Avaliação de áreas com histórico de contaminação no solo na Floresta Nacional de Ipanema, SP
Autor(a) principal: | |
---|---|
Data de Publicação: | 2017 |
Tipo de documento: | Tese |
Idioma: | por |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da UFRRJ |
Texto Completo: | https://rima.ufrrj.br/jspui/handle/20.500.14407/9104 |
Resumo: | A contaminação, que geralmente é promovida por atividades antrópicas, está associada a diversos efeitos nocivos à saúde humana. Os efeitos sobre a biodiversidade são visados e atualmente de igual importância, principalmente quando afetam organismos chave, funções ecológicas e serviços ecossistêmicos benéficos ao homem. No Brasil muitos casos de contaminação do solo não são de conhecimento da população e da comunidade científica, ocorrendo predominantemente em áreas particulares. Com isso, a proposta de avaliar áreas com histórico de contaminação em uma unidade de conservação permite e facilita a implantação de conhecimentos e métodos poucos explorados no País, principalmente a avaliação de risco ecológico. Além disso, o apelo pela conservação da biodiversidade na unidade de conservação impulsiona e dirige o estudo para fins benéficos ao meio ambiente. No primeiro capítulo avalia-se uma área com histórico de contaminação do solo pelo vazamento de óleo ascarel, que estava contido em transformadores elétricos de uma subestação férrea. Entretanto a presença dos possíveis contaminantes levantados pelo histórico (bifenilas policloradas, hidrocarbonetos policíclicos aromáticos e mercúrio metálico) não foram confirmados por análises químicas do solo. Com isso, o objetivo do estudo foi avaliar o efeito de outros possíveis contaminantes sobre a biota do solo. Para isso atributos do ambiente e principalmente da comunidade de invertebrados do solo foram confrontados por análise de redundância, onde se verificou que 100% da variabilidade dos dados bióticos foram explicados pelos abióticos. Isto permite concluir que não há efeitos de contaminantes e inferir sobre a ausência destes no solo. O segundo capítulo aborda uma antiga cava de mineração de calcário que vem sendo usada para a formação e aperfeiçoamento de agentes ambientais, policiais e militares, principalmente para o treinamento de tiro. Entretanto sabe-se que esta atividade possui grande potencial de contaminação do solo por metais pesados, principalmente o chumbo. A avaliação do local foi baseada na avaliação de risco em tríade realizada em dez pontos (sendo um utilizado como referência) dispostos em transectos, onde se consideram evidências químicas, ecológicas e ecotoxicológicas em conjunto. A linha de evidência química evidenciou risco acima do aceito para áreas naturais (0,25), ocasionado pela presença de bário e chumbo potencialmente tóxicos aos organismos do solo. Na evidência ecológica a comunidade da mesofauna do solo elevou os valores de risco, onde todos os pontos investigados apresentaram valores acima de 0,25. Na ecotoxicologica houve variação entre os pontos, ocasionado principalmente pela diferença de sensibilidade dos organismos testes utilizados (Folsomia candida e Enchytraeus crypticus). Com isso, oito dos nove pontos investigados apresentaram risco superior ao aceito para áreas naturais, o que indica a necessidade de uma melhor compreensão dos efeitos causados pelos usos antrópicos da área dentro de uma unidade de conservação |
id |
UFRRJ-1_aff36c39ebd05ebc5abc77120e88c386 |
---|---|
oai_identifier_str |
oai:rima.ufrrj.br:20.500.14407/9104 |
network_acronym_str |
UFRRJ-1 |
network_name_str |
Repositório Institucional da UFRRJ |
repository_id_str |
|
spelling |
Scoriza, Rafael NogueiraCorreia, Maria Elizabeth Fernandes93232063772http://lattes.cnpq.br/8912768268043499Silva, Alessandra de Carvalho-http://lattes.cnpq.br/2796770732160436Sousa, José Paulo--Silva, Alessandra de CarvalhoAmaral Sobrinho, Nelson Moura Brasil doCesar, Ricardo GonçalvesNiemeyer, Júlia CarinaMoraes, Luiz Fernando Duarte de35090994862http://lattes.cnpq.br/16363266502494672023-12-21T18:34:28Z2023-12-21T18:34:28Z2017-02-21Scoriza, Rafael Nogueira. Avaliação de áreas com histórico de contaminação no solo na Floresta Nacional de Ipanema, SP. 2017. [79 f.]. Tese( Programa de Pós-Graduação em Agronomia - Ciência do Solo) - Instituto de Agronomia, Universidade Federal Rural do Rio de Janeiro, [Seropédica-RJ] .https://rima.ufrrj.br/jspui/handle/20.500.14407/9104A contaminação, que geralmente é promovida por atividades antrópicas, está associada a diversos efeitos nocivos à saúde humana. Os efeitos sobre a biodiversidade são visados e atualmente de igual importância, principalmente quando afetam organismos chave, funções ecológicas e serviços ecossistêmicos benéficos ao homem. No Brasil muitos casos de contaminação do solo não são de conhecimento da população e da comunidade científica, ocorrendo predominantemente em áreas particulares. Com isso, a proposta de avaliar áreas com histórico de contaminação em uma unidade de conservação permite e facilita a implantação de conhecimentos e métodos poucos explorados no País, principalmente a avaliação de risco ecológico. Além disso, o apelo pela conservação da biodiversidade na unidade de conservação impulsiona e dirige o estudo para fins benéficos ao meio ambiente. No primeiro capítulo avalia-se uma área com histórico de contaminação do solo pelo vazamento de óleo ascarel, que estava contido em transformadores elétricos de uma subestação férrea. Entretanto a presença dos possíveis contaminantes levantados pelo histórico (bifenilas policloradas, hidrocarbonetos policíclicos aromáticos e mercúrio metálico) não foram confirmados por análises químicas do solo. Com isso, o objetivo do estudo foi avaliar o efeito de outros possíveis contaminantes sobre a biota do solo. Para isso atributos do ambiente e principalmente da comunidade de invertebrados do solo foram confrontados por análise de redundância, onde se verificou que 100% da variabilidade dos dados bióticos foram explicados pelos abióticos. Isto permite concluir que não há efeitos de contaminantes e inferir sobre a ausência destes no solo. O segundo capítulo aborda uma antiga cava de mineração de calcário que vem sendo usada para a formação e aperfeiçoamento de agentes ambientais, policiais e militares, principalmente para o treinamento de tiro. Entretanto sabe-se que esta atividade possui grande potencial de contaminação do solo por metais pesados, principalmente o chumbo. A avaliação do local foi baseada na avaliação de risco em tríade realizada em dez pontos (sendo um utilizado como referência) dispostos em transectos, onde se consideram evidências químicas, ecológicas e ecotoxicológicas em conjunto. A linha de evidência química evidenciou risco acima do aceito para áreas naturais (0,25), ocasionado pela presença de bário e chumbo potencialmente tóxicos aos organismos do solo. Na evidência ecológica a comunidade da mesofauna do solo elevou os valores de risco, onde todos os pontos investigados apresentaram valores acima de 0,25. Na ecotoxicologica houve variação entre os pontos, ocasionado principalmente pela diferença de sensibilidade dos organismos testes utilizados (Folsomia candida e Enchytraeus crypticus). Com isso, oito dos nove pontos investigados apresentaram risco superior ao aceito para áreas naturais, o que indica a necessidade de uma melhor compreensão dos efeitos causados pelos usos antrópicos da área dentro de uma unidade de conservaçãoConselho Nacional de Desenvolvimento Científico e Tecnológico - CNPqContamination, which is generally promoted by anthropic activities, is associated with a number of harmful effects on human health. The effects on biodiversity are targeted and currently of equal importance, especially when they affect key organisms, ecological functions and beneficial ecosystem services to man. In Brazil many soil contamination cases aren’t known to the population and the scientific community, occurring predominantly in particular areas. With this, the proposal to evaluate areas with a history of contamination in a conservation unit allows and facilitates the implementation of knowledge and methods few explored in the country, mainly ecological risk assessment. In addition, the call for conservation of biodiversity in the conservation unit drives and directs the study for environmental purposes. In the first chapter we evaluate an area with a history of soil contamination by ascarel oil leakage, which was contained in electric transformers of a railway substation. However, the presence of the possible historical contaminants (polychlorinated biphenyls, polycyclic aromatic hydrocarbons and metallic mercury) were not confirmed by chemical analyzes of the soil. Thus, the objective of the study was to evaluate the effect of other possible contaminants on the soil biota. For this, attributes of the environment and of the community of invertebrates of the soil were confronted by analysis of redundancy, where it was verified that 100% of the variability of the biotic data were explained by the abiotic ones. This allows to conclude that there are no effects of contaminants and infer about their absence in the soil. The second chapter deals with an old limestone mining pit that has been used for the training and improvement of environmental, police and military agents, mainly for shooting training. However, it is known that this activity has great potential for soil contamination by heavy metals, especially lead. The evaluation of the site was based on the triad risk assessment carried out in ten points (one used as reference) arranged in transects, where chemical, ecological and ecotoxicological evidence are considered together. The chemical evidence line showed a risk above that accepted for natural areas (0.25), caused by the presence of potentially toxic barium and lead to soil organisms. In the ecological evidence, the community of soil mesofauna increased the risk values, where all points investigated presented values above 0.25. In the ecotoxicology there was variation between the points, caused mainly by the difference of sensitivity of the test organisms used (Folsomia candida and Enchytraeus crypticus). Thus, eight of the nine points investigated presented a higher risk than that accepted for natural areas, which indicates the need for a better understanding of the effects caused by the anthropic uses of the area within a protected area.application/pdfporUniversidade Federal Rural do Rio de JaneiroPrograma de Pós-Graduação em Agronomia - Ciência do SoloUFRRJBrasilInstituto de AgronomiaAvaliação de risco ecológicoBifenilas policloradasEstande de tiroEcological risk assessmentPolychlorinated biphenylsShooting rangeAgronomiaAvaliação de áreas com histórico de contaminação no solo na Floresta Nacional de Ipanema, SPEvaluation of areas with soil contamination history in the Ipanema National Forest, SPinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisABNT NBR 10004. Resíduos Sólidos – Classificação. Associação Brasileira de Normas Técnicas, 2004. 77 p. ABNT NBR 10007. Amostragem de resíduos sólidos. Rio de Janeiro: Associação Brasileira de Normas Técnicas, 2004. 25 p. ABNT NBR ISO 11267. Qualidade do solo – inibição da reprodução de Collembola (Folsomia candida) por poluentes do solo. Rio de Janeiro: Associação Brasileira de Normas Técnicas, 2011. 18 p. ABNT NBR ISO 16387. Qualidade do solo – Efeitos de poluentes em Enchytraeidae (Enchytraeus sp.) – Determinação de efeitos sobre a reprodução e sobrevivência. Rio de Janeiro: Associação Brasileira de Normas Técnicas, 2012. 35 p. AHMAD, M.; LEE, S. S.; MOON, D. H.; YANG, J. H.; OK, Y. S. A review of environmental contamination and remediation strategies for heavy metals at shooting range soils. In: MALIK, A.; GROHMANN, E. (Eds.). Environmental protection strategies for sustainable development. Springer Netherlands, 2012. p. 437-451. ALBUQUERQUE, G. B.; RODRIGUES, R. R. A vegetação do Morro de Araçoaiaba, Floresta Nacional de Ipanema, Iperó (SP). Scientia Forestalis, n. 58, p. 145-159, 2000. ALMEIDA, F. V.; CENTENO, A. J.; BISINOTI, M. C.; JARDIM. W. F. Substâncias tóxicas persistentes (STP) no Brasil. Química Nova, v. 30, n. 8, p. 1976-1985, 2009. ANDRADE, S. A. L.; ABREU, C. A.; ABREU, M. F.; SILVEIRA, A. P. D. Influence of lead additions on arbuscular mycorrhiza and Rhizobium symbioses under soybean plants. Applied Soil Ecology, v. 26, p. 123-131, 2004. ANTUNES, S. C.; CASTRO, B. B.; MOREIRA, C.; GONÇALVES, F.; PEREIRA, R. Community-level effects in edaphic fauna from an abandoned mining area: integration with chemical and toxicological lines of evidence. Ecotoxicology and Environmental Safety, v. 88, p. 65-71, 2013. AQUINO, A. M.; CORREIA, M. E. F.; BADEJO, M. A. Amostragem da mesofauna edáfica utilizando funis de berlese-tullgren modificado. Embrapa: Seopédica, 2006. 4p. ARAÚJO, A. S. F.; EISENHAUER, N.; NUNES, L. A. P. L.; LEITE, L. F. C.; CEZARZ, S. Soil surface-active fauna in degraded and restored lands of northeast Brazil. Land Degradation & Development, v. 26, p. 1-8, 2015. ASTRUP, T.; BODDUN, J. K.; CHRISTENSEN, T. H. Lead distribution and mobility in a soil enbankment used as a bullet stop at a shooting range. Journal of Soil Contamination, v. 8, n. 6, p. 653-665, 1999 AUCLERC, A.; PONGE, J. F.; BAROT, S.; DUBS, F. Experimental assessment of habitat preference and dispersal ability of soil springtails. Soil Biology & Biochemistry, v. 41, n. 1596-1604, 2009. BAIRD, D. J.; BAKER, C. J. O.; BRUA, R. B.; HAJUBABAEI, M.; MCNICOL, K.; PASCOE, T. J.; ZWART, D. Toward and knowledge infrastructure for traits-based ecological risk assessment. Integrated Environmental Assessment and Management, v. 7, n. 2, p. 209-215, 2010. 66 BAIRD, D. J.; RUBACH, M.; VAN DEN BRINK, P. J. Trait-based ecological risk assessment (TERA): The new frontier? Integrated Environmental Assessment and Management, v. 4, n. 1, p. 2-3, 2008. BAN, Y.; XU, Z.; ZHANG, H.; CHEN, H.; TANG, M. Soil chemistry properties, translocation of heavy metals, and mycorrhizal fungi associated with six plant species growing on lead-zinc mine tailings. Annals of Microbiology, v. 65, p. 503-515, 2015. BANDARA, T.; VITHANAGE, M. Phytoremediation of shooting range soils. In: ANSARI, A. A.; GILL, S. S.; GILL, R.; LANZA, G. R.; NEWMAN, L. Phytoremediation. Springer International Publishing, 2016. p. 469-488. BATAGHIN, F. A.; PIRES, J. S. R.; BARROS, F. Epifitismo vascular em sítios de borda e interior em floresta estacional semidecidual no sudeste do Brasil. Hoehnea, v. 39, n. 2, p. 235-245, 2012. BELLO, F.; LAVOREL, S.; DÍAZ, S.; HARRINGTON, R.; CORNELISSEN, J. H. C.; BARDGETT, R. D.; BERG, M. P.; CIPRIOTTI, P.; FELD, C. K.; HERING, D.; SILVA, P. M.; POTTS, S. G.; SANDIN, L.; SOUSA, J. P.; STORKEY, J.; WARDLE, D. A.; HARRISON, P. A. Towards and assessment of multiple ecosystem processes and services via functional traits. Biodiversity Conservation, v. 19, p. 2873-2893, 2010. BENNETT, J. R.; KAUFMAN, C. A.; KOCH, I.; SOVA, J.; REIMER, K. J. Ecological risk assessment of lead contamination at rifle and pistol ranges using techniques to account for site characteristics. Science of the Total Environment, v. 374, p. 91-101, 2007. BEYER, A.; BIZIUK, M. Environmental fate and global distribution of polychlorinated biphenyls. In: WHITACRE, D. M. (Ed.). Reviews of Environmental Contamination and Toxicology. New York: Springer, 2009. p. 137-158. BIDDINGER, G. R.; CALOW, P.; DELORME, P.; HARRIS, G.; HOPE, B.; LIN, B.; SORENSEN, M. T.; VAN DEN BRINK, P. Managing risk to ecological populations. In: BARNTHOUSE, L. W.; MUNNS JR., W. R.; SORENSEN, M. T. Population-level ecological risk assessment. New York: Taylor & Francis, 2008. p. 7-39. BILDE, T. AXELSEN, J. A.; TOFT, S. The value of collembola from agricultural soils as food for a generalist predator. Journal of Applied Ecology, n. 37, p. 672-683, 2000. BINKLEY, D.; FISHER, R. F. Ecology and management of forest soils. Oxford: Wiley-Blackwell, 2013. p. 77-98. BORJA, J.; TALEON, D. M.; AURESENIA, J.; GALLARDO, S. Polychlorinated biphenyls and their biodegradation. Process Biochemistry, v. 40, p. 1999-2013, 2005. BRADHAM, K. D.; DAYTON, E. A.; BASTA, N. T.; SCHRODER, J.; PAYTON, M.; LANNO, R. P. Effect of soil properties on lead bioavailability and toxicity to earthworms. Environmental Toxicology and Chemistry, v. 25, n. 3, p. 769-775, 2006. BRASIL. Lei no 9.985, de 18 de julho de 2000. Regulamenta o art. 225, § 1o, incisos I, II, III e VII da Constituição Federal, institui o Sistema Nacional de Unidades de Conservação da Natureza e dá outras providências. Disponível em: <http://www.planalto.gov.br/ccivil_03/leis/l9985.htm>. Acesso em: 25/05/2014. BRUSSAARD, L. Soil fauna, guilds, functional groups and ecosystem processes. Aplied Soil Ecology, v. 9, p. 123-135, 1998. CACHADA, A.; LOPES, L. V.; HURSTHOUSE, A. S.; BIASIOLI, M.; GRCMAN, H.; OTABBONG, E.; DAVIDSON, C. M.; DUARTE, A. C. The variability of polychlorinated 67 biphenyls levels in urban soils from five European cities. Environmental Pollution, v. 157, p. 511-518, 2009. CAO, X.; MA, L. Q.; CHEN, M.; HARDISON, D. W.; HARRIS, W. G. Lead transformation and distribution in the soils of shooting ranges in Florida, USA. The Science of the Total Environment, v. 307, p. 179-189, 2003. CARVALHO, P.E.R. Espécies arbóreas brasileiras. Colombo: Embrapa Florestas, 2006. v. 2, 627p. CASTRO-FERREIRA, M. P.; ROELOFS, D.; VAN GESTEL, C. A. M.; VERWEIJ, R. A.; SOARES, A. M. V. M.; AMORIM, M. J. B. Enchytraeus crypticus as model species in soil ecotoxicology. Chemosphere, v. 87, p. 1222-1227, 2012. CCME - Canadian Council of Ministers of the Environment. Canadian soil quality guidelines for the protection of environmental and human health. Winnipeg, 2007. CETESB – Companhia Ambiental do Estado de São Paulo. Valores orientadores para solo e água subterrânea no Estado de São Paulo, 2014. Disponível em: < http://sites.usp.br/sef/wp-content/uploads/sites/52/2015/03/47-CETESB2014_Valores_Orientadores_solo_agua.pdf> acesso em: 23 nov. 2016. CHAER, G. M.; RESENDE, A. S.; CAMPELLO, E. F. C.; FARIA, S. M.; BODDEY, R. M. Nitrogen-fixing legume tree species for the reclamation of severely degraded lands in Brazil. Tree Physiology, v. 31, p. 139-149, 2011. CHAPIN, F. S.; MATSON, P. A.; VITOUSEK, P. M. Principles of terrestrial ecosystem ecology. 2ª ed. New York: Springer, 2011. 536p. CHAPMAN, E. E. V.; DAVE, G.; MURIMBOH, J. D. A review of metal (Pb and Zn) sensitive and pH tolerant bioassay organisms for risk screening of metal-contaminated acidic soils. Environmental Pollution, v. 179, p. 326-342, 2013. CHAPMAN, E. E. V.; DAVE, G.; MURIMBOH, J. D. Ecotoxicological risk assessment of undisturbed metal contaminated soil at two remote lighthouse sites. Ecotoxicology and Environmental Safety, v. 73, p. 961-969, 2010. CHELINHO, S.; DOMENE, X.; CAMPANA, P.; NATAL-DA-LUZ, T.; SCHEFFCZYK, A.; ROMBKE, J.; ANDRÉS, P.; SOUSA, J. P. Improving ecological risk assessment in the Mediterranean area: selection of reference soil sand evaluating their influence of soil properties on avoidance and reproduction of two oligochaete species. Environmental Toxicology and Chemistry, v. 30, n. 5, p. 1050-1058, 2011. CHEN, M.; DAROUB, S. H. Characterization of lead in soils of a rifle/pistol shooting range in central Florida, USA. Soil and Sediment Contamination, v. 11, n. 1, p. 1-17, 2002. CHRASTNY, V.; KOMAREK, M.; HAJEK, T. Lead contamination of an agricultural soil in the vicinity of a shooting range. Environmental Monitoring and Assessment, v. 162, p. 37-46, 2010. COLEMAN, D. C.; CROSSLEY JÚNIOR, D. A.; HENDRIX, P. F. Fundamentals of soil ecology. 2ª ed. California: Elsevier, 2004. 404p. CONAMA – CONSELHO NACIONAL DE MEIO AMBIENTE. Resolução no 420, de 28 de dezembro de 2009. Disponível em: <http://www.mma.gov.br/port/conama/legiabre.cfm?codlegi=620>. Acesso em: 27/05/2013. CORNELISEEN, J. H. C.; LAVOREL, S.; GARNIER, E.; DIAZ, S.; BUCHMANN, N.; GURVICH, D. E.; REICH, P. B.; STEEGE, H.; MORGAN, H. D.; VAN DER HEIJDEN, M. G. A.; PAUSAS, J. G.; POORTER, H. A handbook of protocols for standardized and easy 68 measurement of plant functional traits worldwide. Australian Journal of Botany, v. 51, n. 4, p. 335–380, 2003. CRAIG, J. R.; RIMSTIDT, J. D.; BONNAFON, C. A.; COLLINS, T. K.; SCANLON, P. F. Surface water transport of lead at a shooting range. Bulletin of Environmental Contamination Toxicology, v. 63, p. 312-319, 1999. CROUAU, Y.; CHENON, P.; GISCLARD, C. The use of Folsomia candida (Collembola: Isotomidae) for the bioassay of xenobiotic substances and soil pollutants. Applied Soil Ecology, v. 12, p. 103–111, 1999. DARLING, C. T. R.; THOMAS, V. G. The distribution of outdoor shooting ranges in Ontario and the potential for lead pollution of soil and water. The Science of the Total Environment, v. 313, p. 235-243, 2003. DEL VAL, C.; BAREA, J. M.; AZCÓN-AGUILAR, C. Diversity of arbuscular mycorrhizal fungus population in heavy-metal-contaminated soils. Applied and Environmental microbiology, v. 65, n. 2, p. 718-723, 1999. DENYES, M. J.; LANGLOIS, V.; RUTTER, A.; ZEEB, B. A. The use of biochar to reduce soil PCB bioavailability to Cucurbita pepo and Eisenia fetida. Science of the Total Environment, v. 437, p. 76-82, 2012. DIAZ, E.; SARKINS, J. E. S.; VIEBIG, SALDIVA, P. Measurement of airborne gunshot particles in a ballistic laboratory by sector field inductively coupled plasma mass spectrometry. Forensic Science International, v. 214, p. 44-47, 2012. DINDAL, D. L. Soil biology guide. New York: Wiley, 1990. DOLÉDEC, S.; STATZNER, B.; BOURNARD, M. Species traits for future biomonitoring across ecoregions: patterns along a human-impacted river. Freshwater Biology, v. 42, p. 737-758, 1999. DUGGAN, J.; DHAWAN, A. Speciation and vertical distribution of lead and lead shot in soil at a recreational firing range. Soil & Sediment Contamination, v. 16, p. 351-369, 2007. EDWARDS, C. A. Assessing the effects of environmental pollutants on soil organisms, communities, processes and ecosystems. European Journal of Soil Biology, v. 38, p. 225-231, 2002. EISENBEIS, G.; WICHARD, W. Atlas on the biology of soil arthropods. Berlin Heidelberg: Springer-Verlag, 1987. 448p. EISENHAUER, N.; SABAIS, A. C. W.; SCHEU, S. Collembola species composition and diversity effects on ecosystem functioning vary with plant functional group identity. Soil Biology & Biochemistry, n. 43, p. 1697-1704, 2011. ELLERS, J.; DRIESSEN, G. Genetic correlation between temperature-induced plasticity of life-history traits in a soil arthropod. Evolutionary Ecology, v. 25, p. 473-484, 2011. EMBRAPA - EMPRESA BRASILEIRA DE PESQUISA AGROECUÁRIA. Centro Nacional de Pesquisa de Solos. Manual de métodos de análise de solos. Rio de Janeiro: Embrapa Solos, 2011. 225 p. EVANGELOU, M. W. H.; HOCKMANN, K.; POKHAREL, R.; JAKOB, A.; SCHULIN, R. Accumulation of Sb, Pb, Cu, Zn and Cd by various plants species on two diferente relocated militay shooting range soils. Journal of Environmental Management, v. 108, p. 102-107, 2012. 69 FÁVERO, O. A.; NUCCI, J. C.; BIASI, M. Vegetação natural potencial e mapeamento da vegetação e usos atuais das terras da Floresta Nacional de Ipanema, Iperó/SP: Conservação e Gestão Ambiental. Revista Ra’e ga, n. 8, p. 55-68, 2004. FAYIGA, A. O.; SAHA, U. K. Soil pollution at outdoor shooting ranges: health effects, bioavailability and best management practices. Environmental Pollution, v. 216, p. 135-14, 2016. FERNÁNDEZ, M. D.; CAGIGAL, E.; VEGA, M. M.; URZELAI, A.; BABÍN, M.; PRO, J.; TARAZONA, J. V. Ecological risk assessment on contaminated soils through direct toxicity assessment. Ecotoxicology and Environmental Safety, v. 62, p. 174-184, 2005. FERNANDEZ, M. D.; TARAZONA, J. V. Complementary approaches for using ecotoxicity data in soil pollution evaluation. New York: Nova Science Publishers, 2008. FROUZ, J.; PRACH, K.; PIZL, V.; HÁNEL, L.; STARY, J.; TAJOVSKY, K.; MATERNA, J.; BALIK, V.; KALCIK, J.; REHOUNKOVA. Interactions between soil development, vegetation and soil fauna during spontaneous succession in post mining sites. European Journal of Soil Biology, v. 44, p. 109-121, 2008. GARGNARLI, E.; GOGGIOLI, D.; TARCHI, F.; GUIDI, S.; NANNELLI, R.; VIGNOZZI, N.; VALBOA, G.; LOTTERO, M. R.; CORINO, L.; SIMONI, S. Case study of microarthopod communities to assess soil quality in different managed vineyards. Soil Discuss, v. 2, p. 67-84, 2015. GATTAI, G. S.; PEREIRA, S. V.; COSTA, C. M. C.; LIMA, C. E. P.; MAIA, L. C. Microbial activity, arbuscular mycorrhizal fungi and inoculation of woody plants in lead contaminated soil. Brazilian Journal of Microbiology, v. 42, p. 859-867, 2011. GERDEMANN, J. W.; NICOLSON, T. H. Spores of mycorrhizal endogone species extracted from soil by wet-sieving and decanting. Transactions of British Mycological Society, v. 46, p. 235-244, 1963. GERLACH, A.; RUSSELL, D. J.; ROMBKE, J.; BRUGGEMANN, W. Consumption of introduced oak litter by native decomposers (Glomeridae, Diplopoda). Soil Biology & Biochemistry, v. 44, n. 1, p. 26-30, 2012. GOHRE, V.; PASZKOWSKI, U. Contribution of the arbuscular mycorrhizal symbiosis to heavy metal phytoremediation. Planta, v. 223, n. 6, p. 1115–1122, 2006. GONZALES-CHAVEZ, C.; HARRIS, P. J.; DODD, J.; MEHARG, A. A. Arbuscular mycorrhizal fungi confer enhanced arsenate resistance on Holcus lanatus. New Phytologist, v. 155, p. 163-171, 2002. GREENSLADE, P. Collembola. In: Insects of Australia. 2a Ed. Melbourne University Press, 1991. p. 252-268. GREENSLADE, P. Collembola. In: HOUSTON, W. W. K (Ed.). Zoological catalogue of Australia, v. 22. Protura, Collembola, Diplura. Melbourne: CSIRO, 1994. p. 19-138. GREENSLADE, P.; VAUGHAN, G. T. A comparison of Collembola species for toxicity testing of Australian soils. Pedobiologia, v. 47, p. 171–179, 2003. GUO, J.; HUA, B.; LI, N.; YANG, J. Stabilizing lead bullets in shooting range soil by phosphate-based surface coating. AIMS Environmental Science, v. 3, n. 3, p. 474-487, 2016. HARDISON JÚNIOR, D. W.; MA, L. Q.; LUONGO, T.; HARRIS, W. G. Lead contamination in shooting range soils from abrasion of lead bullets and subsequent weathering. Science of the Total Environment, v. 328, p. 175-183, 2004. 70 HEDDE, M.; VAN OORT, F.; LAMY, I. Functional traits of soil invertebrates as indicators for exposure to soil disturbance. Environmental Pollution, v. 164, p. 59-65, 2012. HEINIGER, C.; BAROT, S.; PONGE, J.; SALMON, S.; BOTTON-DIVET, L.; CARMIGNAC, D.; DUBS, F. Effect of habitat spatio temporal structure on collembolan diversity. Pedologia, v. 57, p. 103-117, 2014. HENNERON, L.; BERNARD, L.; HEDDE, M.; PELOSI, C.; VILLENAVE, C.; CHENU, C.; BERTRAND, M.; GIRARDIN, C.; BLANCHART, E. Fourteen years of evidence for positive effects of conservation agriculture and organic farming on soil life. Agronomy for Sustainable Development, v.35, p.169-181, 2015. HEYWOOD, E.; WRIGHT, J.; WIENBURG, C. L.; BLACK, H. I. J.; LONG, S. M. OSBORN, D.; SPURGEON, D. J. Factors influencing the national distribution of polycyclic aromatic hydrocarbons and polychlorinated biphenyls in British soils. Environmental Science & Technology, v. 40, p. 7629-7635, 2006. HEUPEL, K. Avoidance response of different collembolan species to Betanal. European Journal of Soil Biology, v. 38, p. 273-276, 2002. HOPKIN, S. P. Biology of the Springtails (Insecta: Collembola). New York: Oxford University Press, 1997. ISO 10390. Soil quality - Determination of pH. Geneva: International Organization for Standardization, 2005. 14p. JEFFERY, S.; GARDI, C.; JONES, A.; MONTANARELLA, L.; MARMO, L.; MIKO, L.; RITZ, K.; PERES, G.; ROMBKE, J.; VAN DER PUTTEN, W. H. European atlas of soil biodiversity. European Union, 2010. p. 104-105. JENKINS, W. R. A rapid centrifugal-flotation technique for separating nematodes from soil. Plant Disease Report, v. 28, p. 692, 1964. JENSEN, J.; MESMAN, M. Ecological risk assessment of contaminated land: Decision support for site specific investigations. Bilthoven: National Institute for Public Health and the Environment (RIVM), 2006. 136 pp. JENSEN, J.; MESMAN, M.; BIERKENS, J.; RUTGERS, M. Principles and concepts in ecological risk assessment. In: JENSEN, J.; MESMAN, M (Eds.). Ecological risk assessment of contaminated land: Decision support for site specific investigations. Bilthoven: National Institute for Public Health and the Environment, 2006. p. 11-18. JENSEN, J.; SOROKIN, N.; DIRVEN-VAN BREEMEN, E. M.; BOGOLTE, T.; ERLACHER E.; EHLERS, C.; TER LAAK, T.; HARTNIK, T.; BIERKENS, J.; RUTGERS, M.; MESMAN, M. A triad-based selection of tools for site-specific assessment of ecological risk. In: JENSEN, J.; MESMAN, M. Ecological risk assessment of contaminated land: decision support for site specific investigations. Bilthoven: National Institute for Public Health and the Environment (RIVM), 2006. p. 65-116. JORGENSEN, H. B.; HEDLUND, K.; AXELSEN, J. A. Life-history traits of soil collembolans in relation to food quality. Applied Soil Ecology, v. 38, p. 146-151, 2008. JORGENSEN, S. S.; WILLEMS, M. The fate of lead in soils: the transformation of lead pellets in shooting-range soils. Ambio, v. 16, n. 1, p. 11-15, 1987. KARJALAINEN, A.; KILPI-KOSKI, J.; VAISANEN, A. O.; PENTTINEN, S.; VAN GESTEL, C. A. M.; PENTTINEN, O. Ecological risks of an old wood impregnation mill: application of the triad approach. Integrated Environmental Assessment and Management, v. 5, n. 3, p. 379-389, 2009. 71 KORASAKI, V.; MORAIS, J. W.; BRAGA, R. F. Macrofauna. IN: MOREIRA, F. M. S.; CARES, J. E.; ZANETTI, R. B.; STURMER, S. L. (Eds.) O ecossistema solo: componentes, relações ecológicas e efeitos na produção vegetal. Lavras: Editora UFLA, 2013. p. 121-137. KUPERMAN, R. G.; AMORIM, M. J. B.; ROMBKE, J.; LANNO, R.; CHECKAI, R. T.; DORARD, S. G.; SUNAHARA, G. I.; SCHEFFCZYK, A. Adaptation of the enchytraeid toxicity test for use with natural soil types. European Journal of Soil Biology, v. 42, s234-s243, 2006. KUPERMAN, R. G.; CHECKAI, R. T.; GARCIA, M. V. B.; ROMBKE, J.; STEPHENSON, G. L.; SOUSA, J. P. State of the science and the way forward for the ecotoxicological assessment of contaminated land. Pesquisa Agropecuária Brasileira, v. 44, n. 8, p. 811-824, 2009. LABARE, M. P.; BUTKUS, M. A.; RIEGNER, D.; SCHOMMER, N.; ATKINSON, J. Evaluation of lead movement from the abiotic to biotic at a small-arms firing range. Environmental Geology, v. 46, p. 750-754, 2004. LANGE, H. J.; SALA, S.; VIGHI, M.; FABERM J. H. Ecological vulnerability in risk assessment – A review and perspectives. Science of the Total Environment, v. 408, n. 3871-3879, 2010. LAUGA-REYREL, F.; DECONCHAT, M. Diversity within the collembola community in fragmented coppice forests in south-western France. European Journal of Soil Biology, n. 35, p. 177-187, 1999. LAVELLE, P.; SPAIN, A. V. Soil Ecology. Dordrecht: Kluwer Academic Publishers, 2001. LE BOURLEGAT, J. M. G.; ROSSI, S. C.; CHINO, C. E.; SCHIAVINATO, M. A.; LAGÔA, A. M. M. A. Tolerância de Leucaena leucocephala (Lam.) de Wit. ao metal pesado chumbo. Revista Brasileira de Biociências, v. 5, supl. 2, p. 1017-1019, 2007. LEE, I.; KIM, O. K.; CHANG, Y.; BAE, B.; KIM, H.; BAEK, K. Heavy metal concentrations and enzyme activities in soil from a contaminated Korean shooting range. Journal of Bioscience and Bioengineering, v. 94, n. 5, p. 406-411, 2002. LEIVA, C.; AHUMADA, I.; SEPÚLVEDA, B.; RICHTER, P. Polychlorinated biphenyls behaviour in soil amended with biosolids. Chemosphere, v. 79, p. 273-277, 2010. LEPS J.; SMILAUER, P. Multivariate analysis of ecological data using Canoco. Cambridge: Cambridge University Press, 2003. LIESS, M.; SCHAFER, R. B.; SCHRIEVER, C. A. The footprint of pesticide stress in communities – species traits reveal community effects of toxicants. The Science of the Total Environment, v. 406, p. 484-490, 2008. LIN, A.; ZHANG, X.; WONG, M.; YE, Z.; LOU, L.; WANG, Y.; ZHU, Y. Increase of multi-metal tolerance of three leguminous plants by arbuscular mycorrhizal fungi colonization. Environmental Geochemistry and Health, v. 29, p. 473-481, 2007. LIN, Z.; COMET, B.; QVARFORT, U.; HERBERT, R. The chemical and mineralogical behaviour of Pb in shooting range soils from central Sweden. Environmental Pollution, v. 89, n. 3, p. 303 - 309, 1995. LINDBERG, N.; BENGTSSON, J. Population responses of oribatid mites and collembolans after drought. Applied Soil Ecology, v. 28, p. 163-174, 2005. LINS, C. E. L.; CAVALCANTE, U. M. T.; SAMPAIO, E. V. S. B.; MESSIAS, A. S.; MAIA, L. C. Growth of mycorrhized seedlings of Leucaena leucocephala in a copper contaminated soil. Applied Soil Ecology, v. 31, p. 181-185, 2006 72 LLUGANY, M.; POSCHENRIEDER, C.; BARCELÓ, J. Assessment of barium toxicity in bush beans. Archives of Environmental Contamination and Toxicology, v. 39, p. 440-444, 2000. LOCK, K.; JANSSENS, F.; JANSSEN, C. R. Effects of metal contamination on the activity and diversity of springtails in an ancient Pb-Zn mining area at Plombieres, Belgium. Europen Journal of Soil Biology, v. 39, p. 25-29, 2003. LOUREIRO, S.; SOARES, A. M. V. M.; NOGUEIRA, A. J. A. Terrestrial avoidance behaviour tests as screening tool to assess soil contamination. Environmental Pollution, v. 138, p. 121-131, 2005. LUO, W.; VERWEIJ, R. A.; GESTEL, C. A. M. Contribution of soil properties of shooting fields to lead biovailability and toxicity to Enchytraeus crypticus. Soil Biology & Biochemistry, v. 76, p. 235-241, 2014a. LUO, W.; VERWEIJ, R. A.; GESTEL, C. A. M. Determining the bioavailability and toxicity of lead contamination to earthworms requires using a combination of physicochemical and biological methods. Environmental Pollution, v. 185, p. 1-9, 2014b. LUO, W.; VERMEIJ, R. A.; VAN GESTEL, C. A. M . Assessment of the bioavailability and toxicity of lead polluted soils using a combination of chemical approaches and bioassays with the collembolan Folsomia candida. Journal of Hazardous Materials, v. 280, p. 524-530, 2014c MA, L. Q.; HARDISON Junior, D. W.; HARRIS, W. G.; CAO, X.; ZHOU, Q. Effects of soil property and soil amendment on weathering of abraded metallic Pb in shooting ranges. Water, Air & Soil Pollution, v. 178, p. 297-307, 2007. MA, Y.; DICKINSON, N. M. WONG, M. H. Beneficial effects of earthworms and arbuscular mycorrhizal fungi on establishment of leguminous trees on Pb/Zn mine tailings. Soil Biology & Biochemistry, v. 38, p. 1403-1412, 2006. MAAß, S.; CARUSO, T.; RILLING, M. Functional role os microarthropods in soil aggregation. Pedobiologia, v. 58, n. 2-3, p. 59-63, 2015. MACKOVA, M.; PROUZOVA, P.; STURSA, P.; RYSLAVA, E.; UHLIK, O.; BERANOVA, K.; RESEK, J.; KURZAWOVA, V.; DEMNEROVA, K.; MACEK, T. Phyto/rhizoremediation studies using long-term PCB-contaminated soil. Environmental Science and pollution research international, v. 16, p. 817-829, 2009. MAJER, J.D.; BRENNAN, K.E.C.; MOIR, M.L. Invertebrates and the Restoration of a Forest Ecosystem: 30 Years of Research following Bauxite Mining in Western Australia. Restoration Ecology, v. 15, n. 4, p. S104-S115, 2007. MALMSTROM, A. Life-history traits predict recovery patterns in Collembola species after fire: a 10 year study. Applied Soil Ecology, v. 56, p. 35-42, 2012. MANHÃES, C. M. C.; GAMA-RODRIGUES, E. F.; MOÇO, M. K. S.; GAMA-RODRIGUES, A. C. Meso- and macrofauna in the soil and litter of leguminous trees in a degraded pasture in Brazil. Agroforest Systems, v. 87, n. 5, p. 993-1004, 2013. MANNINEN, S.; TANSKANEN, N. Transfer of lead from shotgun pellets to humus and three plant species in a finnish shooting range. Archives of Environmental Contamination and Toxicology, v. 24, p. 410-414, 1993. MARTINY, A.; PINTO, A. L. Aplicação da microscopia eletrônica de varredura à análise de resíduos de tiro. Revista C & T, p. 24-35, 2008. 73 MELO, F. V.; BROWN, G. G.; LOUZADA, J. N. C.; LUIZÃO, F. J.; MORAIS, J. W.; ZANETTI, R. A importância da meso e macrofauna do solo na fertilidade e como bioindicadores. Boletim Informativo da SBCS, 2009. MELO, L. C. A.; ALLEONI, L. R. F.; CARVALHO, G.; AZEVEDO, R. A. Cadmium-and barium-toxicity effects on growth and antioxidant capacity of soybean (Glycine max L.) plants, grown in two soil types with diferente physicochemical properties. Journal of Plant Nutrition and Soil Science, v. 174, p. 847-859, 2011. MELONI, F.; VARANDA, E. M. Litter and soil arthropod colonization in reforested semi-deciduous seasonal Atlantic forest. Restoration Ecology, v. 23, n. 5, p. 690-697, 2015. MENTA, C. Soil fauna diversity – function, soil degradation, biological índices, soil restoration. In: LAMEED, G. A. (Ed.) Biodiversity conservation and utilization in a diverse word. Rijeka: InTech, 2012. p. 59- 94. MERGULHÃO, A. C. E. S.; BURITY, H. A.; GOTO, B. T.; MAIA, L. C. Diversity of arbuscular mycorrhizal fungi in a gypsum mining impacted semiarid area. Acta Botânica Brasilica, v. 24, n. 4, p. 1052-1061, 2010. MESMAN, M.; RUTGERS, M.; JENSEN, J. Using the triad in site specific assessment of contaminated soil. In: JENSEN, J.; MESMAN, M. Ecological risk assessment of contaminated land: decision support for site specific investigations. Bilthoven: National Institute for Public Health and the Environment (RIVM), 2006. p. 41-53. MIGLIORINI, M.; PIGINO, G.; BIANCHI, N.; BERNINI, F.; LEONZIO, C. The effects of heavy metal contamination on the soil arthropod community of a shooting range. Environmental Pollution, v. 129, p. 331-340, 2004. MIGLIORINI, M.; PIGINO, G.; CARUSO, T.; FANCIULLI, P. P.; LEONZIO, C.; BERNINI, F. Soil communities (Acari Oribatida; Hexapoda Collembola) in a clay pigeon shooting range. Pedobiologia, v. 49, p. 1-13, 2005. MMA/IBAMA - Ministério do Meio Ambiente / Instituto Brasileiro do Meio Ambiente e dos Recursos Naturais Renováveis. Plano de Manejo da Floresta Nacional de Ipanema. Brasil, 2003. 99 p. MORAIS, J. W.; OLIVEIRA, F. G. L.; BRAGA, R. F.; KORASAKI, V. Mesofauna. IN: MOREIRA, F. M. S.; CARES, J. E.; ZANETTI, R. B.; STURMER, S. L. (Eds.) O ecossistema solo: componentes, relações ecológicas e efeitos na produção vegetal. Lavras: Editora UFLA, 2013. p. 185-200. MOZAFAR, A.; RUH, R.; KLINGEL, P.; GAMPER, H.; EGLI, S.; FROSSARD, E. Effect of heavy metal contaminated shooting range soils on mycorrhizal colonization of roots and metal uptake by leek. Environmental Monitoring and Assessment, v. 79, p. 177-191, 2002. MUELLER, K. E.; EISENHAUER, N.; REICH, P. B.; HOBBIE, S. E.; CHADWICK, O. A.; CHOROVER, J.; DOBIES, T.; HALE, C. M.; JAGODZINSKI, A. M.; KALICKA, I.; KASPROWICZ, M.; KIELISZEWSKA-ROKICKA, B.; MODRZYNSKI, J.; ROZEN, A.; SKORUPSKI, M.; SOBCZYK, L.; STASINSKA, M.; TROCHA, L. K.; WEINER, J.; WIERZBICKA, A.; OLEKSYN, J. Light, earthworms, and soil resources as predictors of diversity of 10 soil invertebrate groups across monocultures of 14 trees pecies. Soil Biology & Biochemistry, p. 1-15, 2015. MUHAMMAD, S.; IQBAL, M. Z.; MOHAMMAD, A. Effect of lead and cadmium on germination and seedling growth of Leucaena leucocephala. Journal of Applied Sciences and Environmental Management, v. 12, n. 2, p. 61-66, 2008. 74 MURRAY, K.; BAZZI, A.; CARTER, C.; EHLERT, A.; HARRIS, A.; KOPEC, M.; RICHARDSON, J.; SOKOL, H. Distribution and mobility of lead in soils at na outdoor shooting range. Journal of Soil Contamination, v. 6, n. 1, p. 79-93, 1997. NIEMEYER, J. C.; MOREIRA-SANTOS, M.; NOGUEIRA, M. A.; CARVALHO, G. M.; RIBEIRO, R.; SILVA, E. M.; SOUSA, J. P. Environmental risk assessment of a metal-contaminated area in the Tropics. Tier I: screening phase. Journal of Soil and Sediments, v. 10, p. 1557-1571, 2010. NIEMEYER, J. C.; MOREIRA-SANTOS, M.; RIBEIRO, R.; RUTGERS, M.; NOGUEIRA, M. A.; SILVA, E. M.; SOUSA, J. P. Ecological risk assessment of a metal-contaminated area in the tropics. Tier II: Detailed Assessment. PloS ONE, v. 10, n. 11, p. 1-25, 2015. NIEMEYER, J. C.; NOGUEIRA, M. A.; CARVALHO, G. M.; COHIN-DE-PINHO, S. J.; OUTEIRO, U.S.; RODRIGUES, G.G.; SILVA, E. M.; SOUSA, J. P. Functional and structural parameters to assess the ecological status of a metal contaminated area in the tropics. Ecotoxicology and Environmental Safety, v. 86, p. 188-197, 2012. ODUM, E. P.; BARRETT, G. W. Fundamentos de Ecologia. Tradução da 5ª edição norte-americana. São Paulo: Cengage Learning, 2011. OKKENHAUG, G.; GEBHARDT, K. G.; AMSTAETTER, K.; BUE, H. L.; HERZEL, H.; MARIUSSEN, E.; ALMAS, A. R.; CORNELISSEN, G.; BREEDVELD, G. D.; RASMUSSEN, G.; MULDER, J. Antimony (Sb) and lead (Pb) in contaminated shooting range soils: Sb and Pb mobility and immobilization by iron based sorbents, a field study. Journal of Hazardous Materials, v. 307, p. 336-343, 2016. PARISI, V.; MENTA, C.; GARDI, C.; JACOMINI, C.; MOZZANICA, E. Microarthropod communities as a tool to assess soil quality and biodiversity: a new approach in Italy. Agriculture, Ecosystems & Environment, v. 105, p. 323 – 333, 2005. PAWLOWSKA, T. E.; CHARVAT, I. Heavy-metal stress and developmental patterns of arbuscular mycorrhizal fungi. Applied and environmental microbiology, v. 70, n. 11, p. 6643-6649, 2004. PENTEADO, J. C. P.; VAZ, J. M. O legado das bifenilas policloradas (PCBs). Química Nova, v. 24, n. 3, p. 390-398, 2001. PESARO M, WIDMER F, NICOLLIER G, ZEYER J. Effects of freeze-thaw stress during soil storage on microbial communities and methidathion degradation. Soil Biology & Biochemistry, v. 35, n. 8, p. 1049 – 1061, 2003. PICHTEL, J.; KUROIWA, K.; SAWYERR, H. T. Distribution of Pb, Cd and Ba in soils and plants of two contaminated sites. Environmental Pollution, v. 110, p. 171-178, 2000. PLAZA, G. A.; NALECZ-JAWECKI, G.; PINYAKONG, O.; ILLMER, P.; MARGESIN, R. Ecotoxicological and microbiological characterization of soil from heavy-metal- and hydrocarbon-contaminated sites. Environmental Monitoring and Assessment, v. 163, p. 477-488, 2010. PONGE, J.; DUBS, F.; GILLET, S.; SOUSA, J. P.; LAVELLE, P. Decreased biodiversity in soil springtail communities: the importance of dispersal and land use history in heterogeneous landscapes. Soil Biology & Biochemistry, v. 38, p. 1158-1161, 2006. PONGE, J.P.; GILLET, S.; DUBS, F.; FEDOROF, E.; HAESE, L.; SOUSA, J.P.; LAVELLE, P. Collembolan communities as bioindicators of land use intensification. Soil Biology & Biochemistry, v. 35, p. 813-826, 2003. 75 RANTALAINEN, M.; TORKKELI, M.; STROMMER, R.; SETALA, H. Lead contamination of an old shooting range affecting the local ecosystem – A case study with a holistic approach. Science of the Total Environment, v. 369, p. 99-108, 2006. RANZANI, G.; FREIRE, O.; KINJO, T.; FRANÇA, G. U. Projeto ETA 70: Fazenda Ipanema, carta de Solos da Fazenda Ipanema. Piracicaba: Departamento de solos, 1965. 55p. RAO, A. V.; TAK, R. Growth of different tree species and their nutrient uptake in limestone mine spoil as influenced by arbuscular mycorrhizal (AM)-fungi in Indian arid zone. Journal of Arid Environments, v. 51, p. 113-119, 2002. REID, B. J.; WATSON, R. Lead tolerance in Aporrectodea rosea earthworms from a clay pigeon shooting site. Soil Biology & Biochemistry, v. 37, p. 609-612, 2005. RIBÉ, V.; AULENIUS, E.; NEHRENHEIM, E.; MARTELL, U.; ODLARE, M. Applying the triad method in a risk assessment of a former surface treatment and metal industry site. Journal of Hazardous Materials, v. 207-208, p. 15-20, 2012. ROBINSON, B. H.; BISCHOFBERGER, S.; STOLL, A.; SCHROER, D.; FURRER, G.; ROULIER, S.; GRUENWALD, A.; ATTINGER, W.; SCHULIN, R. Plant uptake of trace elements on a Swiss military shooting range: uptake pathways and land management implications. Environmental Pollution, v. 153, p. 668-676, 2008. RODRIGUES, A. P. C.; CASTILHOS, Z. C.; CESAR, R. G.; ALMOSNY, N. R. P.; LINDE-ARIAS, A. R.; BIDONE, E. D. Avaliação de risco ecológico: conceitos básicos, metodologia e estudo de caso. Rio de Janeiro: CETEM/MCT, 2011. (Série Estudos e Documentos, 78). RODRÍGUEZ-SEIJO, A.; ALFAYA, M. C.; ANDRADE, M. L.; VEGA, F. A. Copper, chromium, nickel, lead and zinc levels and pollution degree in firing range soils. Land Degradation & Development, v.27, p.1721–1730, 2016. RODRÍGUEZ-SEIJO, A.; CACHADA, A.; GAVINA, A.; DUARTE, A. C.; VEJA, F. A.; ANDRADE, M. L.; PEREIRA, R. Lead and PAHs contaminantion of an old shooting range: a case study with a holistic approach. Science of the Total Environment, v. 575, p. 367-377, 2017. ROONEY, C. P.; MCLAREN, R. G.; CONDRON, L. M. Control of lead solubility in soil contaminated with lead shot: effect of soil pH. Environmental Pollution, v. 149, p. 149-157, 2007. ROONEY, C. P.; MCLAREN, R. G.; CRESSWELL, R. J. Distribution and phytoavailability of lead in a soil contaminated with lead shot. Water, Air and Soil Pollution, v. 166, p. 535-548, 1999. RUBACH, M. N.; ASHAUER, R.; BUCHWALTER, D. B.; LANGE, H. J.; HAMER, M.; PREUSS, T.; TOPKE, K.; MAUND, S. J. Framework for traits-based assessment in ecotoxicology. Integrated Environmental Assessment and Management, v. 7, n. 2, p. 172-186, 2011. RUSEK, J. Biodiversity of collembola and their functional role in ecosystem. Biodiversity and Conservation, v. 7, p. 1207-1219, 1998. SAFE, S. Toxicology, structure-function relation-ship, and human and environmental health impacts of polychlorinated biphenyls: progress and problems. Environmental Health Perspectives, v. 100, p. 259-268, 1992. 76 SALMON, S.; PONGE, J. F.; GACHET, S.; DEHARVENG, L.; LEFEBVRE, N.; DELABROSSE, F. Linking species, traits and habitat characteristics of collembola at European scale. Soil Biology & Biochemistry, v. 75, p, 73-85, 2014. SALMON, S.; PONGE, J. F. Species traits and habitats in springtail communities: A regional scale study. Pedobiologia, v. 55, p. 295-301, 2012. SANDERSON, P.; NAIDU, R.; BOLAN, N.; BOWMAN, M.; MCLURE, S. Effect of soil type on distribution and bioaccessibility of metal contaminants in shooting range soils. Science of the Total Environment, v. 438, p. 452-462, 2012. SANTORUFO, L.; CORTET, J.; ARENA, C.; GOUDON, R.; RAKOTO, A.; MOREL, J. L.; MAISTO, G. An assessment of the influence of the urban environment on collembolan communities in soils using taxonomy- and trait-based approaches. Applied Soil Ecology, v. 78, p. 48-56, 2014. SANTOS, R. D.; LEMOS, R. C.; SANTOS, H. G.; KER, J. C.; ANJOS, L. H. C. Manual de descrição e coleta de solo no campo. Viçosa: SBCS, 2005. 100p. SCHAFER, R. B.; KEFFORD, B. J.; METZELING, L.; LIESS, M.; BURGERT, S.; MARCHANT, R.; PETTIGROVE, V.; GOONAN, P.; NUGEGODA, D. A trait database of stream invertebrates for the ecological risk assessment of single and combined effects of salinity and pesticides in South-East Australia. Science of the Total Environment, v. 409, p. 2055-2063, 2011. SCHENCK, N. C.; PEREZ, Y. A manual of identification of vesicular –arbuscular mycorrhizal fungi. 2rd ed. Florida: University of Florida, 1988. SCHEUHAMMER, A. M.; NORRIS, S. L. The ecotoxicology of lead shot and lead fishing weights. Ecotoxicology, v. 5, p. 279-295, 1996. SCHNEIDER, J.; STURMER, S. L.; GUILHERME, L. R. G.; MOREIRA, F. M. S.; SOARES, C. R. F. S. Arbuscular mycorrhizal fungi in arsenic-contaminated areas in Brazil. Journal of Hazardous Materials, v. 262, p. 1105-1115, 2013. SELONEN, S.; LIIRI, M.; SETALA, H. Can the soil fauna of boreal forests recover from lead-derived stress in a shooting range area? Ecotoxicology, v. 23, p. 437-448, 2014. SELONEN, S.; LIIRI, M.; STROMMER, R.; SETALA, H. The fate of lead at abandoned and active shooting ranges in a borel pine forest. Environmental Toxicology and Chemistry, v. 31, n. 12, p. 2771-2779, 2012. SELONEN, S.; SETALA, H. Soil processes and tree growth as shooting ranges in a boreal forest reflect contaminantion history and lead induced changes in soil food webs. Science of the Total Environment, v. 518-519, p. 320-327, 2015. SHINZATO, E. T.; TONELLO, K. C.; GASPAROTO, E. A. G.; VALENTE, R. O. A. Escoamento pelo tronco em diferentes povoamentos florestais na Floresta Nacional de Ipanema em Iperó, Brasil. Scientia Forestalis, v. 39, n. 92, p. 395-402, 2011. SILVA, G. A.; TRUFEM, S. F. B.; SAGGIN JÚNIOR, O. J.; MAIA, L. C. Arbuscular mycorrhizal fungi in a semiarid copper mining area in Brazil. Mycorrhiza, v. 15, p. 47-53, 2005. SILVA, P. M.; CARVALHO, F.; DIRILGEN, T.; STONE, D.; CREAMER, R.; BOLGER, T.; SOUSA, J. P. Traits of collembolan life-form indicate land use types and soil properties across an European transect. Applied Soil Ecology, v. 97, p. 69-77, 2016. 77 SINGER, A. C.; JURY, W.; LUEPROMCHAI, E.; YAHNG, C. S.; CROWLEY, D. E. Contribution of earthworms to PCB bioremediation. Soil Biology & Biochemistry, v. 33, p. 765-776, 2001. SINGH, R. P.; TRIPATHI, R. D.; SINHA, S. K.; MAHESHWARI, R.; SRIVASTAVA, H. S. Responde of higher plants to lead contaminated environment. Chemosphere, v. 34, n. 11, p. 2467-2493, 1997. SLATER, H.; GOUIN, T.; LEIGH, M. B. Assessing the potential for rhizoremediation of PCB contaminated soils in northern regions using native tree species. Chemosphere, v. 84, p. 199-206, 2011. SNEDDON, J.; CLEMENTE, R.; RIBY, P.; LEPP, N. W. Source-pathway-receptor investigation of the fate of trace elementes derived from shotgun pellets discharged in terrestrial ecosystems managed for game shooting. Environmental Pollution, v. 157, p. 2663-2669, 2009. SORVARI, J.; ANTIKAINEN, R.; PYY, O. Environmental contamination at Finnish shooting ranges – the scope of the problem and management options. Science of the Total Environment, v. 366, p. 21-31, 2006. SOUZA, J. P. Avaliação retrospectiva do risco ambiental: esquema de avaliação de risco para solos contaminados. In: ABRANTES, I.; SANTOS, S. (Eds). Manual Prático para a Gestão Ambiental. Lisboa: Verlag Dashofer, 2005. SOUZA, L. A.; ANDRADE, S. A. L.; SOUZA, S. C. R.; SCHIAVINATO, M. A. Arbuscular mycorrhiza confer Pb tolerance in Calopogonium mucunoides. Acta Physiologiae Plantarum, v. 34, p. 523-531, 2012. SOUZA, P. C.; MARTOS, H. L. Estudo do uso público e análise ambiental das trilhas em uma unidade de conservação de uso sustentável: Floresta Nacional de Ipanema, Iperó – SP. Revista Árvore, v. 32, n. 1, p. 91-100, 2008. SOUZA, S. C. R.; ANDRADE, S. A. L.; SOUZA, L. A.; SCHIAVINATO, M A. Lead tolerance and phytoremediation potential of Brazilian leguminous tree species at the seedling stage. Journal of Environmental Management, v. 110, p. 299-307, 2012. STAM, E. M.; VAN DE LEEMKULE, M. A.; ERNSTING, G. Trade-offs in the life history and energy budget of the parthenogeneti collembolan Folsomia candida (Willem). Oecologia, v. 107, p. 283-292, 1996. STATZNER, B.; BECHE, L. A. Can biological invertebrate traits resolve effects of multiple stressors on running water ecosystems? Freshwater Biology, v. 55, p. 80-119, 2010. SUWA, R.; JAYACHANDRAN, K.; NGUYEN, N. T.; BOULENOUAR, A.; FUJITA, K.; SANEOKA, H. Barium toxicity effects in soybean plants. Archives of Environmental Contamination and Toxicology, v. 55, p. 397-403, 2008. SYLVESTRE, M. Prospects for using combined engineered bacterial enzymes and plant systems to rhizoremediate polychlorinated biphenyls. Environmental Microbiology, v. 15, n. 3, p. 907-915, 2013. TU, C.; TENG, Y.; LUO, Y.; LI, X.; SUN, X..; LI, Z.; LIU, W.; CHRISTIE, P. Potential for biodegradation of polychlorinated biphenyls (PCBs) by Sinorhizobium meliloti. Journal of Hazardous Materials, v. 186, p. 1438-1444, 2011. USEPA. Framework for inorganic metals risk assessment. Draft EPA/630/P-04/068B, 20460. Washington: U. S. Environmental Protection Agendy, 2004. 78 VAN AARLE, I. M. SODERSTROM, B.; OLSSON, P. A. Growth and interactions of arbuscular mycorrhizal fungi in soils from limestone and acid rock habitats. Soil Biology & Biochemistry, v. 35, p. 1557-1564, 2003. VAN DEN BRINK, P. J. Ecological risk assessment: from book-keeping to chemical stress ecology. Environmental Science & Technology, v. 42, p. 8999-9004, 2008. VAN DEN BRINK, P. J. Traits-based approaches in bioassessment and ecological risk assessment: strengths, weaknesses, opportunities and threats. Integrated Environmental Assessment and Management, v. 7, n. 2, p. 198-208, 2011. VAN DEN BRINK, P. J.; RUBACH, M. N.; CULP, J. M.; PASCOE, T.; MAUND, S. J.; BAIRD, D. J. Traits-based ecological risk assessment (TERA): realizing the potential of ecoinformatics approaches in ecotoxicology. Integrated environmental assessment and management, v. 7, n. 2, p. 169-171, 2010. VAN DER PERK, M. Soil and water contamination. 2nd ed. Leiden: CRC Press, 2012. 417p. VAN STRAALEN, N. M. Biodiversity of ecotoxicological responses in animals. Netherlands Journal of Zoology, v. 441/442, p. 112–129, 1994. VANDERWALLE, M.; BELLO, F.; BERG, M. P.; BOLGER, T.; DOLÉDEC, S.; DUBS, F.; FELD, C. K.; HARRINGTON, R.; HARRISON, P. A.; LAVOREL, S.; SILVA, P. M.; MORETTI, M.; NIEMELA, J.; SANTOS, P.; SATTLER, T.; SOUSA, J. P.; SYKES, M. T.; VANBERGEN, A. J.; WOODCOCK, B. A. Functional traits as indicators of biodiversity response to land use changes across ecosystems and organisms. Biodiversity and Conservation, v. 19, p. 2921-2947, 2010. VASICKOVA, J.; VANA, M.; KOMPRODOVA, K.; HOFMAN, J. The variability of standard artificial soils: Effects on the survival and reproduction of springtail (Folsomia candida) and potworm (Enchytraeus crypticus). Ecotoxicology and Environmental Safety, v. 114, p. 38-43, 2015. VASILYEVA, G. K.; STRIJAKOVA, E. R.; NIKOLAEVA, S. N.; LEBEDEV, A.; SHEA, P. J. Dynamics of PCB removal and detoxification in historically contaminated soils amended with activated carbon. Environmental Pollution, v. 158, p. 770-777, 2010. VIOLLE, C.; NAVAS, M.; VILE, D.; KAZAKOU, E.; FORTUNEL, C.; HUMMEL, I.; GARNIER, E. Let the concept of trait be functional! Oikos, v. 116, p. 882-892, 2007. WANG, P.; ZHANG, Q.; WANG, Y.; WANG, T.; XIAOMIN, L.; YINGMING, L.; DING, L.; JIANG, G. Altitude dependence of polychlorinated biphenyls (PCBs) and polybrominated diphenyl ethers (PBDEs) in surface soil from Tibetan Plateau, China. Chemosphere, v. 76, p. 1498-1504, 2009. WANG, T.; WANG, Y.; FU, J.; WANG, P.; LI, Y.; ZHANG, Q.; JIANG, G. Characteristic accumulation and soil penetration of polychlorinated biphenyls and polybrominated diphenyls ethers in wastewater irrigated farmlands. Chemosphere, v. 81, p. 1045-1051, 2010. WARREN, M. W.; ZOU X. Soil macrofauna and litter nutrients in three tropical tree plantations on a disturbed site in Puerto Rico. Forest Ecology and Management, v. 170, n. 1-3, p. 161–171, 2002. WINCK, B. R.; SÁ, E. L. S.; RIGOTTI, V. M.; CHAUVAT, M. Relationship belween land-use and functional diversity of epigeic Collembola in Southern Brazil. Applied Soil Ecology, v. 109, p. 49-59, 2017 79 WOLTERS, V. Biodiversity of soil animals and its function. European Journal of Soil Biology, v. 37, p. 221-227, 2001. WOLTERS, V. Invertebrate controlo of soil organic matter stability. Biology and Fertility of Soils, v. 31, n. 1-19, 2000. WU, F. Y.; BI, Y. L.; LEUNG, H. M.; YE, Z. H.; LIN, X. G.; WONG, M. H. Accumulation of As, Pb, Zn, Cd and Cu and arbuscular mycorrhizal status in populations of Cynodon dactylon grown on metal contaminated soils. Applied Soil Ecology, v. 44, p. 213-218, 2010. XU, L.; TENG, Y.; LI, Z.; NORTON, J. M.; LUO, Y. Enhanced removal of polychlorinated biphenyls from alfalfa rhizosphere soil in a field study: the impact of a rhizobial inoculum. Science of the Total Environment, v. 408, p. 1007-1013, 2010. YANG, R.; TANG, J.; YANG, Y.; CHEN, X. Invasive and non-invasive plants differ in response to soil heavy metal lead contamination. Botanical Studies, v. 48, p. 453-458, 2007. YANG, R.; YU, G.; TANG, J.; CHEN, X. Effects of metal lead on growth and mycorrhizae of a invasive plant species (Solidago canadenses L.). Journal of Environmental Sciences, v. 20, p. 739-744, 2008. YANG, Y.; HAN, X.; LIANG, Y.; GHOSH, A.; CHEN, J.; TANG, M. The combined effects of arbuscular mycorrhizal fungi (AMF) and lead (Pb) stress on Pb accumulation, plant growth parameters, photosynthesis, and antioxidante enzymes in Robinia pseudoacacia L. Plos One, v. 10, n. 12, p. 1-24, 2015. YU, J.; WANG, T.; HAN, S.; WANG, P.; ZHANG, Q.; JIANG, G. Distribution of polychlorinated biphenyls in an urban riparian zone affected by wastewater treatment plant effluent and the transfer to terrestrial compartment by invertebrates. Science of the Total Environment, v. 463-464, p. 252-257, 2013. YUNFENG, J.; XIUQIN, Y.; FUBIN, W. Composition and spatial distribution of soil mesofauna along an elevation gradiente on the north slope of the Changbai Mountains, China. Pedosphere, v. 25, n. 6, p. 811-824, 2015. ZAREI, M.; SALEH-RASTIN, N.; JOUZANI, G. S. Arbuscular mycorrhizal abundance in contaminated soils around a zinc and lead deposit. European Journal of Soil Biology, v. 44, p. 381-391, 2008. ZEPPELINI FILHO, D.; BELLINI, B. C. Introdução ao estudo dos Collembola. João Pessoa: Editora da UFPB, 2004.https://tede.ufrrj.br/retrieve/65054/2017%20-%20Rafael%20Nogueira%20Scoriza.pdf.jpghttps://tede.ufrrj.br/jspui/handle/jspui/4637Submitted by Celso Magalhaes (celsomagalhaes@ufrrj.br) on 2021-05-13T12:08:51Z No. of bitstreams: 1 2017 - Rafael Nogueira Scoriza.pdf: 2048531 bytes, checksum: b04ecb63afe7fae7451ac805ac15714f (MD5)Made available in DSpace on 2021-05-13T12:08:51Z (GMT). No. of bitstreams: 1 2017 - Rafael Nogueira Scoriza.pdf: 2048531 bytes, checksum: b04ecb63afe7fae7451ac805ac15714f (MD5) Previous issue date: 2017-02-21info:eu-repo/semantics/openAccessreponame:Biblioteca Digital de Teses e Dissertações da UFRRJinstname:Universidade Federal Rural do Rio de Janeiro (UFRRJ)instacron:UFRRJTHUMBNAIL2017 - Rafael Nogueira Scoriza.pdf.jpgGenerated Thumbnailimage/jpeg1943https://rima.ufrrj.br/jspui/bitstream/20.500.14407/9104/1/2017%20-%20Rafael%20Nogueira%20Scoriza.pdf.jpgcc73c4c239a4c332d642ba1e7c7a9fb2MD51TEXT2017 - Rafael Nogueira Scoriza.pdf.txtExtracted Texttext/plain223128https://rima.ufrrj.br/jspui/bitstream/20.500.14407/9104/2/2017%20-%20Rafael%20Nogueira%20Scoriza.pdf.txtf4415c051480dba18d557c3709e2abb3MD52ORIGINAL2017 - Rafael Nogueira Scoriza.pdfRafael Nogueira Scorizaapplication/pdf2048531https://rima.ufrrj.br/jspui/bitstream/20.500.14407/9104/3/2017%20-%20Rafael%20Nogueira%20Scoriza.pdfb04ecb63afe7fae7451ac805ac15714fMD53LICENSElicense.txttext/plain2089https://rima.ufrrj.br/jspui/bitstream/20.500.14407/9104/4/license.txt7b5ba3d2445355f386edab96125d42b7MD5420.500.14407/91042023-12-21 15:34:28.461oai:rima.ufrrj.br:20.500.14407/9104Tk9UQTogQ09MT1FVRSBBUVVJIEEgU1VBIFBSP1BSSUEgTElDRU4/QQpFc3RhIGxpY2VuP2EgZGUgZXhlbXBsbyA/IGZvcm5lY2lkYSBhcGVuYXMgcGFyYSBmaW5zIGluZm9ybWF0aXZvcy4KCkxJQ0VOP0EgREUgRElTVFJJQlVJPz9PIE4/Ty1FWENMVVNJVkEKCkNvbSBhIGFwcmVzZW50YT8/byBkZXN0YSBsaWNlbj9hLCB2b2M/IChvIGF1dG9yIChlcykgb3UgbyB0aXR1bGFyIGRvcyBkaXJlaXRvcyBkZSBhdXRvcikgY29uY2VkZSA/IFVuaXZlcnNpZGFkZSAKWFhYIChTaWdsYSBkYSBVbml2ZXJzaWRhZGUpIG8gZGlyZWl0byBuP28tZXhjbHVzaXZvIGRlIHJlcHJvZHV6aXIsICB0cmFkdXppciAoY29uZm9ybWUgZGVmaW5pZG8gYWJhaXhvKSwgZS9vdSAKZGlzdHJpYnVpciBhIHN1YSB0ZXNlIG91IGRpc3NlcnRhPz9vIChpbmNsdWluZG8gbyByZXN1bW8pIHBvciB0b2RvIG8gbXVuZG8gbm8gZm9ybWF0byBpbXByZXNzbyBlIGVsZXRyP25pY28gZSAKZW0gcXVhbHF1ZXIgbWVpbywgaW5jbHVpbmRvIG9zIGZvcm1hdG9zID91ZGlvIG91IHY/ZGVvLgoKVm9jPyBjb25jb3JkYSBxdWUgYSBTaWdsYSBkZSBVbml2ZXJzaWRhZGUgcG9kZSwgc2VtIGFsdGVyYXIgbyBjb250ZT9kbywgdHJhbnNwb3IgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YT8/byAKcGFyYSBxdWFscXVlciBtZWlvIG91IGZvcm1hdG8gcGFyYSBmaW5zIGRlIHByZXNlcnZhPz9vLgoKVm9jPyB0YW1iP20gY29uY29yZGEgcXVlIGEgU2lnbGEgZGUgVW5pdmVyc2lkYWRlIHBvZGUgbWFudGVyIG1haXMgZGUgdW1hIGM/cGlhIGEgc3VhIHRlc2Ugb3UgCmRpc3NlcnRhPz9vIHBhcmEgZmlucyBkZSBzZWd1cmFuP2EsIGJhY2stdXAgZSBwcmVzZXJ2YT8/by4KClZvYz8gZGVjbGFyYSBxdWUgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YT8/byA/IG9yaWdpbmFsIGUgcXVlIHZvYz8gdGVtIG8gcG9kZXIgZGUgY29uY2VkZXIgb3MgZGlyZWl0b3MgY29udGlkb3MgCm5lc3RhIGxpY2VuP2EuIFZvYz8gdGFtYj9tIGRlY2xhcmEgcXVlIG8gZGVwP3NpdG8gZGEgc3VhIHRlc2Ugb3UgZGlzc2VydGE/P28gbj9vLCBxdWUgc2VqYSBkZSBzZXUgCmNvbmhlY2ltZW50bywgaW5mcmluZ2UgZGlyZWl0b3MgYXV0b3JhaXMgZGUgbmluZ3U/bS4KCkNhc28gYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YT8/byBjb250ZW5oYSBtYXRlcmlhbCBxdWUgdm9jPyBuP28gcG9zc3VpIGEgdGl0dWxhcmlkYWRlIGRvcyBkaXJlaXRvcyBhdXRvcmFpcywgdm9jPyAKZGVjbGFyYSBxdWUgb2J0ZXZlIGEgcGVybWlzcz9vIGlycmVzdHJpdGEgZG8gZGV0ZW50b3IgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIHBhcmEgY29uY2VkZXIgPyBTaWdsYSBkZSBVbml2ZXJzaWRhZGUgCm9zIGRpcmVpdG9zIGFwcmVzZW50YWRvcyBuZXN0YSBsaWNlbj9hLCBlIHF1ZSBlc3NlIG1hdGVyaWFsIGRlIHByb3ByaWVkYWRlIGRlIHRlcmNlaXJvcyBlc3Q/IGNsYXJhbWVudGUgCmlkZW50aWZpY2FkbyBlIHJlY29uaGVjaWRvIG5vIHRleHRvIG91IG5vIGNvbnRlP2RvIGRhIHRlc2Ugb3UgZGlzc2VydGE/P28gb3JhIGRlcG9zaXRhZGEuCgpDQVNPIEEgVEVTRSBPVSBESVNTRVJUQT8/TyBPUkEgREVQT1NJVEFEQSBURU5IQSBTSURPIFJFU1VMVEFETyBERSBVTSBQQVRST0M/TklPIE9VIApBUE9JTyBERSBVTUEgQUc/TkNJQSBERSBGT01FTlRPIE9VIE9VVFJPIE9SR0FOSVNNTyBRVUUgTj9PIFNFSkEgQSBTSUdMQSBERSAKVU5JVkVSU0lEQURFLCBWT0M/IERFQ0xBUkEgUVVFIFJFU1BFSVRPVSBUT0RPUyBFIFFVQUlTUVVFUiBESVJFSVRPUyBERSBSRVZJUz9PIENPTU8gClRBTUI/TSBBUyBERU1BSVMgT0JSSUdBPz9FUyBFWElHSURBUyBQT1IgQ09OVFJBVE8gT1UgQUNPUkRPLgoKQSBTaWdsYSBkZSBVbml2ZXJzaWRhZGUgc2UgY29tcHJvbWV0ZSBhIGlkZW50aWZpY2FyIGNsYXJhbWVudGUgbyBzZXUgbm9tZSAocykgb3UgbyhzKSBub21lKHMpIGRvKHMpIApkZXRlbnRvcihlcykgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIGRhIHRlc2Ugb3UgZGlzc2VydGE/P28sIGUgbj9vIGZhcj8gcXVhbHF1ZXIgYWx0ZXJhPz9vLCBhbD9tIGRhcXVlbGFzIApjb25jZWRpZGFzIHBvciBlc3RhIGxpY2VuP2EuCg==Biblioteca Digital de Teses e Dissertaçõeshttps://tede.ufrrj.br/PUBhttps://tede.ufrrj.br/oai/requestbibliot@ufrrj.br||bibliot@ufrrj.bropendoar:2023-12-21T18:34:28Biblioteca Digital de Teses e Dissertações da UFRRJ - Universidade Federal Rural do Rio de Janeiro (UFRRJ)false |
dc.title.por.fl_str_mv |
Avaliação de áreas com histórico de contaminação no solo na Floresta Nacional de Ipanema, SP |
dc.title.alternative.eng.fl_str_mv |
Evaluation of areas with soil contamination history in the Ipanema National Forest, SP |
title |
Avaliação de áreas com histórico de contaminação no solo na Floresta Nacional de Ipanema, SP |
spellingShingle |
Avaliação de áreas com histórico de contaminação no solo na Floresta Nacional de Ipanema, SP Scoriza, Rafael Nogueira Avaliação de risco ecológico Bifenilas policloradas Estande de tiro Ecological risk assessment Polychlorinated biphenyls Shooting range Agronomia |
title_short |
Avaliação de áreas com histórico de contaminação no solo na Floresta Nacional de Ipanema, SP |
title_full |
Avaliação de áreas com histórico de contaminação no solo na Floresta Nacional de Ipanema, SP |
title_fullStr |
Avaliação de áreas com histórico de contaminação no solo na Floresta Nacional de Ipanema, SP |
title_full_unstemmed |
Avaliação de áreas com histórico de contaminação no solo na Floresta Nacional de Ipanema, SP |
title_sort |
Avaliação de áreas com histórico de contaminação no solo na Floresta Nacional de Ipanema, SP |
author |
Scoriza, Rafael Nogueira |
author_facet |
Scoriza, Rafael Nogueira |
author_role |
author |
dc.contributor.author.fl_str_mv |
Scoriza, Rafael Nogueira |
dc.contributor.advisor1.fl_str_mv |
Correia, Maria Elizabeth Fernandes |
dc.contributor.advisor1ID.fl_str_mv |
93232063772 |
dc.contributor.advisor1Lattes.fl_str_mv |
http://lattes.cnpq.br/8912768268043499 |
dc.contributor.advisor-co1.fl_str_mv |
Silva, Alessandra de Carvalho |
dc.contributor.advisor-co1ID.fl_str_mv |
- |
dc.contributor.advisor-co1Lattes.fl_str_mv |
http://lattes.cnpq.br/2796770732160436 |
dc.contributor.advisor-co2.fl_str_mv |
Sousa, José Paulo |
dc.contributor.advisor-co2ID.fl_str_mv |
- |
dc.contributor.advisor-co2Lattes.fl_str_mv |
- |
dc.contributor.referee1.fl_str_mv |
Silva, Alessandra de Carvalho |
dc.contributor.referee2.fl_str_mv |
Amaral Sobrinho, Nelson Moura Brasil do |
dc.contributor.referee3.fl_str_mv |
Cesar, Ricardo Gonçalves |
dc.contributor.referee4.fl_str_mv |
Niemeyer, Júlia Carina |
dc.contributor.referee5.fl_str_mv |
Moraes, Luiz Fernando Duarte de |
dc.contributor.authorID.fl_str_mv |
35090994862 |
dc.contributor.authorLattes.fl_str_mv |
http://lattes.cnpq.br/1636326650249467 |
contributor_str_mv |
Correia, Maria Elizabeth Fernandes Silva, Alessandra de Carvalho Sousa, José Paulo Silva, Alessandra de Carvalho Amaral Sobrinho, Nelson Moura Brasil do Cesar, Ricardo Gonçalves Niemeyer, Júlia Carina Moraes, Luiz Fernando Duarte de |
dc.subject.por.fl_str_mv |
Avaliação de risco ecológico Bifenilas policloradas Estande de tiro |
topic |
Avaliação de risco ecológico Bifenilas policloradas Estande de tiro Ecological risk assessment Polychlorinated biphenyls Shooting range Agronomia |
dc.subject.eng.fl_str_mv |
Ecological risk assessment Polychlorinated biphenyls Shooting range |
dc.subject.cnpq.fl_str_mv |
Agronomia |
description |
A contaminação, que geralmente é promovida por atividades antrópicas, está associada a diversos efeitos nocivos à saúde humana. Os efeitos sobre a biodiversidade são visados e atualmente de igual importância, principalmente quando afetam organismos chave, funções ecológicas e serviços ecossistêmicos benéficos ao homem. No Brasil muitos casos de contaminação do solo não são de conhecimento da população e da comunidade científica, ocorrendo predominantemente em áreas particulares. Com isso, a proposta de avaliar áreas com histórico de contaminação em uma unidade de conservação permite e facilita a implantação de conhecimentos e métodos poucos explorados no País, principalmente a avaliação de risco ecológico. Além disso, o apelo pela conservação da biodiversidade na unidade de conservação impulsiona e dirige o estudo para fins benéficos ao meio ambiente. No primeiro capítulo avalia-se uma área com histórico de contaminação do solo pelo vazamento de óleo ascarel, que estava contido em transformadores elétricos de uma subestação férrea. Entretanto a presença dos possíveis contaminantes levantados pelo histórico (bifenilas policloradas, hidrocarbonetos policíclicos aromáticos e mercúrio metálico) não foram confirmados por análises químicas do solo. Com isso, o objetivo do estudo foi avaliar o efeito de outros possíveis contaminantes sobre a biota do solo. Para isso atributos do ambiente e principalmente da comunidade de invertebrados do solo foram confrontados por análise de redundância, onde se verificou que 100% da variabilidade dos dados bióticos foram explicados pelos abióticos. Isto permite concluir que não há efeitos de contaminantes e inferir sobre a ausência destes no solo. O segundo capítulo aborda uma antiga cava de mineração de calcário que vem sendo usada para a formação e aperfeiçoamento de agentes ambientais, policiais e militares, principalmente para o treinamento de tiro. Entretanto sabe-se que esta atividade possui grande potencial de contaminação do solo por metais pesados, principalmente o chumbo. A avaliação do local foi baseada na avaliação de risco em tríade realizada em dez pontos (sendo um utilizado como referência) dispostos em transectos, onde se consideram evidências químicas, ecológicas e ecotoxicológicas em conjunto. A linha de evidência química evidenciou risco acima do aceito para áreas naturais (0,25), ocasionado pela presença de bário e chumbo potencialmente tóxicos aos organismos do solo. Na evidência ecológica a comunidade da mesofauna do solo elevou os valores de risco, onde todos os pontos investigados apresentaram valores acima de 0,25. Na ecotoxicologica houve variação entre os pontos, ocasionado principalmente pela diferença de sensibilidade dos organismos testes utilizados (Folsomia candida e Enchytraeus crypticus). Com isso, oito dos nove pontos investigados apresentaram risco superior ao aceito para áreas naturais, o que indica a necessidade de uma melhor compreensão dos efeitos causados pelos usos antrópicos da área dentro de uma unidade de conservação |
publishDate |
2017 |
dc.date.issued.fl_str_mv |
2017-02-21 |
dc.date.accessioned.fl_str_mv |
2023-12-21T18:34:28Z |
dc.date.available.fl_str_mv |
2023-12-21T18:34:28Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
format |
doctoralThesis |
status_str |
publishedVersion |
dc.identifier.citation.fl_str_mv |
Scoriza, Rafael Nogueira. Avaliação de áreas com histórico de contaminação no solo na Floresta Nacional de Ipanema, SP. 2017. [79 f.]. Tese( Programa de Pós-Graduação em Agronomia - Ciência do Solo) - Instituto de Agronomia, Universidade Federal Rural do Rio de Janeiro, [Seropédica-RJ] . |
dc.identifier.uri.fl_str_mv |
https://rima.ufrrj.br/jspui/handle/20.500.14407/9104 |
identifier_str_mv |
Scoriza, Rafael Nogueira. Avaliação de áreas com histórico de contaminação no solo na Floresta Nacional de Ipanema, SP. 2017. [79 f.]. Tese( Programa de Pós-Graduação em Agronomia - Ciência do Solo) - Instituto de Agronomia, Universidade Federal Rural do Rio de Janeiro, [Seropédica-RJ] . |
url |
https://rima.ufrrj.br/jspui/handle/20.500.14407/9104 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.references.por.fl_str_mv |
ABNT NBR 10004. Resíduos Sólidos – Classificação. Associação Brasileira de Normas Técnicas, 2004. 77 p. ABNT NBR 10007. Amostragem de resíduos sólidos. Rio de Janeiro: Associação Brasileira de Normas Técnicas, 2004. 25 p. ABNT NBR ISO 11267. Qualidade do solo – inibição da reprodução de Collembola (Folsomia candida) por poluentes do solo. Rio de Janeiro: Associação Brasileira de Normas Técnicas, 2011. 18 p. ABNT NBR ISO 16387. Qualidade do solo – Efeitos de poluentes em Enchytraeidae (Enchytraeus sp.) – Determinação de efeitos sobre a reprodução e sobrevivência. Rio de Janeiro: Associação Brasileira de Normas Técnicas, 2012. 35 p. AHMAD, M.; LEE, S. S.; MOON, D. H.; YANG, J. H.; OK, Y. S. A review of environmental contamination and remediation strategies for heavy metals at shooting range soils. In: MALIK, A.; GROHMANN, E. (Eds.). Environmental protection strategies for sustainable development. Springer Netherlands, 2012. p. 437-451. ALBUQUERQUE, G. B.; RODRIGUES, R. R. A vegetação do Morro de Araçoaiaba, Floresta Nacional de Ipanema, Iperó (SP). Scientia Forestalis, n. 58, p. 145-159, 2000. ALMEIDA, F. V.; CENTENO, A. J.; BISINOTI, M. C.; JARDIM. W. F. Substâncias tóxicas persistentes (STP) no Brasil. Química Nova, v. 30, n. 8, p. 1976-1985, 2009. ANDRADE, S. A. L.; ABREU, C. A.; ABREU, M. F.; SILVEIRA, A. P. D. Influence of lead additions on arbuscular mycorrhiza and Rhizobium symbioses under soybean plants. Applied Soil Ecology, v. 26, p. 123-131, 2004. ANTUNES, S. C.; CASTRO, B. B.; MOREIRA, C.; GONÇALVES, F.; PEREIRA, R. Community-level effects in edaphic fauna from an abandoned mining area: integration with chemical and toxicological lines of evidence. Ecotoxicology and Environmental Safety, v. 88, p. 65-71, 2013. AQUINO, A. M.; CORREIA, M. E. F.; BADEJO, M. A. Amostragem da mesofauna edáfica utilizando funis de berlese-tullgren modificado. Embrapa: Seopédica, 2006. 4p. ARAÚJO, A. S. F.; EISENHAUER, N.; NUNES, L. A. P. L.; LEITE, L. F. C.; CEZARZ, S. Soil surface-active fauna in degraded and restored lands of northeast Brazil. Land Degradation & Development, v. 26, p. 1-8, 2015. ASTRUP, T.; BODDUN, J. K.; CHRISTENSEN, T. H. Lead distribution and mobility in a soil enbankment used as a bullet stop at a shooting range. Journal of Soil Contamination, v. 8, n. 6, p. 653-665, 1999 AUCLERC, A.; PONGE, J. F.; BAROT, S.; DUBS, F. Experimental assessment of habitat preference and dispersal ability of soil springtails. Soil Biology & Biochemistry, v. 41, n. 1596-1604, 2009. BAIRD, D. J.; BAKER, C. J. O.; BRUA, R. B.; HAJUBABAEI, M.; MCNICOL, K.; PASCOE, T. J.; ZWART, D. Toward and knowledge infrastructure for traits-based ecological risk assessment. Integrated Environmental Assessment and Management, v. 7, n. 2, p. 209-215, 2010. 66 BAIRD, D. J.; RUBACH, M.; VAN DEN BRINK, P. J. Trait-based ecological risk assessment (TERA): The new frontier? Integrated Environmental Assessment and Management, v. 4, n. 1, p. 2-3, 2008. BAN, Y.; XU, Z.; ZHANG, H.; CHEN, H.; TANG, M. Soil chemistry properties, translocation of heavy metals, and mycorrhizal fungi associated with six plant species growing on lead-zinc mine tailings. Annals of Microbiology, v. 65, p. 503-515, 2015. BANDARA, T.; VITHANAGE, M. Phytoremediation of shooting range soils. In: ANSARI, A. A.; GILL, S. S.; GILL, R.; LANZA, G. R.; NEWMAN, L. Phytoremediation. Springer International Publishing, 2016. p. 469-488. BATAGHIN, F. A.; PIRES, J. S. R.; BARROS, F. Epifitismo vascular em sítios de borda e interior em floresta estacional semidecidual no sudeste do Brasil. Hoehnea, v. 39, n. 2, p. 235-245, 2012. BELLO, F.; LAVOREL, S.; DÍAZ, S.; HARRINGTON, R.; CORNELISSEN, J. H. C.; BARDGETT, R. D.; BERG, M. P.; CIPRIOTTI, P.; FELD, C. K.; HERING, D.; SILVA, P. M.; POTTS, S. G.; SANDIN, L.; SOUSA, J. P.; STORKEY, J.; WARDLE, D. A.; HARRISON, P. A. Towards and assessment of multiple ecosystem processes and services via functional traits. Biodiversity Conservation, v. 19, p. 2873-2893, 2010. BENNETT, J. R.; KAUFMAN, C. A.; KOCH, I.; SOVA, J.; REIMER, K. J. Ecological risk assessment of lead contamination at rifle and pistol ranges using techniques to account for site characteristics. Science of the Total Environment, v. 374, p. 91-101, 2007. BEYER, A.; BIZIUK, M. Environmental fate and global distribution of polychlorinated biphenyls. In: WHITACRE, D. M. (Ed.). Reviews of Environmental Contamination and Toxicology. New York: Springer, 2009. p. 137-158. BIDDINGER, G. R.; CALOW, P.; DELORME, P.; HARRIS, G.; HOPE, B.; LIN, B.; SORENSEN, M. T.; VAN DEN BRINK, P. Managing risk to ecological populations. In: BARNTHOUSE, L. W.; MUNNS JR., W. R.; SORENSEN, M. T. Population-level ecological risk assessment. New York: Taylor & Francis, 2008. p. 7-39. BILDE, T. AXELSEN, J. A.; TOFT, S. The value of collembola from agricultural soils as food for a generalist predator. Journal of Applied Ecology, n. 37, p. 672-683, 2000. BINKLEY, D.; FISHER, R. F. Ecology and management of forest soils. Oxford: Wiley-Blackwell, 2013. p. 77-98. BORJA, J.; TALEON, D. M.; AURESENIA, J.; GALLARDO, S. Polychlorinated biphenyls and their biodegradation. Process Biochemistry, v. 40, p. 1999-2013, 2005. BRADHAM, K. D.; DAYTON, E. A.; BASTA, N. T.; SCHRODER, J.; PAYTON, M.; LANNO, R. P. Effect of soil properties on lead bioavailability and toxicity to earthworms. Environmental Toxicology and Chemistry, v. 25, n. 3, p. 769-775, 2006. BRASIL. Lei no 9.985, de 18 de julho de 2000. Regulamenta o art. 225, § 1o, incisos I, II, III e VII da Constituição Federal, institui o Sistema Nacional de Unidades de Conservação da Natureza e dá outras providências. Disponível em: <http://www.planalto.gov.br/ccivil_03/leis/l9985.htm>. Acesso em: 25/05/2014. BRUSSAARD, L. Soil fauna, guilds, functional groups and ecosystem processes. Aplied Soil Ecology, v. 9, p. 123-135, 1998. CACHADA, A.; LOPES, L. V.; HURSTHOUSE, A. S.; BIASIOLI, M.; GRCMAN, H.; OTABBONG, E.; DAVIDSON, C. M.; DUARTE, A. C. The variability of polychlorinated 67 biphenyls levels in urban soils from five European cities. Environmental Pollution, v. 157, p. 511-518, 2009. CAO, X.; MA, L. Q.; CHEN, M.; HARDISON, D. W.; HARRIS, W. G. Lead transformation and distribution in the soils of shooting ranges in Florida, USA. The Science of the Total Environment, v. 307, p. 179-189, 2003. CARVALHO, P.E.R. Espécies arbóreas brasileiras. Colombo: Embrapa Florestas, 2006. v. 2, 627p. CASTRO-FERREIRA, M. P.; ROELOFS, D.; VAN GESTEL, C. A. M.; VERWEIJ, R. A.; SOARES, A. M. V. M.; AMORIM, M. J. B. Enchytraeus crypticus as model species in soil ecotoxicology. Chemosphere, v. 87, p. 1222-1227, 2012. CCME - Canadian Council of Ministers of the Environment. Canadian soil quality guidelines for the protection of environmental and human health. Winnipeg, 2007. CETESB – Companhia Ambiental do Estado de São Paulo. Valores orientadores para solo e água subterrânea no Estado de São Paulo, 2014. Disponível em: < http://sites.usp.br/sef/wp-content/uploads/sites/52/2015/03/47-CETESB2014_Valores_Orientadores_solo_agua.pdf> acesso em: 23 nov. 2016. CHAER, G. M.; RESENDE, A. S.; CAMPELLO, E. F. C.; FARIA, S. M.; BODDEY, R. M. Nitrogen-fixing legume tree species for the reclamation of severely degraded lands in Brazil. Tree Physiology, v. 31, p. 139-149, 2011. CHAPIN, F. S.; MATSON, P. A.; VITOUSEK, P. M. Principles of terrestrial ecosystem ecology. 2ª ed. New York: Springer, 2011. 536p. CHAPMAN, E. E. V.; DAVE, G.; MURIMBOH, J. D. A review of metal (Pb and Zn) sensitive and pH tolerant bioassay organisms for risk screening of metal-contaminated acidic soils. Environmental Pollution, v. 179, p. 326-342, 2013. CHAPMAN, E. E. V.; DAVE, G.; MURIMBOH, J. D. Ecotoxicological risk assessment of undisturbed metal contaminated soil at two remote lighthouse sites. Ecotoxicology and Environmental Safety, v. 73, p. 961-969, 2010. CHELINHO, S.; DOMENE, X.; CAMPANA, P.; NATAL-DA-LUZ, T.; SCHEFFCZYK, A.; ROMBKE, J.; ANDRÉS, P.; SOUSA, J. P. Improving ecological risk assessment in the Mediterranean area: selection of reference soil sand evaluating their influence of soil properties on avoidance and reproduction of two oligochaete species. Environmental Toxicology and Chemistry, v. 30, n. 5, p. 1050-1058, 2011. CHEN, M.; DAROUB, S. H. Characterization of lead in soils of a rifle/pistol shooting range in central Florida, USA. Soil and Sediment Contamination, v. 11, n. 1, p. 1-17, 2002. CHRASTNY, V.; KOMAREK, M.; HAJEK, T. Lead contamination of an agricultural soil in the vicinity of a shooting range. Environmental Monitoring and Assessment, v. 162, p. 37-46, 2010. COLEMAN, D. C.; CROSSLEY JÚNIOR, D. A.; HENDRIX, P. F. Fundamentals of soil ecology. 2ª ed. California: Elsevier, 2004. 404p. CONAMA – CONSELHO NACIONAL DE MEIO AMBIENTE. Resolução no 420, de 28 de dezembro de 2009. Disponível em: <http://www.mma.gov.br/port/conama/legiabre.cfm?codlegi=620>. Acesso em: 27/05/2013. CORNELISEEN, J. H. C.; LAVOREL, S.; GARNIER, E.; DIAZ, S.; BUCHMANN, N.; GURVICH, D. E.; REICH, P. B.; STEEGE, H.; MORGAN, H. D.; VAN DER HEIJDEN, M. G. A.; PAUSAS, J. G.; POORTER, H. A handbook of protocols for standardized and easy 68 measurement of plant functional traits worldwide. Australian Journal of Botany, v. 51, n. 4, p. 335–380, 2003. CRAIG, J. R.; RIMSTIDT, J. D.; BONNAFON, C. A.; COLLINS, T. K.; SCANLON, P. F. Surface water transport of lead at a shooting range. Bulletin of Environmental Contamination Toxicology, v. 63, p. 312-319, 1999. CROUAU, Y.; CHENON, P.; GISCLARD, C. The use of Folsomia candida (Collembola: Isotomidae) for the bioassay of xenobiotic substances and soil pollutants. Applied Soil Ecology, v. 12, p. 103–111, 1999. DARLING, C. T. R.; THOMAS, V. G. The distribution of outdoor shooting ranges in Ontario and the potential for lead pollution of soil and water. The Science of the Total Environment, v. 313, p. 235-243, 2003. DEL VAL, C.; BAREA, J. M.; AZCÓN-AGUILAR, C. Diversity of arbuscular mycorrhizal fungus population in heavy-metal-contaminated soils. Applied and Environmental microbiology, v. 65, n. 2, p. 718-723, 1999. DENYES, M. J.; LANGLOIS, V.; RUTTER, A.; ZEEB, B. A. The use of biochar to reduce soil PCB bioavailability to Cucurbita pepo and Eisenia fetida. Science of the Total Environment, v. 437, p. 76-82, 2012. DIAZ, E.; SARKINS, J. E. S.; VIEBIG, SALDIVA, P. Measurement of airborne gunshot particles in a ballistic laboratory by sector field inductively coupled plasma mass spectrometry. Forensic Science International, v. 214, p. 44-47, 2012. DINDAL, D. L. Soil biology guide. New York: Wiley, 1990. DOLÉDEC, S.; STATZNER, B.; BOURNARD, M. Species traits for future biomonitoring across ecoregions: patterns along a human-impacted river. Freshwater Biology, v. 42, p. 737-758, 1999. DUGGAN, J.; DHAWAN, A. Speciation and vertical distribution of lead and lead shot in soil at a recreational firing range. Soil & Sediment Contamination, v. 16, p. 351-369, 2007. EDWARDS, C. A. Assessing the effects of environmental pollutants on soil organisms, communities, processes and ecosystems. European Journal of Soil Biology, v. 38, p. 225-231, 2002. EISENBEIS, G.; WICHARD, W. Atlas on the biology of soil arthropods. Berlin Heidelberg: Springer-Verlag, 1987. 448p. EISENHAUER, N.; SABAIS, A. C. W.; SCHEU, S. Collembola species composition and diversity effects on ecosystem functioning vary with plant functional group identity. Soil Biology & Biochemistry, n. 43, p. 1697-1704, 2011. ELLERS, J.; DRIESSEN, G. Genetic correlation between temperature-induced plasticity of life-history traits in a soil arthropod. Evolutionary Ecology, v. 25, p. 473-484, 2011. EMBRAPA - EMPRESA BRASILEIRA DE PESQUISA AGROECUÁRIA. Centro Nacional de Pesquisa de Solos. Manual de métodos de análise de solos. Rio de Janeiro: Embrapa Solos, 2011. 225 p. EVANGELOU, M. W. H.; HOCKMANN, K.; POKHAREL, R.; JAKOB, A.; SCHULIN, R. Accumulation of Sb, Pb, Cu, Zn and Cd by various plants species on two diferente relocated militay shooting range soils. Journal of Environmental Management, v. 108, p. 102-107, 2012. 69 FÁVERO, O. A.; NUCCI, J. C.; BIASI, M. Vegetação natural potencial e mapeamento da vegetação e usos atuais das terras da Floresta Nacional de Ipanema, Iperó/SP: Conservação e Gestão Ambiental. Revista Ra’e ga, n. 8, p. 55-68, 2004. FAYIGA, A. O.; SAHA, U. K. Soil pollution at outdoor shooting ranges: health effects, bioavailability and best management practices. Environmental Pollution, v. 216, p. 135-14, 2016. FERNÁNDEZ, M. D.; CAGIGAL, E.; VEGA, M. M.; URZELAI, A.; BABÍN, M.; PRO, J.; TARAZONA, J. V. Ecological risk assessment on contaminated soils through direct toxicity assessment. Ecotoxicology and Environmental Safety, v. 62, p. 174-184, 2005. FERNANDEZ, M. D.; TARAZONA, J. V. Complementary approaches for using ecotoxicity data in soil pollution evaluation. New York: Nova Science Publishers, 2008. FROUZ, J.; PRACH, K.; PIZL, V.; HÁNEL, L.; STARY, J.; TAJOVSKY, K.; MATERNA, J.; BALIK, V.; KALCIK, J.; REHOUNKOVA. Interactions between soil development, vegetation and soil fauna during spontaneous succession in post mining sites. European Journal of Soil Biology, v. 44, p. 109-121, 2008. GARGNARLI, E.; GOGGIOLI, D.; TARCHI, F.; GUIDI, S.; NANNELLI, R.; VIGNOZZI, N.; VALBOA, G.; LOTTERO, M. R.; CORINO, L.; SIMONI, S. Case study of microarthopod communities to assess soil quality in different managed vineyards. Soil Discuss, v. 2, p. 67-84, 2015. GATTAI, G. S.; PEREIRA, S. V.; COSTA, C. M. C.; LIMA, C. E. P.; MAIA, L. C. Microbial activity, arbuscular mycorrhizal fungi and inoculation of woody plants in lead contaminated soil. Brazilian Journal of Microbiology, v. 42, p. 859-867, 2011. GERDEMANN, J. W.; NICOLSON, T. H. Spores of mycorrhizal endogone species extracted from soil by wet-sieving and decanting. Transactions of British Mycological Society, v. 46, p. 235-244, 1963. GERLACH, A.; RUSSELL, D. J.; ROMBKE, J.; BRUGGEMANN, W. Consumption of introduced oak litter by native decomposers (Glomeridae, Diplopoda). Soil Biology & Biochemistry, v. 44, n. 1, p. 26-30, 2012. GOHRE, V.; PASZKOWSKI, U. Contribution of the arbuscular mycorrhizal symbiosis to heavy metal phytoremediation. Planta, v. 223, n. 6, p. 1115–1122, 2006. GONZALES-CHAVEZ, C.; HARRIS, P. J.; DODD, J.; MEHARG, A. A. Arbuscular mycorrhizal fungi confer enhanced arsenate resistance on Holcus lanatus. New Phytologist, v. 155, p. 163-171, 2002. GREENSLADE, P. Collembola. In: Insects of Australia. 2a Ed. Melbourne University Press, 1991. p. 252-268. GREENSLADE, P. Collembola. In: HOUSTON, W. W. K (Ed.). Zoological catalogue of Australia, v. 22. Protura, Collembola, Diplura. Melbourne: CSIRO, 1994. p. 19-138. GREENSLADE, P.; VAUGHAN, G. T. A comparison of Collembola species for toxicity testing of Australian soils. Pedobiologia, v. 47, p. 171–179, 2003. GUO, J.; HUA, B.; LI, N.; YANG, J. Stabilizing lead bullets in shooting range soil by phosphate-based surface coating. AIMS Environmental Science, v. 3, n. 3, p. 474-487, 2016. HARDISON JÚNIOR, D. W.; MA, L. Q.; LUONGO, T.; HARRIS, W. G. Lead contamination in shooting range soils from abrasion of lead bullets and subsequent weathering. Science of the Total Environment, v. 328, p. 175-183, 2004. 70 HEDDE, M.; VAN OORT, F.; LAMY, I. Functional traits of soil invertebrates as indicators for exposure to soil disturbance. Environmental Pollution, v. 164, p. 59-65, 2012. HEINIGER, C.; BAROT, S.; PONGE, J.; SALMON, S.; BOTTON-DIVET, L.; CARMIGNAC, D.; DUBS, F. Effect of habitat spatio temporal structure on collembolan diversity. Pedologia, v. 57, p. 103-117, 2014. HENNERON, L.; BERNARD, L.; HEDDE, M.; PELOSI, C.; VILLENAVE, C.; CHENU, C.; BERTRAND, M.; GIRARDIN, C.; BLANCHART, E. Fourteen years of evidence for positive effects of conservation agriculture and organic farming on soil life. Agronomy for Sustainable Development, v.35, p.169-181, 2015. HEYWOOD, E.; WRIGHT, J.; WIENBURG, C. L.; BLACK, H. I. J.; LONG, S. M. OSBORN, D.; SPURGEON, D. J. Factors influencing the national distribution of polycyclic aromatic hydrocarbons and polychlorinated biphenyls in British soils. Environmental Science & Technology, v. 40, p. 7629-7635, 2006. HEUPEL, K. Avoidance response of different collembolan species to Betanal. European Journal of Soil Biology, v. 38, p. 273-276, 2002. HOPKIN, S. P. Biology of the Springtails (Insecta: Collembola). New York: Oxford University Press, 1997. ISO 10390. Soil quality - Determination of pH. Geneva: International Organization for Standardization, 2005. 14p. JEFFERY, S.; GARDI, C.; JONES, A.; MONTANARELLA, L.; MARMO, L.; MIKO, L.; RITZ, K.; PERES, G.; ROMBKE, J.; VAN DER PUTTEN, W. H. European atlas of soil biodiversity. European Union, 2010. p. 104-105. JENKINS, W. R. A rapid centrifugal-flotation technique for separating nematodes from soil. Plant Disease Report, v. 28, p. 692, 1964. JENSEN, J.; MESMAN, M. Ecological risk assessment of contaminated land: Decision support for site specific investigations. Bilthoven: National Institute for Public Health and the Environment (RIVM), 2006. 136 pp. JENSEN, J.; MESMAN, M.; BIERKENS, J.; RUTGERS, M. Principles and concepts in ecological risk assessment. In: JENSEN, J.; MESMAN, M (Eds.). Ecological risk assessment of contaminated land: Decision support for site specific investigations. Bilthoven: National Institute for Public Health and the Environment, 2006. p. 11-18. JENSEN, J.; SOROKIN, N.; DIRVEN-VAN BREEMEN, E. M.; BOGOLTE, T.; ERLACHER E.; EHLERS, C.; TER LAAK, T.; HARTNIK, T.; BIERKENS, J.; RUTGERS, M.; MESMAN, M. A triad-based selection of tools for site-specific assessment of ecological risk. In: JENSEN, J.; MESMAN, M. Ecological risk assessment of contaminated land: decision support for site specific investigations. Bilthoven: National Institute for Public Health and the Environment (RIVM), 2006. p. 65-116. JORGENSEN, H. B.; HEDLUND, K.; AXELSEN, J. A. Life-history traits of soil collembolans in relation to food quality. Applied Soil Ecology, v. 38, p. 146-151, 2008. JORGENSEN, S. S.; WILLEMS, M. The fate of lead in soils: the transformation of lead pellets in shooting-range soils. Ambio, v. 16, n. 1, p. 11-15, 1987. KARJALAINEN, A.; KILPI-KOSKI, J.; VAISANEN, A. O.; PENTTINEN, S.; VAN GESTEL, C. A. M.; PENTTINEN, O. Ecological risks of an old wood impregnation mill: application of the triad approach. Integrated Environmental Assessment and Management, v. 5, n. 3, p. 379-389, 2009. 71 KORASAKI, V.; MORAIS, J. W.; BRAGA, R. F. Macrofauna. IN: MOREIRA, F. M. S.; CARES, J. E.; ZANETTI, R. B.; STURMER, S. L. (Eds.) O ecossistema solo: componentes, relações ecológicas e efeitos na produção vegetal. Lavras: Editora UFLA, 2013. p. 121-137. KUPERMAN, R. G.; AMORIM, M. J. B.; ROMBKE, J.; LANNO, R.; CHECKAI, R. T.; DORARD, S. G.; SUNAHARA, G. I.; SCHEFFCZYK, A. Adaptation of the enchytraeid toxicity test for use with natural soil types. European Journal of Soil Biology, v. 42, s234-s243, 2006. KUPERMAN, R. G.; CHECKAI, R. T.; GARCIA, M. V. B.; ROMBKE, J.; STEPHENSON, G. L.; SOUSA, J. P. State of the science and the way forward for the ecotoxicological assessment of contaminated land. Pesquisa Agropecuária Brasileira, v. 44, n. 8, p. 811-824, 2009. LABARE, M. P.; BUTKUS, M. A.; RIEGNER, D.; SCHOMMER, N.; ATKINSON, J. Evaluation of lead movement from the abiotic to biotic at a small-arms firing range. Environmental Geology, v. 46, p. 750-754, 2004. LANGE, H. J.; SALA, S.; VIGHI, M.; FABERM J. H. Ecological vulnerability in risk assessment – A review and perspectives. Science of the Total Environment, v. 408, n. 3871-3879, 2010. LAUGA-REYREL, F.; DECONCHAT, M. Diversity within the collembola community in fragmented coppice forests in south-western France. European Journal of Soil Biology, n. 35, p. 177-187, 1999. LAVELLE, P.; SPAIN, A. V. Soil Ecology. Dordrecht: Kluwer Academic Publishers, 2001. LE BOURLEGAT, J. M. G.; ROSSI, S. C.; CHINO, C. E.; SCHIAVINATO, M. A.; LAGÔA, A. M. M. A. Tolerância de Leucaena leucocephala (Lam.) de Wit. ao metal pesado chumbo. Revista Brasileira de Biociências, v. 5, supl. 2, p. 1017-1019, 2007. LEE, I.; KIM, O. K.; CHANG, Y.; BAE, B.; KIM, H.; BAEK, K. Heavy metal concentrations and enzyme activities in soil from a contaminated Korean shooting range. Journal of Bioscience and Bioengineering, v. 94, n. 5, p. 406-411, 2002. LEIVA, C.; AHUMADA, I.; SEPÚLVEDA, B.; RICHTER, P. Polychlorinated biphenyls behaviour in soil amended with biosolids. Chemosphere, v. 79, p. 273-277, 2010. LEPS J.; SMILAUER, P. Multivariate analysis of ecological data using Canoco. Cambridge: Cambridge University Press, 2003. LIESS, M.; SCHAFER, R. B.; SCHRIEVER, C. A. The footprint of pesticide stress in communities – species traits reveal community effects of toxicants. The Science of the Total Environment, v. 406, p. 484-490, 2008. LIN, A.; ZHANG, X.; WONG, M.; YE, Z.; LOU, L.; WANG, Y.; ZHU, Y. Increase of multi-metal tolerance of three leguminous plants by arbuscular mycorrhizal fungi colonization. Environmental Geochemistry and Health, v. 29, p. 473-481, 2007. LIN, Z.; COMET, B.; QVARFORT, U.; HERBERT, R. The chemical and mineralogical behaviour of Pb in shooting range soils from central Sweden. Environmental Pollution, v. 89, n. 3, p. 303 - 309, 1995. LINDBERG, N.; BENGTSSON, J. Population responses of oribatid mites and collembolans after drought. Applied Soil Ecology, v. 28, p. 163-174, 2005. LINS, C. E. L.; CAVALCANTE, U. M. T.; SAMPAIO, E. V. S. B.; MESSIAS, A. S.; MAIA, L. C. Growth of mycorrhized seedlings of Leucaena leucocephala in a copper contaminated soil. Applied Soil Ecology, v. 31, p. 181-185, 2006 72 LLUGANY, M.; POSCHENRIEDER, C.; BARCELÓ, J. Assessment of barium toxicity in bush beans. Archives of Environmental Contamination and Toxicology, v. 39, p. 440-444, 2000. LOCK, K.; JANSSENS, F.; JANSSEN, C. R. Effects of metal contamination on the activity and diversity of springtails in an ancient Pb-Zn mining area at Plombieres, Belgium. Europen Journal of Soil Biology, v. 39, p. 25-29, 2003. LOUREIRO, S.; SOARES, A. M. V. M.; NOGUEIRA, A. J. A. Terrestrial avoidance behaviour tests as screening tool to assess soil contamination. Environmental Pollution, v. 138, p. 121-131, 2005. LUO, W.; VERWEIJ, R. A.; GESTEL, C. A. M. Contribution of soil properties of shooting fields to lead biovailability and toxicity to Enchytraeus crypticus. Soil Biology & Biochemistry, v. 76, p. 235-241, 2014a. LUO, W.; VERWEIJ, R. A.; GESTEL, C. A. M. Determining the bioavailability and toxicity of lead contamination to earthworms requires using a combination of physicochemical and biological methods. Environmental Pollution, v. 185, p. 1-9, 2014b. LUO, W.; VERMEIJ, R. A.; VAN GESTEL, C. A. M . Assessment of the bioavailability and toxicity of lead polluted soils using a combination of chemical approaches and bioassays with the collembolan Folsomia candida. Journal of Hazardous Materials, v. 280, p. 524-530, 2014c MA, L. Q.; HARDISON Junior, D. W.; HARRIS, W. G.; CAO, X.; ZHOU, Q. Effects of soil property and soil amendment on weathering of abraded metallic Pb in shooting ranges. Water, Air & Soil Pollution, v. 178, p. 297-307, 2007. MA, Y.; DICKINSON, N. M. WONG, M. H. Beneficial effects of earthworms and arbuscular mycorrhizal fungi on establishment of leguminous trees on Pb/Zn mine tailings. Soil Biology & Biochemistry, v. 38, p. 1403-1412, 2006. MAAß, S.; CARUSO, T.; RILLING, M. Functional role os microarthropods in soil aggregation. Pedobiologia, v. 58, n. 2-3, p. 59-63, 2015. MACKOVA, M.; PROUZOVA, P.; STURSA, P.; RYSLAVA, E.; UHLIK, O.; BERANOVA, K.; RESEK, J.; KURZAWOVA, V.; DEMNEROVA, K.; MACEK, T. Phyto/rhizoremediation studies using long-term PCB-contaminated soil. Environmental Science and pollution research international, v. 16, p. 817-829, 2009. MAJER, J.D.; BRENNAN, K.E.C.; MOIR, M.L. Invertebrates and the Restoration of a Forest Ecosystem: 30 Years of Research following Bauxite Mining in Western Australia. Restoration Ecology, v. 15, n. 4, p. S104-S115, 2007. MALMSTROM, A. Life-history traits predict recovery patterns in Collembola species after fire: a 10 year study. Applied Soil Ecology, v. 56, p. 35-42, 2012. MANHÃES, C. M. C.; GAMA-RODRIGUES, E. F.; MOÇO, M. K. S.; GAMA-RODRIGUES, A. C. Meso- and macrofauna in the soil and litter of leguminous trees in a degraded pasture in Brazil. Agroforest Systems, v. 87, n. 5, p. 993-1004, 2013. MANNINEN, S.; TANSKANEN, N. Transfer of lead from shotgun pellets to humus and three plant species in a finnish shooting range. Archives of Environmental Contamination and Toxicology, v. 24, p. 410-414, 1993. MARTINY, A.; PINTO, A. L. Aplicação da microscopia eletrônica de varredura à análise de resíduos de tiro. Revista C & T, p. 24-35, 2008. 73 MELO, F. V.; BROWN, G. G.; LOUZADA, J. N. C.; LUIZÃO, F. J.; MORAIS, J. W.; ZANETTI, R. A importância da meso e macrofauna do solo na fertilidade e como bioindicadores. Boletim Informativo da SBCS, 2009. MELO, L. C. A.; ALLEONI, L. R. F.; CARVALHO, G.; AZEVEDO, R. A. Cadmium-and barium-toxicity effects on growth and antioxidant capacity of soybean (Glycine max L.) plants, grown in two soil types with diferente physicochemical properties. Journal of Plant Nutrition and Soil Science, v. 174, p. 847-859, 2011. MELONI, F.; VARANDA, E. M. Litter and soil arthropod colonization in reforested semi-deciduous seasonal Atlantic forest. Restoration Ecology, v. 23, n. 5, p. 690-697, 2015. MENTA, C. Soil fauna diversity – function, soil degradation, biological índices, soil restoration. In: LAMEED, G. A. (Ed.) Biodiversity conservation and utilization in a diverse word. Rijeka: InTech, 2012. p. 59- 94. MERGULHÃO, A. C. E. S.; BURITY, H. A.; GOTO, B. T.; MAIA, L. C. Diversity of arbuscular mycorrhizal fungi in a gypsum mining impacted semiarid area. Acta Botânica Brasilica, v. 24, n. 4, p. 1052-1061, 2010. MESMAN, M.; RUTGERS, M.; JENSEN, J. Using the triad in site specific assessment of contaminated soil. In: JENSEN, J.; MESMAN, M. Ecological risk assessment of contaminated land: decision support for site specific investigations. Bilthoven: National Institute for Public Health and the Environment (RIVM), 2006. p. 41-53. MIGLIORINI, M.; PIGINO, G.; BIANCHI, N.; BERNINI, F.; LEONZIO, C. The effects of heavy metal contamination on the soil arthropod community of a shooting range. Environmental Pollution, v. 129, p. 331-340, 2004. MIGLIORINI, M.; PIGINO, G.; CARUSO, T.; FANCIULLI, P. P.; LEONZIO, C.; BERNINI, F. Soil communities (Acari Oribatida; Hexapoda Collembola) in a clay pigeon shooting range. Pedobiologia, v. 49, p. 1-13, 2005. MMA/IBAMA - Ministério do Meio Ambiente / Instituto Brasileiro do Meio Ambiente e dos Recursos Naturais Renováveis. Plano de Manejo da Floresta Nacional de Ipanema. Brasil, 2003. 99 p. MORAIS, J. W.; OLIVEIRA, F. G. L.; BRAGA, R. F.; KORASAKI, V. Mesofauna. IN: MOREIRA, F. M. S.; CARES, J. E.; ZANETTI, R. B.; STURMER, S. L. (Eds.) O ecossistema solo: componentes, relações ecológicas e efeitos na produção vegetal. Lavras: Editora UFLA, 2013. p. 185-200. MOZAFAR, A.; RUH, R.; KLINGEL, P.; GAMPER, H.; EGLI, S.; FROSSARD, E. Effect of heavy metal contaminated shooting range soils on mycorrhizal colonization of roots and metal uptake by leek. Environmental Monitoring and Assessment, v. 79, p. 177-191, 2002. MUELLER, K. E.; EISENHAUER, N.; REICH, P. B.; HOBBIE, S. E.; CHADWICK, O. A.; CHOROVER, J.; DOBIES, T.; HALE, C. M.; JAGODZINSKI, A. M.; KALICKA, I.; KASPROWICZ, M.; KIELISZEWSKA-ROKICKA, B.; MODRZYNSKI, J.; ROZEN, A.; SKORUPSKI, M.; SOBCZYK, L.; STASINSKA, M.; TROCHA, L. K.; WEINER, J.; WIERZBICKA, A.; OLEKSYN, J. Light, earthworms, and soil resources as predictors of diversity of 10 soil invertebrate groups across monocultures of 14 trees pecies. Soil Biology & Biochemistry, p. 1-15, 2015. MUHAMMAD, S.; IQBAL, M. Z.; MOHAMMAD, A. Effect of lead and cadmium on germination and seedling growth of Leucaena leucocephala. Journal of Applied Sciences and Environmental Management, v. 12, n. 2, p. 61-66, 2008. 74 MURRAY, K.; BAZZI, A.; CARTER, C.; EHLERT, A.; HARRIS, A.; KOPEC, M.; RICHARDSON, J.; SOKOL, H. Distribution and mobility of lead in soils at na outdoor shooting range. Journal of Soil Contamination, v. 6, n. 1, p. 79-93, 1997. NIEMEYER, J. C.; MOREIRA-SANTOS, M.; NOGUEIRA, M. A.; CARVALHO, G. M.; RIBEIRO, R.; SILVA, E. M.; SOUSA, J. P. Environmental risk assessment of a metal-contaminated area in the Tropics. Tier I: screening phase. Journal of Soil and Sediments, v. 10, p. 1557-1571, 2010. NIEMEYER, J. C.; MOREIRA-SANTOS, M.; RIBEIRO, R.; RUTGERS, M.; NOGUEIRA, M. A.; SILVA, E. M.; SOUSA, J. P. Ecological risk assessment of a metal-contaminated area in the tropics. Tier II: Detailed Assessment. PloS ONE, v. 10, n. 11, p. 1-25, 2015. NIEMEYER, J. C.; NOGUEIRA, M. A.; CARVALHO, G. M.; COHIN-DE-PINHO, S. J.; OUTEIRO, U.S.; RODRIGUES, G.G.; SILVA, E. M.; SOUSA, J. P. Functional and structural parameters to assess the ecological status of a metal contaminated area in the tropics. Ecotoxicology and Environmental Safety, v. 86, p. 188-197, 2012. ODUM, E. P.; BARRETT, G. W. Fundamentos de Ecologia. Tradução da 5ª edição norte-americana. São Paulo: Cengage Learning, 2011. OKKENHAUG, G.; GEBHARDT, K. G.; AMSTAETTER, K.; BUE, H. L.; HERZEL, H.; MARIUSSEN, E.; ALMAS, A. R.; CORNELISSEN, G.; BREEDVELD, G. D.; RASMUSSEN, G.; MULDER, J. Antimony (Sb) and lead (Pb) in contaminated shooting range soils: Sb and Pb mobility and immobilization by iron based sorbents, a field study. Journal of Hazardous Materials, v. 307, p. 336-343, 2016. PARISI, V.; MENTA, C.; GARDI, C.; JACOMINI, C.; MOZZANICA, E. Microarthropod communities as a tool to assess soil quality and biodiversity: a new approach in Italy. Agriculture, Ecosystems & Environment, v. 105, p. 323 – 333, 2005. PAWLOWSKA, T. E.; CHARVAT, I. Heavy-metal stress and developmental patterns of arbuscular mycorrhizal fungi. Applied and environmental microbiology, v. 7 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidade Federal Rural do Rio de Janeiro |
dc.publisher.program.fl_str_mv |
Programa de Pós-Graduação em Agronomia - Ciência do Solo |
dc.publisher.initials.fl_str_mv |
UFRRJ |
dc.publisher.country.fl_str_mv |
Brasil |
dc.publisher.department.fl_str_mv |
Instituto de Agronomia |
publisher.none.fl_str_mv |
Universidade Federal Rural do Rio de Janeiro |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da UFRRJ instname:Universidade Federal Rural do Rio de Janeiro (UFRRJ) instacron:UFRRJ |
instname_str |
Universidade Federal Rural do Rio de Janeiro (UFRRJ) |
instacron_str |
UFRRJ |
institution |
UFRRJ |
reponame_str |
Biblioteca Digital de Teses e Dissertações da UFRRJ |
collection |
Biblioteca Digital de Teses e Dissertações da UFRRJ |
bitstream.url.fl_str_mv |
https://rima.ufrrj.br/jspui/bitstream/20.500.14407/9104/1/2017%20-%20Rafael%20Nogueira%20Scoriza.pdf.jpg https://rima.ufrrj.br/jspui/bitstream/20.500.14407/9104/2/2017%20-%20Rafael%20Nogueira%20Scoriza.pdf.txt https://rima.ufrrj.br/jspui/bitstream/20.500.14407/9104/3/2017%20-%20Rafael%20Nogueira%20Scoriza.pdf https://rima.ufrrj.br/jspui/bitstream/20.500.14407/9104/4/license.txt |
bitstream.checksum.fl_str_mv |
cc73c4c239a4c332d642ba1e7c7a9fb2 f4415c051480dba18d557c3709e2abb3 b04ecb63afe7fae7451ac805ac15714f 7b5ba3d2445355f386edab96125d42b7 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da UFRRJ - Universidade Federal Rural do Rio de Janeiro (UFRRJ) |
repository.mail.fl_str_mv |
bibliot@ufrrj.br||bibliot@ufrrj.br |
_version_ |
1810107892815101952 |