Investiga??o vibracional do comportamento anf?tero de formamida: um composto modelo para sistemas biol?gicos

Detalhes bibliográficos
Autor(a) principal: Silva, Elaine Felix da
Data de Publicação: 2013
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Biblioteca Digital de Teses e Dissertações da UFRRJ
Texto Completo: https://tede.ufrrj.br/jspui/handle/jspui/3823
Resumo: Formamide (FA) is the simplest model capable of mimicking the interactions that take place between peptides, proteins and DNA structures, so that the understanding of its acidbase chemistry is paramount. Its behavior as an acid has been investigated towards two biologically relevant bases: pyridine (Py) and pyridazine (PRD), by means of Raman spectra of ternary mixtures in several compositions. Molecular association extent values (1-a) reveal that the concentration of the 1:1 Py:FA adduct is always greater in the equilibrium as compared to the 1:2 PRD:FA complex, thus confirming that Py is the stronger base, following the trend exhibited by the Proton Affinity (P.A.) values reported for such azabenzenes. The thermodynamic parameters of the PRD/FA system have been determined through temperature dependent Raman experiments, and the comparison between the values determined in this study and those available for the Py/FA system confirmed the conclusions drawn from the concentration dependent investigation. Furthermore, the calculated DfG? values show that the whole process is not spontaneous, due to an extremely negative DfS? value, which is explained in terms of the two hydrogen bonds formed in the complex containing PRD. The basic behavior of FA has been evaluated through coordination reactions with main group metal cations Mg(II), Ca(II) and Al(III), aiming to predict the catalytic potential of the solvates towards neutral amide hydrolysis. This has been accomplished by monitoring the changes on the vibrational modes nCO e nCN of FA provoked by coordination. From the downshift of the former vibrational mode and upshift of the second vibration, it was possible to observe the formation of [Mg(FA)6](ClO4)2, whose ionic FA form (I) is present and has been regarded as the active intermediate in the most likely hydrolysis mechanism. The trend observed in the presence of Ca(II) is markedly different, since both vibrational modes are upshifted on the formation of [Ca(FA)4](ClO4)2, implying that the molecular FA structure (II) prevails. Coordination of FA to Al(III) leads to changes in many regions and allows the observation of metal-ligand (nAlO e nAlN) vibrations for the first time. Both nCO e nCN modes are upshifted, indicating that FA form II is stabilized upon formation of [Al(FA)5]Cl3, which is stable up to around 110?C. Stabilization of different FA structures seems to be related to the size of the studied ions as compared to the ion radius values of the transition metals.
id UFRRJ-1_dda3a81cacff06135c8584069982cb69
oai_identifier_str oai:localhost:jspui/3823
network_acronym_str UFRRJ-1
network_name_str Biblioteca Digital de Teses e Dissertações da UFRRJ
repository_id_str
spelling Alves, Wagner de Assis012.536.367-29http://lattes.cnpq.br/5177340148368546Andrade, Gustavo F. S.Faria, Roberto B.002.022.197-55http://lattes.cnpq.br/1846610965418096Silva, Elaine Felix da2020-08-17T12:52:47Z2013-08-02SILVA, Elaine Felix da. Investiga??o vibracional do comportamento anf?tero de formamida: um composto modelo para sistemas biol?gicos. 2013. 69 f. Disserta??o (Mestrado em Qu?mica) - Instituto de Ci?ncias Exatas, Universidade Federal Rural do Rio de Janeiro, Serop?dica, 2013.https://tede.ufrrj.br/jspui/handle/jspui/3823Formamide (FA) is the simplest model capable of mimicking the interactions that take place between peptides, proteins and DNA structures, so that the understanding of its acidbase chemistry is paramount. Its behavior as an acid has been investigated towards two biologically relevant bases: pyridine (Py) and pyridazine (PRD), by means of Raman spectra of ternary mixtures in several compositions. Molecular association extent values (1-a) reveal that the concentration of the 1:1 Py:FA adduct is always greater in the equilibrium as compared to the 1:2 PRD:FA complex, thus confirming that Py is the stronger base, following the trend exhibited by the Proton Affinity (P.A.) values reported for such azabenzenes. The thermodynamic parameters of the PRD/FA system have been determined through temperature dependent Raman experiments, and the comparison between the values determined in this study and those available for the Py/FA system confirmed the conclusions drawn from the concentration dependent investigation. Furthermore, the calculated DfG? values show that the whole process is not spontaneous, due to an extremely negative DfS? value, which is explained in terms of the two hydrogen bonds formed in the complex containing PRD. The basic behavior of FA has been evaluated through coordination reactions with main group metal cations Mg(II), Ca(II) and Al(III), aiming to predict the catalytic potential of the solvates towards neutral amide hydrolysis. This has been accomplished by monitoring the changes on the vibrational modes nCO e nCN of FA provoked by coordination. From the downshift of the former vibrational mode and upshift of the second vibration, it was possible to observe the formation of [Mg(FA)6](ClO4)2, whose ionic FA form (I) is present and has been regarded as the active intermediate in the most likely hydrolysis mechanism. The trend observed in the presence of Ca(II) is markedly different, since both vibrational modes are upshifted on the formation of [Ca(FA)4](ClO4)2, implying that the molecular FA structure (II) prevails. Coordination of FA to Al(III) leads to changes in many regions and allows the observation of metal-ligand (nAlO e nAlN) vibrations for the first time. Both nCO e nCN modes are upshifted, indicating that FA form II is stabilized upon formation of [Al(FA)5]Cl3, which is stable up to around 110?C. Stabilization of different FA structures seems to be related to the size of the studied ions as compared to the ion radius values of the transition metals.A mol?cula de formamida (FA) ? o modelo mais simples capaz de mimetizar as intera??es que ocorrem entre pept?deos, prote?nas e estruturas de DNA, portanto, o estudo de sua qu?mica ?cido-base torna-se essencial. Seu comportamento como ?cido foi estudado em presen?a de duas bases de import?ncia biol?gica: piridina (Py) e piridazina (PRD), atrav?s dos espectros Raman das solu??es tern?rias em diferentes concentra??es. Os valores de grau de associa??o (1-a) revelam que o aduto 1:1 Py:FA est? sempre em maior concentra??o no equil?brio quando comparado ao aduto 1:2 PRD:FA, indicando que Py ? a base mais forte, conforme sugerido pelos valores de Afinidade ao Pr?ton (A.P.). O estudo dos espectros Raman em diferentes temperaturas possibilitou a determina??o de par?metros termodin?micos para o sistema PRD/FA, cuja compara??o com os dados do sistema Py/FA corroborou a conclus?o do estudo dependente da concentra??o. Al?m disto, os valores de DfG? mostraram que o processo n?o ? espont?neo, devido ? contribui??o extremamente negativa de DfS?, que ? explicado pela presen?a das duas liga??es hidrog?nio no complexo com PRD. O comportamento b?sico de FA foi investigado atrav?s da forma??o de complexos com os ?ons Mg(II), Ca(II) e Al(III), como forma de prever a atividade catal?tica destes metais em rea??es de hidr?lise neutra de amidas, atrav?s do monitoramento das mudan?as provocadas aos modos nCO e nCN de FA, pela complexa??o. Foi poss?vel observar, a partir do ?downshift? do primeiro modo vibracional e ?upshift? do segundo, a forma??o do complexo [Mg(FA)6](ClO4)2, onde a estrutura i?nica (I) de FA est? presente, a qual ? considerada como a esp?cie ativa no mecanismo mais prov?vel de hidr?lise. O comportamento observado em presen?a de Ca(II) ? diferente, onde ambos os modos vibracionais de FA sofrem ?upshifts? pela forma??o do complexo [Ca(FA)4(ClO4)2], indicando que a estrutura molecular (II) da amida ? favorecida. A coordena??o de FA ao Al(III) provoca mudan?as em v?rias regi?es do espectro e permite a observa??o dos modos vibracionais metal-ligante, in?ditos nos sistemas anteriores. Ambos os modos nCO e nCN da amida sofrem ?upshifts?, indicando que a estrutura II ? estabilizada pela forma??o do complexo [Al(FA)5]Cl3, que ? est?vel at? cerca de 110?C. A estabiliza??o das diferentes estruturas de FA parece estar relacionada aos tamanhos relativos dos ?ons estudados, quando comparados aos valores de raio dos ?ons de metais de transi??o.Submitted by Sandra Pereira (srpereira@ufrrj.br) on 2020-08-17T12:52:47Z No. of bitstreams: 1 2013 - Elaine Felix da Silva.pdf: 826124 bytes, checksum: c91b6a0f45d60d3bf8d73c39d7e44e0a (MD5)Made available in DSpace on 2020-08-17T12:52:47Z (GMT). No. of bitstreams: 1 2013 - Elaine Felix da Silva.pdf: 826124 bytes, checksum: c91b6a0f45d60d3bf8d73c39d7e44e0a (MD5) Previous issue date: 2013-08-02Coordena??o de Aperfei?oamento de Pessoal de N?vel Superior, CAPES, Brasil.application/pdfhttps://tede.ufrrj.br/retrieve/61650/2013%20-%20Elaine%20Felix%20da%20Silva.pdf.jpgporUniversidade Federal Rural do Rio de JaneiroPrograma de P?s-Gradua??o em Qu?micaUFRRJBrasilInstituto de Ci?ncias Exatas[1] Huheey, J. E., Keiter, E. A., Keiter, R. L. Inorganic Chemistry: Principles of Structure and Reactivity. 4? edi??o. Nova York: Harper Collins College Publishers, 1993. [2] Miessler, G. L., Tarr, D. A. Inorganic Chemistry. 3? edi??o. Minessota: Pearson Prentice Hall, 2003. [3] McMurry, J. Organic Chemistry. 5? edi??o. Calif?rnia: Brookes and Cole, 2000. [4] Bruice, P. Y., Organic Chemistry. 6? edi??o. Minessota: Pearson Prentice Hall, 2011. [5] Reimarsson, P., Lindman, B., Inorg. Nucl. Chem. Lett., 1977, v. 13, p. 449. [6] Eisenstadt, M., Friedman, H. L., J. Chem. Phys., 1966, v. 44, p. 1407. [7] Templeman, G. J., Van Geet, A. L., J. Am. Chem. Soc., 1972, v. 94, p. 5578. [8] Greenberg, M. S., Popov, A. I., J. Solution Chem., 1976, v. 5, p. 653. [9] Drago, R. S., Carlson, R. L., Rose, N. J., Wenz, D. A., J. Am. Chem. Soc., 1961, v. 83, p. 3572. [10] Umebayashi, Y., Matsumoto, K., Watanabe, M., Katoh, K., Ishiguro, S., Anal. Sciences, 2001, v. 17, p. 323. [11] Fujii, K., Kumai, T., Takamuku, T., Umebayashi, Y., Ishiguro, S., J. Phys. Chem. A, 2006, v. 110, p. 1798. [12] Lawrence, C., Gal, J.-F., Lewis Basicity and Affinity Scales: Data and Measurement. 1? edi??o. West Sussex: John Wiley and Sons, 2010. [13] Mayer, U., Guttman, V., Gerger, W., Monat. Chem., 1975, v. 106, p. 1235. [14] Guttman, V., Electrochim. Acta, 1976, v. 21, p. 661. [15] Shi, Y., Zhou, Z., Zhang, H., J. Phys. Chem. A, 2004, v. 108, p. 6414. [16] Parreira, R. L. T., Caramori, G. F., Morgon, N. H., Galembeck, S. E., Int. J. Quantum Chem., 2012, v. 112, p. 1401. [17] Elola, M. D., Ladanyi, B. M., J. Chem. Phys., 2006, v. 125, p. 184506. 63 [18] Ojha, A. K., Srivastava, S. K., Koster, J., Shukla, M. K., Leszczynski, J., Asthana, B. P., Kiefer, W., J. Mol. Struct., 2004, v. 689, p. 127. [19] Alves, W. A., Antunes, O. A. C., Hollauer, E., Vib. Spectrosc., 2006, v. 40, p. 257. [20] Fawcett, W. R., Kloss, A. A., J. Phys. Chem., 1996, v. 100, p. 2019. [21] Alves, W. A., Antunes, O. A. C., Spectrochim. Acta A, 2007, v. 67, p. 847. [22] Alves, W. A., Santos, P. S., J. Raman Spectrosc. 2007, v. 38, p. 1332. [23] Mortensen, A., Nielsen, O. F., Yarwood, J., Shelley, V., Vib. Spectrosc., 1994, v. 8, p. 37. [24] Mortensen, A., Nielsen, O. F., Yarwood, J., Shelley, V., J. Phys. Chem., 1994, v. 98, p. 5221. [25] Benevenuto, R. L., Alves, W. A., J. Raman Spectrosc., 2008, v. 39, p. 490. [26] Norbert, G., Alves, W. A., J. Raman Spectrosc., 2008, v. 39, p. 685. [27] Alves, W. A., J. Raman Spectrosc. 2009, v. 40, p. 366. [28] Berg, E. R., Freeman, S. A., Green, D.D., Ulness, D. J., J. Phys. Chem. A, 2006, v. 110, p. 13434. [29] Jacinto, F. S. F., Siqueira, L. J. A., Alves, W. A., J. Raman Spectrosc. 2009, v. 40, p. 1585. [30] Srivastava, S. K., Schl?cker, S., Alves, W. A., J. Raman Spectrosc. 2010, v. 41, p. 1714. [31] Alves, W. A., Vib. Spectrosc. 2010, v. 53, p. 285. [32] Silva, E. F., Siqueira, L. J. A., Alves, W. A., Vib. Spectrosc., 2011, v. 55, p. 273. [33] Lees, A. J., Straughan, B. P., Gardiner, D. J., J. Mol. Struct., 1981, v. 71, p. 61. [34] Bukowska, J., J. Mol. Struct., 1983, v. 98, p. 1. [35] Powell, D. B., Woolins, A., Spectrochim. Acta, 1985, v. 41A, p. 1023. [36] Alves, W. A., J. Mol. Struct., 2007, v. 829, p. 37. 64 [37] Pereira, L. M., Alves, W. A., Vib. Spectrosc., 2011, v. 56, p. 250. [38] Freire, A. I., Alves, W. A., Spectrochim. Acta A, 2012, v. 89, p. 259. [39] Burton, N. A., Chiu, S. S.-L., Davidson, M. M., Green, D. V. S., Hillier, I. H., McDowall, J. J. W., Vincent, M. A., J. Chem. Soc. Faraday Trans., 1993, v. 89, p. 2631. [40] Fogarasi, G., Szalay, P. G., J. Phys. Chem. A, 1997, v. 101, p. 1400. [41] Basch, H., Hoz, S., Chem. Phys. Letters, 1998, v. 294, p. 117. [42] Reimers, J., Hall, E. L., J. Am. Chem. Soc., 1999, v. 121, p. 3730. [43] Lehninger, A. L., Nelson, D. L., Cox, M. M. Principles of Biochemistry. 4? edi??o. Nova York: W.H. Freeman, 2005. [44] Kirby, A. J., Acc.Chem. Res., 1997, v. 30, p. 290. [45] Kasende, O., Zeegers-Huyskens, Th. J. Phys. Chem., 1984, v.88, p. 2132. [46] Joesten, M. D., Schaad, L. J. Hydrogen Bonding. Nova York: Marcel Dekker, 1974. [47] Kim, J. H., Lee, H.-J., Kim, E.-J., Jung, H. J., Choi, Y.-S., Park, J., Yoon, C.-J. J. Phys. Chem. A 2004, v. 108, p. 921. [48] Demicheli, C. P., Maia, E. C. P., Qu?mica de Coordena??o em Sistemas Biol?gicos. In: Farias, R. B. (Ed.). Qu?mica de Coordena??o ? Fundamentos e Atualidades. 2? edi??o. Campinas, 2009, p. 167-204. [49] Sigel, H., Martin, R. B., Chem. Rev., 1982, v. 82, p. 385. [50] Sayre, L. M., J. Am. Chem. Soc., 1986, v. 108, p. 1632. [51] Chin, J., Jubian, V., Mrejen, K., J. Chem. Soc. Chem. Commun., 1990, p. 1326. [52] Chin, J., Acc. Chem. Res., 1991, v. 24, p. 145. [53] Maslak, P., Sczepanski, J. J., Parvez, M., J. Am. Chem. Soc., 1991, v. 113, p. 1062. [54] Kahne, D., Still, W. C., J. Am. Chem. Soc., 1988, v. 110, p. 7529. [55] Slebocka-Tilk, H., Sauriol, F., Monette, M., Brown, R. S., Can. J. Chem., 2002, v. 80, p. 1343. 65 [56] Almerindo, G. I., Pliego Jr., J. R., J. Braz. Chem. Soc., 2007, v. 18, p. 696. [57] Watson, A. A., Farlie, D. P., Inorg. Chem., 1995, v. 34, p. 3087. [58] Kaminskaia, N. V., Kostic, N. M., Inorg. Chem., 1997, v. 36, p. 5917. [59] Balahura, R. J., Jordan, R. B., J. Am. Chem. Soc., 1970, v. 92, p. 1533. [60] Andersson, M., Water, Air and Soil Pollution, 1988, v. 39, p. 439. [61] Banks, W. A., Kastin, A. J., Neurosci. Biobehav. Rev., 1989, v. 13, p. 47. [62] Darbre, P. D., J. Appl. Toxicol., 2006, v. 26, p. 191. [63] Yumoto, S., Kakimi, S., Ohsaki, A., Ishikawa, A., J. Inorg. Biochem., 2009, v. 103, p. 1579. [64] Ferraro, J. R., Nakamoto, K., Brown, C. W. Introductory Raman Spectroscopy. 2? edi??o.Calif?rnia: Academic Press, 2003. [65] Czernuszewicz, R. S., Spiro, T. G., IR, Raman and Resonance Raman Spectroscopy. In: SOLOMON, E. I., LEVER, A. B. P. (Eds.). Inorganic Electronic Structure and Spectroscopy: Volume I ? Methodology. 2? edi??o. Nova Jersey: John Wiley and Sons, 2006. p. 353-441. [66] Sala, O. Fundamentos da Espectroscopia Raman e no Infravermelho. 2? edi??o. S?o Paulo: Editora UNESP, 2008. [67] Byrnes, J. Unexplored Ordnance Detection and Mitigation. 1? edi??o. Dordrecht: Springer Science, 2009. [68] Meier, R. J., Vib. Spectrosc., 2005, v. 39, p. 266. [69] Brauns, E. B., Meier, R. J., Vib. Spectrosc., 2009, v. 49, p. 303. [70] Press, W. H., Flannery, B. P., Teukolsky, S. A., Vetterling, W. T. Numerical Recipes in C, the Art of Scientific Computing. New York: Cambridge University Press, 1988. [71] Suzuki, I., Bull. Chem. Soc. Jpn. 1960, v. 33, p. 1359. [72] Urena, F. P., G?mez, M. F., Gonz?lez, J. J. L., Torres, E., M., Spectrochim. Acta, Part A., 2003, v. 59, p. 2815. 66 [73] Breda, S., Reva, I. D., Lapisnki, L., Nowak, M. J., Fausto, R. J. Mol. Struct., 2006, v. 786, p. 193. [74] Li, X., Liu, L., Schlegel, H. B., J. Am. Chem. Soc., 2002, v. 124, p. 9639. [75] Grabowski, S. J., Sokalski, W. A., Dyguda, E., Leszczynski, J., J. Phys. Chem. B, 2006, v. 110, p. 6444. [76] Atkins, P., De Paula, J., Physical Chemistry, 8? edi??o. Oxford: Oxford University Press, 2006. [77] Badger, R. M., Bauer, S. H., J. Chem. Phys., 1937, v. 5, p. 839. [78] Asada, M., Fujimori, T, Fujii, K., Kanzaki, R., Umebayashi, Y., Ishiguro, S., J. Raman Spectrosc., 2007, v. 38, p. 417. [79] Fuentes, C. G., Patel, S. J.,J. Inorg. Nucl. Chem., 1970, v. 32, p. 1575. [80] Emons, H. H., Janneck, E., Kabisch, G., Pollmer, K., Z. Anorg. Allg. Chem., 1984, v. 511, p. 148. [81] Dalibart, M., Derouault, J., Granger, P., Chapelle, S., Inorg. Chem.,1982, v. 21, p. 1040. [82] Seo, J.-S., Kim, K.-W., Cho, H.-G.,Spectrochim. Acta A, 2003, v. 59, p. 477. [83] Fortier, S., Creber, K. A. M., Acta Cryst. C, 1985, v. 41, p. 1763. [84] Chabanel, M., Touaj, K., J. Chem. Soc. Faraday Trans., 1996, v. 92, p. 4207. [85] Edwards, H. G. M., Farwell, D. W., Johnson, A. F., J. Mol. Struct., 1995, v. 344, p. 37.formamidarea??es ?cido-baseespectroscopia vibracionalformamideacid-base reactionsvibrational spectroscopyQu?micaInvestiga??o vibracional do comportamento anf?tero de formamida: um composto modelo para sistemas biol?gicosVibrational investigation on the amphoteric behavior of formamide: a model compound to biological systemsinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/openAccessreponame:Biblioteca Digital de Teses e Dissertações da UFRRJinstname:Universidade Federal Rural do Rio de Janeiro (UFRRJ)instacron:UFRRJTHUMBNAIL2013 - Elaine Felix da Silva.pdf.jpg2013 - Elaine Felix da Silva.pdf.jpgimage/jpeg1943http://localhost:8080/tede/bitstream/jspui/3823/4/2013+-+Elaine+Felix+da+Silva.pdf.jpgcc73c4c239a4c332d642ba1e7c7a9fb2MD54TEXT2013 - Elaine Felix da Silva.pdf.txt2013 - Elaine Felix da Silva.pdf.txttext/plain133709http://localhost:8080/tede/bitstream/jspui/3823/3/2013+-+Elaine+Felix+da+Silva.pdf.txtd285c7541fc1a2bc5d48f364e3300764MD53ORIGINAL2013 - Elaine Felix da Silva.pdf2013 - Elaine Felix da Silva.pdfapplication/pdf826124http://localhost:8080/tede/bitstream/jspui/3823/2/2013+-+Elaine+Felix+da+Silva.pdfc91b6a0f45d60d3bf8d73c39d7e44e0aMD52LICENSElicense.txtlicense.txttext/plain; charset=utf-82089http://localhost:8080/tede/bitstream/jspui/3823/1/license.txt7b5ba3d2445355f386edab96125d42b7MD51jspui/38232022-10-03 11:46:29.856oai:localhost:jspui/3823Tk9UQTogQ09MT1FVRSBBUVVJIEEgU1VBIFBSP1BSSUEgTElDRU4/QQpFc3RhIGxpY2VuP2EgZGUgZXhlbXBsbyA/IGZvcm5lY2lkYSBhcGVuYXMgcGFyYSBmaW5zIGluZm9ybWF0aXZvcy4KCkxJQ0VOP0EgREUgRElTVFJJQlVJPz9PIE4/Ty1FWENMVVNJVkEKCkNvbSBhIGFwcmVzZW50YT8/byBkZXN0YSBsaWNlbj9hLCB2b2M/IChvIGF1dG9yIChlcykgb3UgbyB0aXR1bGFyIGRvcyBkaXJlaXRvcyBkZSBhdXRvcikgY29uY2VkZSA/IFVuaXZlcnNpZGFkZSAKWFhYIChTaWdsYSBkYSBVbml2ZXJzaWRhZGUpIG8gZGlyZWl0byBuP28tZXhjbHVzaXZvIGRlIHJlcHJvZHV6aXIsICB0cmFkdXppciAoY29uZm9ybWUgZGVmaW5pZG8gYWJhaXhvKSwgZS9vdSAKZGlzdHJpYnVpciBhIHN1YSB0ZXNlIG91IGRpc3NlcnRhPz9vIChpbmNsdWluZG8gbyByZXN1bW8pIHBvciB0b2RvIG8gbXVuZG8gbm8gZm9ybWF0byBpbXByZXNzbyBlIGVsZXRyP25pY28gZSAKZW0gcXVhbHF1ZXIgbWVpbywgaW5jbHVpbmRvIG9zIGZvcm1hdG9zID91ZGlvIG91IHY/ZGVvLgoKVm9jPyBjb25jb3JkYSBxdWUgYSBTaWdsYSBkZSBVbml2ZXJzaWRhZGUgcG9kZSwgc2VtIGFsdGVyYXIgbyBjb250ZT9kbywgdHJhbnNwb3IgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YT8/byAKcGFyYSBxdWFscXVlciBtZWlvIG91IGZvcm1hdG8gcGFyYSBmaW5zIGRlIHByZXNlcnZhPz9vLgoKVm9jPyB0YW1iP20gY29uY29yZGEgcXVlIGEgU2lnbGEgZGUgVW5pdmVyc2lkYWRlIHBvZGUgbWFudGVyIG1haXMgZGUgdW1hIGM/cGlhIGEgc3VhIHRlc2Ugb3UgCmRpc3NlcnRhPz9vIHBhcmEgZmlucyBkZSBzZWd1cmFuP2EsIGJhY2stdXAgZSBwcmVzZXJ2YT8/by4KClZvYz8gZGVjbGFyYSBxdWUgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YT8/byA/IG9yaWdpbmFsIGUgcXVlIHZvYz8gdGVtIG8gcG9kZXIgZGUgY29uY2VkZXIgb3MgZGlyZWl0b3MgY29udGlkb3MgCm5lc3RhIGxpY2VuP2EuIFZvYz8gdGFtYj9tIGRlY2xhcmEgcXVlIG8gZGVwP3NpdG8gZGEgc3VhIHRlc2Ugb3UgZGlzc2VydGE/P28gbj9vLCBxdWUgc2VqYSBkZSBzZXUgCmNvbmhlY2ltZW50bywgaW5mcmluZ2UgZGlyZWl0b3MgYXV0b3JhaXMgZGUgbmluZ3U/bS4KCkNhc28gYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YT8/byBjb250ZW5oYSBtYXRlcmlhbCBxdWUgdm9jPyBuP28gcG9zc3VpIGEgdGl0dWxhcmlkYWRlIGRvcyBkaXJlaXRvcyBhdXRvcmFpcywgdm9jPyAKZGVjbGFyYSBxdWUgb2J0ZXZlIGEgcGVybWlzcz9vIGlycmVzdHJpdGEgZG8gZGV0ZW50b3IgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIHBhcmEgY29uY2VkZXIgPyBTaWdsYSBkZSBVbml2ZXJzaWRhZGUgCm9zIGRpcmVpdG9zIGFwcmVzZW50YWRvcyBuZXN0YSBsaWNlbj9hLCBlIHF1ZSBlc3NlIG1hdGVyaWFsIGRlIHByb3ByaWVkYWRlIGRlIHRlcmNlaXJvcyBlc3Q/IGNsYXJhbWVudGUgCmlkZW50aWZpY2FkbyBlIHJlY29uaGVjaWRvIG5vIHRleHRvIG91IG5vIGNvbnRlP2RvIGRhIHRlc2Ugb3UgZGlzc2VydGE/P28gb3JhIGRlcG9zaXRhZGEuCgpDQVNPIEEgVEVTRSBPVSBESVNTRVJUQT8/TyBPUkEgREVQT1NJVEFEQSBURU5IQSBTSURPIFJFU1VMVEFETyBERSBVTSBQQVRST0M/TklPIE9VIApBUE9JTyBERSBVTUEgQUc/TkNJQSBERSBGT01FTlRPIE9VIE9VVFJPIE9SR0FOSVNNTyBRVUUgTj9PIFNFSkEgQSBTSUdMQSBERSAKVU5JVkVSU0lEQURFLCBWT0M/IERFQ0xBUkEgUVVFIFJFU1BFSVRPVSBUT0RPUyBFIFFVQUlTUVVFUiBESVJFSVRPUyBERSBSRVZJUz9PIENPTU8gClRBTUI/TSBBUyBERU1BSVMgT0JSSUdBPz9FUyBFWElHSURBUyBQT1IgQ09OVFJBVE8gT1UgQUNPUkRPLgoKQSBTaWdsYSBkZSBVbml2ZXJzaWRhZGUgc2UgY29tcHJvbWV0ZSBhIGlkZW50aWZpY2FyIGNsYXJhbWVudGUgbyBzZXUgbm9tZSAocykgb3UgbyhzKSBub21lKHMpIGRvKHMpIApkZXRlbnRvcihlcykgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIGRhIHRlc2Ugb3UgZGlzc2VydGE/P28sIGUgbj9vIGZhcj8gcXVhbHF1ZXIgYWx0ZXJhPz9vLCBhbD9tIGRhcXVlbGFzIApjb25jZWRpZGFzIHBvciBlc3RhIGxpY2VuP2EuCg==Biblioteca Digital de Teses e Dissertaçõeshttps://tede.ufrrj.br/PUBhttps://tede.ufrrj.br/oai/requestbibliot@ufrrj.br||bibliot@ufrrj.bropendoar:2022-10-03T14:46:29Biblioteca Digital de Teses e Dissertações da UFRRJ - Universidade Federal Rural do Rio de Janeiro (UFRRJ)false
dc.title.por.fl_str_mv Investiga??o vibracional do comportamento anf?tero de formamida: um composto modelo para sistemas biol?gicos
dc.title.alternative.eng.fl_str_mv Vibrational investigation on the amphoteric behavior of formamide: a model compound to biological systems
title Investiga??o vibracional do comportamento anf?tero de formamida: um composto modelo para sistemas biol?gicos
spellingShingle Investiga??o vibracional do comportamento anf?tero de formamida: um composto modelo para sistemas biol?gicos
Silva, Elaine Felix da
formamida
rea??es ?cido-base
espectroscopia vibracional
formamide
acid-base reactions
vibrational spectroscopy
Qu?mica
title_short Investiga??o vibracional do comportamento anf?tero de formamida: um composto modelo para sistemas biol?gicos
title_full Investiga??o vibracional do comportamento anf?tero de formamida: um composto modelo para sistemas biol?gicos
title_fullStr Investiga??o vibracional do comportamento anf?tero de formamida: um composto modelo para sistemas biol?gicos
title_full_unstemmed Investiga??o vibracional do comportamento anf?tero de formamida: um composto modelo para sistemas biol?gicos
title_sort Investiga??o vibracional do comportamento anf?tero de formamida: um composto modelo para sistemas biol?gicos
author Silva, Elaine Felix da
author_facet Silva, Elaine Felix da
author_role author
dc.contributor.advisor1.fl_str_mv Alves, Wagner de Assis
dc.contributor.advisor1ID.fl_str_mv 012.536.367-29
dc.contributor.advisor1Lattes.fl_str_mv http://lattes.cnpq.br/5177340148368546
dc.contributor.referee1.fl_str_mv Andrade, Gustavo F. S.
dc.contributor.referee2.fl_str_mv Faria, Roberto B.
dc.contributor.authorID.fl_str_mv 002.022.197-55
dc.contributor.authorLattes.fl_str_mv http://lattes.cnpq.br/1846610965418096
dc.contributor.author.fl_str_mv Silva, Elaine Felix da
contributor_str_mv Alves, Wagner de Assis
Andrade, Gustavo F. S.
Faria, Roberto B.
dc.subject.por.fl_str_mv formamida
rea??es ?cido-base
espectroscopia vibracional
topic formamida
rea??es ?cido-base
espectroscopia vibracional
formamide
acid-base reactions
vibrational spectroscopy
Qu?mica
dc.subject.eng.fl_str_mv formamide
acid-base reactions
vibrational spectroscopy
dc.subject.cnpq.fl_str_mv Qu?mica
description Formamide (FA) is the simplest model capable of mimicking the interactions that take place between peptides, proteins and DNA structures, so that the understanding of its acidbase chemistry is paramount. Its behavior as an acid has been investigated towards two biologically relevant bases: pyridine (Py) and pyridazine (PRD), by means of Raman spectra of ternary mixtures in several compositions. Molecular association extent values (1-a) reveal that the concentration of the 1:1 Py:FA adduct is always greater in the equilibrium as compared to the 1:2 PRD:FA complex, thus confirming that Py is the stronger base, following the trend exhibited by the Proton Affinity (P.A.) values reported for such azabenzenes. The thermodynamic parameters of the PRD/FA system have been determined through temperature dependent Raman experiments, and the comparison between the values determined in this study and those available for the Py/FA system confirmed the conclusions drawn from the concentration dependent investigation. Furthermore, the calculated DfG? values show that the whole process is not spontaneous, due to an extremely negative DfS? value, which is explained in terms of the two hydrogen bonds formed in the complex containing PRD. The basic behavior of FA has been evaluated through coordination reactions with main group metal cations Mg(II), Ca(II) and Al(III), aiming to predict the catalytic potential of the solvates towards neutral amide hydrolysis. This has been accomplished by monitoring the changes on the vibrational modes nCO e nCN of FA provoked by coordination. From the downshift of the former vibrational mode and upshift of the second vibration, it was possible to observe the formation of [Mg(FA)6](ClO4)2, whose ionic FA form (I) is present and has been regarded as the active intermediate in the most likely hydrolysis mechanism. The trend observed in the presence of Ca(II) is markedly different, since both vibrational modes are upshifted on the formation of [Ca(FA)4](ClO4)2, implying that the molecular FA structure (II) prevails. Coordination of FA to Al(III) leads to changes in many regions and allows the observation of metal-ligand (nAlO e nAlN) vibrations for the first time. Both nCO e nCN modes are upshifted, indicating that FA form II is stabilized upon formation of [Al(FA)5]Cl3, which is stable up to around 110?C. Stabilization of different FA structures seems to be related to the size of the studied ions as compared to the ion radius values of the transition metals.
publishDate 2013
dc.date.issued.fl_str_mv 2013-08-02
dc.date.accessioned.fl_str_mv 2020-08-17T12:52:47Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv SILVA, Elaine Felix da. Investiga??o vibracional do comportamento anf?tero de formamida: um composto modelo para sistemas biol?gicos. 2013. 69 f. Disserta??o (Mestrado em Qu?mica) - Instituto de Ci?ncias Exatas, Universidade Federal Rural do Rio de Janeiro, Serop?dica, 2013.
dc.identifier.uri.fl_str_mv https://tede.ufrrj.br/jspui/handle/jspui/3823
identifier_str_mv SILVA, Elaine Felix da. Investiga??o vibracional do comportamento anf?tero de formamida: um composto modelo para sistemas biol?gicos. 2013. 69 f. Disserta??o (Mestrado em Qu?mica) - Instituto de Ci?ncias Exatas, Universidade Federal Rural do Rio de Janeiro, Serop?dica, 2013.
url https://tede.ufrrj.br/jspui/handle/jspui/3823
dc.language.iso.fl_str_mv por
language por
dc.relation.references.por.fl_str_mv [1] Huheey, J. E., Keiter, E. A., Keiter, R. L. Inorganic Chemistry: Principles of Structure and Reactivity. 4? edi??o. Nova York: Harper Collins College Publishers, 1993. [2] Miessler, G. L., Tarr, D. A. Inorganic Chemistry. 3? edi??o. Minessota: Pearson Prentice Hall, 2003. [3] McMurry, J. Organic Chemistry. 5? edi??o. Calif?rnia: Brookes and Cole, 2000. [4] Bruice, P. Y., Organic Chemistry. 6? edi??o. Minessota: Pearson Prentice Hall, 2011. [5] Reimarsson, P., Lindman, B., Inorg. Nucl. Chem. Lett., 1977, v. 13, p. 449. [6] Eisenstadt, M., Friedman, H. L., J. Chem. Phys., 1966, v. 44, p. 1407. [7] Templeman, G. J., Van Geet, A. L., J. Am. Chem. Soc., 1972, v. 94, p. 5578. [8] Greenberg, M. S., Popov, A. I., J. Solution Chem., 1976, v. 5, p. 653. [9] Drago, R. S., Carlson, R. L., Rose, N. J., Wenz, D. A., J. Am. Chem. Soc., 1961, v. 83, p. 3572. [10] Umebayashi, Y., Matsumoto, K., Watanabe, M., Katoh, K., Ishiguro, S., Anal. Sciences, 2001, v. 17, p. 323. [11] Fujii, K., Kumai, T., Takamuku, T., Umebayashi, Y., Ishiguro, S., J. Phys. Chem. A, 2006, v. 110, p. 1798. [12] Lawrence, C., Gal, J.-F., Lewis Basicity and Affinity Scales: Data and Measurement. 1? edi??o. West Sussex: John Wiley and Sons, 2010. [13] Mayer, U., Guttman, V., Gerger, W., Monat. Chem., 1975, v. 106, p. 1235. [14] Guttman, V., Electrochim. Acta, 1976, v. 21, p. 661. [15] Shi, Y., Zhou, Z., Zhang, H., J. Phys. Chem. A, 2004, v. 108, p. 6414. [16] Parreira, R. L. T., Caramori, G. F., Morgon, N. H., Galembeck, S. E., Int. J. Quantum Chem., 2012, v. 112, p. 1401. [17] Elola, M. D., Ladanyi, B. M., J. Chem. Phys., 2006, v. 125, p. 184506. 63 [18] Ojha, A. K., Srivastava, S. K., Koster, J., Shukla, M. K., Leszczynski, J., Asthana, B. P., Kiefer, W., J. Mol. Struct., 2004, v. 689, p. 127. [19] Alves, W. A., Antunes, O. A. C., Hollauer, E., Vib. Spectrosc., 2006, v. 40, p. 257. [20] Fawcett, W. R., Kloss, A. A., J. Phys. Chem., 1996, v. 100, p. 2019. [21] Alves, W. A., Antunes, O. A. C., Spectrochim. Acta A, 2007, v. 67, p. 847. [22] Alves, W. A., Santos, P. S., J. Raman Spectrosc. 2007, v. 38, p. 1332. [23] Mortensen, A., Nielsen, O. F., Yarwood, J., Shelley, V., Vib. Spectrosc., 1994, v. 8, p. 37. [24] Mortensen, A., Nielsen, O. F., Yarwood, J., Shelley, V., J. Phys. Chem., 1994, v. 98, p. 5221. [25] Benevenuto, R. L., Alves, W. A., J. Raman Spectrosc., 2008, v. 39, p. 490. [26] Norbert, G., Alves, W. A., J. Raman Spectrosc., 2008, v. 39, p. 685. [27] Alves, W. A., J. Raman Spectrosc. 2009, v. 40, p. 366. [28] Berg, E. R., Freeman, S. A., Green, D.D., Ulness, D. J., J. Phys. Chem. A, 2006, v. 110, p. 13434. [29] Jacinto, F. S. F., Siqueira, L. J. A., Alves, W. A., J. Raman Spectrosc. 2009, v. 40, p. 1585. [30] Srivastava, S. K., Schl?cker, S., Alves, W. A., J. Raman Spectrosc. 2010, v. 41, p. 1714. [31] Alves, W. A., Vib. Spectrosc. 2010, v. 53, p. 285. [32] Silva, E. F., Siqueira, L. J. A., Alves, W. A., Vib. Spectrosc., 2011, v. 55, p. 273. [33] Lees, A. J., Straughan, B. P., Gardiner, D. J., J. Mol. Struct., 1981, v. 71, p. 61. [34] Bukowska, J., J. Mol. Struct., 1983, v. 98, p. 1. [35] Powell, D. B., Woolins, A., Spectrochim. Acta, 1985, v. 41A, p. 1023. [36] Alves, W. A., J. Mol. Struct., 2007, v. 829, p. 37. 64 [37] Pereira, L. M., Alves, W. A., Vib. Spectrosc., 2011, v. 56, p. 250. [38] Freire, A. I., Alves, W. A., Spectrochim. Acta A, 2012, v. 89, p. 259. [39] Burton, N. A., Chiu, S. S.-L., Davidson, M. M., Green, D. V. S., Hillier, I. H., McDowall, J. J. W., Vincent, M. A., J. Chem. Soc. Faraday Trans., 1993, v. 89, p. 2631. [40] Fogarasi, G., Szalay, P. G., J. Phys. Chem. A, 1997, v. 101, p. 1400. [41] Basch, H., Hoz, S., Chem. Phys. Letters, 1998, v. 294, p. 117. [42] Reimers, J., Hall, E. L., J. Am. Chem. Soc., 1999, v. 121, p. 3730. [43] Lehninger, A. L., Nelson, D. L., Cox, M. M. Principles of Biochemistry. 4? edi??o. Nova York: W.H. Freeman, 2005. [44] Kirby, A. J., Acc.Chem. Res., 1997, v. 30, p. 290. [45] Kasende, O., Zeegers-Huyskens, Th. J. Phys. Chem., 1984, v.88, p. 2132. [46] Joesten, M. D., Schaad, L. J. Hydrogen Bonding. Nova York: Marcel Dekker, 1974. [47] Kim, J. H., Lee, H.-J., Kim, E.-J., Jung, H. J., Choi, Y.-S., Park, J., Yoon, C.-J. J. Phys. Chem. A 2004, v. 108, p. 921. [48] Demicheli, C. P., Maia, E. C. P., Qu?mica de Coordena??o em Sistemas Biol?gicos. In: Farias, R. B. (Ed.). Qu?mica de Coordena??o ? Fundamentos e Atualidades. 2? edi??o. Campinas, 2009, p. 167-204. [49] Sigel, H., Martin, R. B., Chem. Rev., 1982, v. 82, p. 385. [50] Sayre, L. M., J. Am. Chem. Soc., 1986, v. 108, p. 1632. [51] Chin, J., Jubian, V., Mrejen, K., J. Chem. Soc. Chem. Commun., 1990, p. 1326. [52] Chin, J., Acc. Chem. Res., 1991, v. 24, p. 145. [53] Maslak, P., Sczepanski, J. J., Parvez, M., J. Am. Chem. Soc., 1991, v. 113, p. 1062. [54] Kahne, D., Still, W. C., J. Am. Chem. Soc., 1988, v. 110, p. 7529. [55] Slebocka-Tilk, H., Sauriol, F., Monette, M., Brown, R. S., Can. J. Chem., 2002, v. 80, p. 1343. 65 [56] Almerindo, G. I., Pliego Jr., J. R., J. Braz. Chem. Soc., 2007, v. 18, p. 696. [57] Watson, A. A., Farlie, D. P., Inorg. Chem., 1995, v. 34, p. 3087. [58] Kaminskaia, N. V., Kostic, N. M., Inorg. Chem., 1997, v. 36, p. 5917. [59] Balahura, R. J., Jordan, R. B., J. Am. Chem. Soc., 1970, v. 92, p. 1533. [60] Andersson, M., Water, Air and Soil Pollution, 1988, v. 39, p. 439. [61] Banks, W. A., Kastin, A. J., Neurosci. Biobehav. Rev., 1989, v. 13, p. 47. [62] Darbre, P. D., J. Appl. Toxicol., 2006, v. 26, p. 191. [63] Yumoto, S., Kakimi, S., Ohsaki, A., Ishikawa, A., J. Inorg. Biochem., 2009, v. 103, p. 1579. [64] Ferraro, J. R., Nakamoto, K., Brown, C. W. Introductory Raman Spectroscopy. 2? edi??o.Calif?rnia: Academic Press, 2003. [65] Czernuszewicz, R. S., Spiro, T. G., IR, Raman and Resonance Raman Spectroscopy. In: SOLOMON, E. I., LEVER, A. B. P. (Eds.). Inorganic Electronic Structure and Spectroscopy: Volume I ? Methodology. 2? edi??o. Nova Jersey: John Wiley and Sons, 2006. p. 353-441. [66] Sala, O. Fundamentos da Espectroscopia Raman e no Infravermelho. 2? edi??o. S?o Paulo: Editora UNESP, 2008. [67] Byrnes, J. Unexplored Ordnance Detection and Mitigation. 1? edi??o. Dordrecht: Springer Science, 2009. [68] Meier, R. J., Vib. Spectrosc., 2005, v. 39, p. 266. [69] Brauns, E. B., Meier, R. J., Vib. Spectrosc., 2009, v. 49, p. 303. [70] Press, W. H., Flannery, B. P., Teukolsky, S. A., Vetterling, W. T. Numerical Recipes in C, the Art of Scientific Computing. New York: Cambridge University Press, 1988. [71] Suzuki, I., Bull. Chem. Soc. Jpn. 1960, v. 33, p. 1359. [72] Urena, F. P., G?mez, M. F., Gonz?lez, J. J. L., Torres, E., M., Spectrochim. Acta, Part A., 2003, v. 59, p. 2815. 66 [73] Breda, S., Reva, I. D., Lapisnki, L., Nowak, M. J., Fausto, R. J. Mol. Struct., 2006, v. 786, p. 193. [74] Li, X., Liu, L., Schlegel, H. B., J. Am. Chem. Soc., 2002, v. 124, p. 9639. [75] Grabowski, S. J., Sokalski, W. A., Dyguda, E., Leszczynski, J., J. Phys. Chem. B, 2006, v. 110, p. 6444. [76] Atkins, P., De Paula, J., Physical Chemistry, 8? edi??o. Oxford: Oxford University Press, 2006. [77] Badger, R. M., Bauer, S. H., J. Chem. Phys., 1937, v. 5, p. 839. [78] Asada, M., Fujimori, T, Fujii, K., Kanzaki, R., Umebayashi, Y., Ishiguro, S., J. Raman Spectrosc., 2007, v. 38, p. 417. [79] Fuentes, C. G., Patel, S. J.,J. Inorg. Nucl. Chem., 1970, v. 32, p. 1575. [80] Emons, H. H., Janneck, E., Kabisch, G., Pollmer, K., Z. Anorg. Allg. Chem., 1984, v. 511, p. 148. [81] Dalibart, M., Derouault, J., Granger, P., Chapelle, S., Inorg. Chem.,1982, v. 21, p. 1040. [82] Seo, J.-S., Kim, K.-W., Cho, H.-G.,Spectrochim. Acta A, 2003, v. 59, p. 477. [83] Fortier, S., Creber, K. A. M., Acta Cryst. C, 1985, v. 41, p. 1763. [84] Chabanel, M., Touaj, K., J. Chem. Soc. Faraday Trans., 1996, v. 92, p. 4207. [85] Edwards, H. G. M., Farwell, D. W., Johnson, A. F., J. Mol. Struct., 1995, v. 344, p. 37.
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal Rural do Rio de Janeiro
dc.publisher.program.fl_str_mv Programa de P?s-Gradua??o em Qu?mica
dc.publisher.initials.fl_str_mv UFRRJ
dc.publisher.country.fl_str_mv Brasil
dc.publisher.department.fl_str_mv Instituto de Ci?ncias Exatas
publisher.none.fl_str_mv Universidade Federal Rural do Rio de Janeiro
dc.source.none.fl_str_mv reponame:Biblioteca Digital de Teses e Dissertações da UFRRJ
instname:Universidade Federal Rural do Rio de Janeiro (UFRRJ)
instacron:UFRRJ
instname_str Universidade Federal Rural do Rio de Janeiro (UFRRJ)
instacron_str UFRRJ
institution UFRRJ
reponame_str Biblioteca Digital de Teses e Dissertações da UFRRJ
collection Biblioteca Digital de Teses e Dissertações da UFRRJ
bitstream.url.fl_str_mv http://localhost:8080/tede/bitstream/jspui/3823/4/2013+-+Elaine+Felix+da+Silva.pdf.jpg
http://localhost:8080/tede/bitstream/jspui/3823/3/2013+-+Elaine+Felix+da+Silva.pdf.txt
http://localhost:8080/tede/bitstream/jspui/3823/2/2013+-+Elaine+Felix+da+Silva.pdf
http://localhost:8080/tede/bitstream/jspui/3823/1/license.txt
bitstream.checksum.fl_str_mv cc73c4c239a4c332d642ba1e7c7a9fb2
d285c7541fc1a2bc5d48f364e3300764
c91b6a0f45d60d3bf8d73c39d7e44e0a
7b5ba3d2445355f386edab96125d42b7
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da UFRRJ - Universidade Federal Rural do Rio de Janeiro (UFRRJ)
repository.mail.fl_str_mv bibliot@ufrrj.br||bibliot@ufrrj.br
_version_ 1800313509352833024