2008, 351, 239-252, doi:10.1016/j.apcata.2008.09.021. 234. Buettner, G.R. Free Radical Bio. Med. 1987, 3, 259-303, doi:10.1016/S0891-5849(87)80033-3. 235. [http://www.brasil.gov.br/economia-e-emprego/2017/01/producao-brasileira-de-graos-deve-chegar-a-215-milhoes-de-toneladas] 236. [https://www.agrolink.com.br/noticias/cresce-capacidade-para-processar-oleo-vegetal-no-pais_211893.html] 129 237. Oliveira, L.C.A.; Portilho, M.F.; Silva, A.C.; Taroco, H.A.; Souza, P.P. Appl. Catal. B: Environ. 2012, 117-118, 29-35, doi:10.1016/j.apcatb.2011.12.043. 238. Voraberger, H.; Ribitsch, V.; Janotta, M.; Mizaikoff, B. Appl. Spectrosc. 2003, 57, 574-579, doi:10.1366/000370203321666623. 239. Grechkin, A.N.; Kuramshin, R.A.; Latypov, S.K.; Safonova, Y.Y.; Gafarova, T.E.; Ilyasov, A.V. FEBS J. 1991, 199, 451-457, doi:10.1111/j.1432-1033.1991.tb16143.x. 240. Miccichè, F.; van Haveren, J.; Oostveen, E.; Ming, W.; van der Linde, R. Appl. Catal. A Gen. 2006, 297, 174-181, doi:10.1016/j.apcata.2005.09.008. 241. Juita; Dlugogorski, B.Z.; Kennedy, E.M.; Mackie, J.C. Fire Sci. Rev. 2012, 1, 1-36, doi:10.1186/2193-0414-1-3. 242. Brash, A.R. Lipids 2000, 35, 947-952, doi:10.1007/s11745-000-0604-0. 243. Yanez, J.; Sevilla, C.L.; Becker, D.; Sevilla, M.D. J. Phys. Chem. 1987, 91, 487-491, doi:10.1021/j100286a044. 244. Venkataraman, S.; Schafer, F.Q.; Buettner, G.R. Antioxid. Redox Signal. 2004, 6, 631-638, doi:10.1089/152308604773934396. 245. Kremer, M.L. Int. J. Chem. Kinet. 1985, 17, 1299-1314, doi:10.1002/kin.550171207. 246. Salem, I.A.; El-Maazawi, M.; Zaki, A.B. Int. J. Chem. Kinet. 2000, 32, 643-666, doi:10.1002/1097-460132:11<643::AID-KIN1>3.0.CO;2-C. 247. Wang, Z. Hock Rearrangement. In Comprehensive Organic Name Reactions and Reagents; John Wiley & Sons: New York, NY, USA, 2010; pp. 1438-1442, ISBN 9780470638859, doi:10.1002/9780470638859.conrr321. 248. Li, Z.; Tran, V.H.; Duke, R.K.; Ng, M.C.; Yang, D.; Duke, C.C. Chem. Phys. Lipids 2009, 158, 39-45, doi:10.1016/j.chemphyslip.2008.12.004. 249. Farias, M.; Martinelli, M. Quim. Nova 2012, 35, 1538-1541, doi:10.1590/S0100-40422012000800009. 250. Bregante, D.T.; Flaherty, D.W. J. Am. Chem. Soc. 2017, 139, 6888-6898, doi:10.1021/jacs.7b01422. 251. Pai, Z.P.; Tolstikov, A.G.; Berdnikova, P.V.; Kustova, G.N.; Khlebnikova, T.B.; Selivanova, N.V.; Kostrovskii, V.G. Russ. Chem. Bull. 2005, 54, 1847-1854, doi:10.1007/s11172-006-0047-z. 252. Machulek, A.; Quina, F.H.; Gozzi, F.; Silva, V.O.; Friedrich, L.C.; Moraes, J.E. Chapter 11, Fundamental Mechanistic Studies of the Photo-Fenton Reaction for the Degradation of Organic Pollutants. In Organic Pollutants Ten Years after t
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal Rural do Rio de Janeiro
dc.publisher.program.fl_str_mv Programa de Pós-Graduação em Química
dc.publisher.initials.fl_str_mv UFRRJ
dc.publisher.country.fl_str_mv Brasil
dc.publisher.department.fl_str_mv Instituto de Ciências Exatas
publisher.none.fl_str_mv Universidade Federal Rural do Rio de Janeiro
dc.source.none.fl_str_mv reponame:Biblioteca Digital de Teses e Dissertações da UFRRJ
instname:Universidade Federal Rural do Rio de Janeiro (UFRRJ)
instacron:UFRRJ
instname_str Universidade Federal Rural do Rio de Janeiro (UFRRJ)
instacron_str UFRRJ
institution UFRRJ
reponame_str Biblioteca Digital de Teses e Dissertações da UFRRJ
collection Biblioteca Digital de Teses e Dissertações da UFRRJ
bitstream.url.fl_str_mv https://rima.ufrrj.br/jspui/bitstream/20.500.14407/10231/1/2018%20-%20Christian%20Marcelo%20Paraguass%c3%ba%20Cecchi.pdf.jpg
https://rima.ufrrj.br/jspui/bitstream/20.500.14407/10231/2/2018%20-%20Christian%20Marcelo%20Paraguass%c3%ba%20Cecchi.pdf.txt
https://rima.ufrrj.br/jspui/bitstream/20.500.14407/10231/3/2018%20-%20Christian%20Marcelo%20Paraguass%c3%ba%20Cecchi.pdf
https://rima.ufrrj.br/jspui/bitstream/20.500.14407/10231/4/license.txt
bitstream.checksum.fl_str_mv 17961371e43e2ad97e09ebdf1f492ee9
84436236d7e6c09f762f3c548bcbd57e
026fa88ea93669d52acc867f6241ab1a
7b5ba3d2445355f386edab96125d42b7
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da UFRRJ - Universidade Federal Rural do Rio de Janeiro (UFRRJ)
repository.mail.fl_str_mv bibliot@ufrrj.br||bibliot@ufrrj.br
_version_ 1810108108380307456