Estudo da formação dos complexos coacervados obtidos a partir de proteínas globulares

Detalhes bibliográficos
Autor(a) principal: Santos, Monique Barreto
Data de Publicação: 2016
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Biblioteca Digital de Teses e Dissertações da UFRRJ
Texto Completo: https://rima.ufrrj.br/jspui/handle/20.500.14407/9313
Resumo: Proteínas são biopolímeros de grande importância nutricional e funcional tendo sido amplamente utilizadas como ingredientes alimentares. A interação entre duas proteínas diferentes e opostamente carregadas pode dar origem aos complexo coacervado, atualmente utilizados como ingrediente na tecnologia de alimentos ou como agente de microencapsulação. A formação de complexos coacervados entre Ovalbumina e Lisozima e entre Albumina sérica bovina (BSA) e Lisozima foi investigada em função do pH, razão de massa total e concentração de NaCl. Para as duas interações estudadas, a complexação acorreu em uma ampla faixa de pH, que corresponde ao intervalo entre os pI das proteínas. Entre Ovalbumina e Lisozima a interação foi mais intensa na razão r=1 em pH 7,5 e para BSA e Lisozima a maior formação de complexos ocorreu na razão r=0,5 e pH 9,0. Alterações na força iônica por adição de NaCl influenciaram negativamente a interação entre Albumina BSA e Lisozima já na concentração de 0,01 mol/L e a 0,03 mol/L suprimiu a interação entre Ovalbumina e Lisozima. Por meio do Potencial - zeta pode-se verificar que a formação de complexos insolúveis foi máxima próximo ao pI para todas as razões estudadas, indicando que a interação se deu por neutralização de cargas opostas. Os espectros no infravermelho sugeriram que interações eletrostáticas conduziram as interações no entanto, ligações de hidrogênio também tiveram participação no processo de coacervação para as proteínas em estudo. As micrografias revelaram que os complexos insolúveis apresentavam estrutura esférica e o tamanho de partícula demonstrou a formação de estruturas com tamanho médio em torno de 2 m, as quais são bem maiores do que o tamanho obervado para as proteínas isoladas. A calorimetria de titulação isotérmica demonstrou que a interação entre Ovalbumina e Lisozima foi exotérmica, a qual ocorreu em duas etapas, a primeira entropicamente dirigida e a segunda entalpicamente dirigida. A calorimetria diferencial de varredura sugeriu, pela presença de um único ponto de desnaturação, que a interação entre BSA e Lisozima deu origem a um novo biopolímero com temperatura de desnaturação a 67°C, diferente das proteínas isoladas. Estes estudos sugeriram que complexos coacervados formados entre Ovalbumina / Lisozima e BSA / Lisozima poderiam ser utilizados como agente encapsulante de bioativos ou como ingredientes alimentares com o objetivo de agregar valor nutricional.
id UFRRJ-1_df7b979ce86e82ee12615167b4abadd7
oai_identifier_str oai:rima.ufrrj.br:20.500.14407/9313
network_acronym_str UFRRJ-1
network_name_str Repositório Institucional da UFRRJ
repository_id_str
spelling Santos, Monique BarretoRojas, Edwin Elard Garciahttp://lattes.cnpq.br/1205756654416987Souza, Clitor Junior Fernandes deCarvalho, Carlos Wanderlei Piler124.432.767-08http://lattes.cnpq.br/11221842134137912023-12-21T18:37:23Z2023-12-21T18:37:23Z2016-02-29SANTOS, Monique Barreto. Estudo da formação dos complexos coacervados obtidos a partir de proteínas globulares. 2016. 97 f. Dissertação (mestrado em CIÊNCIA E TECNOLOGIA DE ALIMENTOS). Instituto de Tecnologia, Universidade Federal Rural do Rio de Janeiro, Seropédica, RJ, 2016.https://rima.ufrrj.br/jspui/handle/20.500.14407/9313Proteínas são biopolímeros de grande importância nutricional e funcional tendo sido amplamente utilizadas como ingredientes alimentares. A interação entre duas proteínas diferentes e opostamente carregadas pode dar origem aos complexo coacervado, atualmente utilizados como ingrediente na tecnologia de alimentos ou como agente de microencapsulação. A formação de complexos coacervados entre Ovalbumina e Lisozima e entre Albumina sérica bovina (BSA) e Lisozima foi investigada em função do pH, razão de massa total e concentração de NaCl. Para as duas interações estudadas, a complexação acorreu em uma ampla faixa de pH, que corresponde ao intervalo entre os pI das proteínas. Entre Ovalbumina e Lisozima a interação foi mais intensa na razão r=1 em pH 7,5 e para BSA e Lisozima a maior formação de complexos ocorreu na razão r=0,5 e pH 9,0. Alterações na força iônica por adição de NaCl influenciaram negativamente a interação entre Albumina BSA e Lisozima já na concentração de 0,01 mol/L e a 0,03 mol/L suprimiu a interação entre Ovalbumina e Lisozima. Por meio do Potencial - zeta pode-se verificar que a formação de complexos insolúveis foi máxima próximo ao pI para todas as razões estudadas, indicando que a interação se deu por neutralização de cargas opostas. Os espectros no infravermelho sugeriram que interações eletrostáticas conduziram as interações no entanto, ligações de hidrogênio também tiveram participação no processo de coacervação para as proteínas em estudo. As micrografias revelaram que os complexos insolúveis apresentavam estrutura esférica e o tamanho de partícula demonstrou a formação de estruturas com tamanho médio em torno de 2 m, as quais são bem maiores do que o tamanho obervado para as proteínas isoladas. A calorimetria de titulação isotérmica demonstrou que a interação entre Ovalbumina e Lisozima foi exotérmica, a qual ocorreu em duas etapas, a primeira entropicamente dirigida e a segunda entalpicamente dirigida. A calorimetria diferencial de varredura sugeriu, pela presença de um único ponto de desnaturação, que a interação entre BSA e Lisozima deu origem a um novo biopolímero com temperatura de desnaturação a 67°C, diferente das proteínas isoladas. Estes estudos sugeriram que complexos coacervados formados entre Ovalbumina / Lisozima e BSA / Lisozima poderiam ser utilizados como agente encapsulante de bioativos ou como ingredientes alimentares com o objetivo de agregar valor nutricional.Conselho Nacional de Desenvolvimento Científico e Tecnológico - CNPqProteins are biopolymers of high nutritional and functional significance has been widely used as food ingredients. The interaction between two different proteins oppositely charged, and can give rise to complex coacervate currently used as an ingredient in food technology or as a microencapsulating agent. The formation of complex coacervates between Lysozyme and Ovalbumin and between Bovine serum albumin (BSA) and Lysozyme has been investigated as a function of pH, mass ratio of total and concentration of NaCl. For both interactions studied, complexing latched in a wide pH range which corresponds to the interval between the pI of proteins. Among Ovalbumin and Lysozyme interaction was more intense in the ratio r = 1 at pH 7.5 and BSA and Lysozyme most complex formation has occurred on the ratio r = 0.5 and pH 9.0. Changes in the ionic strength by adding NaCl negatively affected the interaction between Lysozyme and BSA already at a concentration of 0.01 mol / L and 0.03 mol / L abolished the interaction between Lysozyme and Ovalbumin. Through Potential - zeta can be seen that the formation of insoluble complexes was highest near the pI for all studied reasons, indicating that the interaction is given by neutralization of opposite charges. The Infrared spectra suggested that electrostatic interactions led interactions however, hydrogen bonds also had a hand in the coacervation process for the proteins under study. The micrographs showed that the insoluble complexes showed spherical structure and particle size showed the formation of structures with an average size around 2 m, much larger than the observable size for the isolated proteins. The isothermal titration calorimetry showed that the interaction between Lysozyme and Ovalbumin was exothermic and was performed in two steps, the first and second entropy directed enthalpy driven. The differential scanning calorimetry suggested the presence of a single point of denaturation, that the interaction between Lysozyme and BSA led to a new biopolymer with denaturation temperature 67 ° C differs from isolated proteins. These studies suggested that complex coacervates formed between Ovalbumin / Lysozyme and BSA / Lysozyme could be used as the encapsulating bioactive agent or as food ingredients in order to add nutritional value.application/pdfporUniversidade Federal Rural do Rio de JaneiroPrograma de Pós-Graduação em Ciência e Tecnologia de AlimentosUFRRJBrasilInstituto de TecnologiaMicroencapsulationDifferential scanning calorimetryMicroencapsulanteCalorimetria diferencial de varreduraCalorimetria de titulação isotérmicaIsothermal titration calorimetryCiência e Tecnologia de AlimentosEstudo da formação dos complexos coacervados obtidos a partir de proteínas globularesStudy of formation of complex coacervates obtained from globular proteinsinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisANEMA, S. G.; KRUIF, C. G. Coacervates of lysozyme and β-casein. Journal of Colloid and Interface Science, v. 398, p. 255–261, 2013. ANEMA, S. G.; KRUIF, C. G. K. DE. Complex coacervates of lactotransferrin and β-lactoglobulin. Journal of Colloid and Interface Science, v.430, p.214–220, 2014. ANTONOV, Y. A.; ZHURAVLEVA, I. L.; CARDINAELS, R.; MOLDENAERS, P.. Structural studies on the interaction of lysozyme with dextran sulfate. Food Hydrocolloids, v. 44, p.71-80, 2015. ARZENŠEK, D; PODGORNIK, R; KUZMAN, D. Dynamic light scattering and application to proteins in solutions. University Ljubljana, Faculty of mathematics and physics, p.1-19, 2010 C 81 BARTH, A. & ZSCHERP, C. What vibrations tell us about proteins. Q. Rev. Biophys., v. 35, n. 4, p. 369–430, 2002. BYE, J. W.; FALCONER, R. J. Thermal stability of lysozyme as a function of ion concentration: A reappraisal of the relationship between the Hofmeister series and protein stability. Protein Sci, v. 22, n. 11, p. 1563–1570, 2013. CHAI, C.; LEE, J.; HUANG, Q. The effect of ionic strength on the rheology of pH-induced bovine serum albumin/κ-carrageenan coacervates. LWT - Food Science and Technology, v. 59, n. 1, p. 356–360, 2014. DAMODARAN, S.; PARKIN, K. L.; FENNEMA, O. R. Química de Alimentos de Fennema. 4. ed., Artmed, Porto Alegre, p. 900. 2010. DESFOUGÈRES, Y.; CROGUENNEC, T.; LECHEVALIER, V.; BOUHALLAB, S.; NAU, F. Charge and Size Drive Spontaneous Self-Assembly of Oppositely Charged Globular Proteins into Microspheres. The Journal of Physical Chemistry B, v. 114, n. 12, p. 4138–4144, 2010. DE VRIES, R.; COHEN STUART, M. Theory and simulations of macroion complexation. Current Opinion in Colloid & Interface Science, v. 11, n. 5, p. 295-301, 2006. DIARRASSOUBA, F. G. R. et al. Self-assembly of β-lactoglobulin and egg white lysozyme as a potential carrier for nutraceuticals. Food Chemistry, v. 173, p. 203–209, 2015. DONG, A., HUANG, P., CAUGHEY, W. S. Protein secondary structures in water from second derivative amide I infrared spectra. Biochemistry, v.29, p.3303-3308, 1990. FAO-DATABASE. FOOD AND AGRICULTURE ORGANIZATION OF THE UNITED NATIONS. 2015. Acesso em: 01 Fevereiro GIRARD, M.; TURGEON, S. L.; GAUTHIER, S. F. Interbiopolymer complexing between β-lactoglobulin and low- and high-methylated pectin measured by potentiometric titration and ultrafiltration. Food Hydrocolloids, v. 16, p. 585 - 591, 2002. GULÃO, E. D. S.; DE SOUZA, C. J. F.; DA SILVA, F. A. S.; COIMBRA, J. S. R.; GARCIA-ROJA, E. E. Complex coacervates obtained from lactoferrin and gum arabic: Formation and characterization. Food Research International, n. 0, 2014. GULÃO, E. DA S.; SOUZA, C. J. F. DE; ANDRADE, C. T.; GARCIA-ROJAS, E. E. Complex coacervates obtained from peptide leucine and gum arabic: formation and characterization. Food Chem, v. 194, p. 680–686, 2016. HIROSHI, M.A.; KIKUCHI, R.; OGAWA, K.; KOKUFUTA, E. Light scattering study of complex formation between protein and polyelectrolyte at various ionic strengths. Colloids and Surfaces B: Biointerfaces, v.56, p. 142–148, 2007. HOWELL, N. K., YEBOAH, N. A., & LEWIS, D. F. V. Studies on the electrostatic interactions of lysozyme with a-lactalbumin and b-lactoglobulin. International Journal of Food Science and Technology, v. 30, p. 813–824, 1995. 82 HUANG, C.Y.; BALAKRISHNAN, G.; SPIRO, T. G. Protein secondary structure from deep-UV resonance Raman spectroscopy. Journal of Raman Spectroscopy, v. 37, n. 1-3, p. 277-282, 2006. HUANG, G.Q.; SUN, Y.T.; XIAO, J.X.; YANG, J. Complex coacervation of soybean protein isolate and chitosan. Food Chemistry, v. 135, n. 2, p. 534–539, 2012. IUPAC, Compendium of Chemical Terminology. second ed., Blackwell Scientific Publications, Oxford, 1997. JONES, O. G.; MCCLEMENTS, D. J. Functional Biopolymer Particles: Design, Fabrication, and Applications. Comprehensive Reviews in Food Science and Food Safety, v. 9, p. 374 - 397, 2010. KHURSHID, S.; SARIDAKIS, E.; GOVADA, L.; CHAYEN, N. E. Porous nucleating agents for protein crystallization. Nat Protoc, v. 9, n. 7, p. 1621–1633, 2014. KLASSEN, D. R.; ELMER, C. M.; NICKERSON, M. T. Associative phase separation involving canola protein isolate with both sulphated and carboxylated polysaccharides. Food Chemistry, v. 126, n. 3, p. 1094-1101, 2011. KRUIF, C. G.; TUINIER, R. Polysaccharide protein interactions. Food Hydrocolloids, v.15, p.555-563, 2001. KOVACS-NOLAN, J.; PHILLIPS, M.; MINE, Y. Advances in the Value of Eggs and Egg Components for Human Health. Journal of Agricultural and Food Chemistry, v. 53, n. 22, p. 8421-8431, 2005. LI, X.; FANG, Y.; AL-ASSAF, S.; PHILLIPS, G. O.; YAO, X.; ZHANG, Y.; ZHAO, M.; ZHANG, K.; JIANG, F. Complexation of bovine serum albumin and sugar beet pectin: structural transitions and phase diagram. Langmuir, v. 28, n. 27, p. 10164–10176, 2012. LIU, J.; SHIM, Y. Y.; WANG, Y.; REANEY, M. J. T. Intermolecular interaction and complex coacervation between bovine serum albumin and gum from whole flaxseed (Linum usitatissimum L.). Food Hydrocolloids, v. 49, p. 95–103, 2015. MICHNIK, A. Thermal stability of bovine serum albumin DSC study. Journal of Thermal Analysis and Calorimetry, v. 71, n. 2, p. 509–519, 2003. ORDÓÑEZ, J. A.; RODRIGUEZ, M. I. C.; ÁLVAREZ, L. F.; SANZ, M. L. G.; MINGUILLÓN, G. D. G. F.; PERALES, L. H.; CORTECERCO, M. D. S. Tecnologia de Alimentos: alimentos de origem animal. Porto Alegre: Artmed, v. 2, p. 269-294, 2005. PARMAR, A. S.; MUSCHOL, M. Hydration and hydrodynamic interactions of lysozyme: effects of chaotropic vs. kosmotropic ions. Biophysical Journal, v. 97, p. 590-598, 2009. 83 PELEGRINE, D. H. G. e CARRASQUEIRA, R. L. Aproveitamento do soro do leite no enriquecimento nutricional de bebidas. Braz. J. Food Technol., VII BMCFB, P.145-151, 2008. QIN, B. Y., BEWLEY, M. C., CREAMER, L. K., BAKER, H. M., BAKER, E. N., & JAMESON, G. B. Structural basis of the Tanford transition of bovine b-lactoglobulin. Biochemistry, v.37, p.14014–14023, 1998. SEYREK, E.; DUBIN, P. L.; TRIBET, C.; GAMBLE, E. A. Ionic Strength Dependence of Protein-Polyelectrolyte Interactions. Biomacromolecules, v. 4, n. 2, p. 273-282, 2003. SGARBIERI, V. C. Proteínas em alimentos proteicos.São Paulo: Varela, p. 57-172, 1996. SOUZA, C. J. F.; GARCIA-ROJAS, E. E. Effects of salt and protein concentrations on the association and dissociation of ovalbumin-pectin complexes. Food Hydrocolloids , v. 47, n. 5, p. 124-129, 5. 2015 SCHMITT, C.; PALMA DA SILVA, T.; RAMI-SHOJAEI, C. B. S.; FROSSARD, P.; KOLODZIEJCZYK, E.; LESER, M. E. Effect of time on the interfacial and foaming properties of β-lactoglobulin/acacia gum electrostatic complexes and coacervates at pH 4.2. Langmuir, v.21, p.7786-7795, 2005. SCHMITT, C.; SANCHEZ, C.; DESOBRY-BANON, S.; HARDY, J. Structure and Technofunctional Properties of Protein-Polysaccharide Complexes: A Review. Critical Reviews in Food Science and Nutrition, v. 38, n. 8, p. 689-753, 1998 SCHMIDT, V. ; GIACOMELLI, C.; SOLDI, V.Thermal stability of films formed by soy protein isolate–sodium dodecyl sulfate. Polymer Degradation and Stability, v.87, p. 25–31, 2005 SCHMITT, C.; TURGEON, S. L. Protein/polysaccharide complexes and coacervates in food systems. Advances in Colloid and Interface Science, v. 167, n. 1–2, p. 63-70, 2011. SOUZA, C. J.F.; ROJAS, E. E. G.; MELO, N. R. G., LINS, J.F.C. Complex coacervates obtained from interaction egg yolk lipoprotein and polysaccharides. Food Hydrocolloids, v. 30, p. 375-381, 2013. STADELMAN, W. J.; COTTERILL, O. J. Egg Science and Technology. Food Products Press, 1995. STUART, B. H. Infrared Spectroscopy of Biological Applications: An Overview. In: (Ed.). Encyclopedia of Analytical Chemistry: John Wiley & Sons, Ltd, 2006. TOLSTOGUZOV, V.B. Functional properties of food proteins and role of protein polysaccharide interaction. Food Hydrocolloid, v.4, p. 429-468, 1991. TURGEON, S. L.; SCHMITT, C.; SANCHEZ, C. Protein-polysaccharide complexes and coacervates. Current Opinion in Colloid & Interface Science, v.12. p.166–178. 2007. 84 TURGEON, S. L., BEAULIEU, M., SCHMITT, C., & SANCHEZ, C. Protein-polysaccharide interactions: phase-ordering kinetics, thermodynamic and structural aspects. Current Opinion in Colloid & Interface Science, v. 8, p. 401-414, 2003. TURGEON, S. L.; LANEUVILLE, S.I. CHAPTER 11 - Protein + Polysaccharide Coacervates And Complexes: From Scientific Background To Their Application As Functional Ingredients In Food Products. In: STEFAN, K.;IAN, T. N.;JOHAN B. UBBINKA2 - STEFAN KASAPIS, I. T. N. e JOHAN, B. U. (Ed.). Modern Biopolymer Science. San Diego: Academic Press, 2009. p.225-260. VINAYAHAN, T.; WILLIAMS, P. A.; PHILLIPS, G. O. Electrostatic interaction and complex formation between gum arabic and bovine serum albumin. Biomacromolecules, v. 11, n. 12, p. 3367–3374, 2010. WATER, J. J.; SCHACK, M. M. ; VELAZQUEZ-CAMPOY, A.; MALTESEN, M. J.; VAN DE WEERT, M.; JORGENSEN, L. Complex coacervates of hyaluronic acid and lysozyme: effect on protein structure and physical stability. Eur J Pharm Biopharm, v. 88, n. 2, p. 325–331, 2014. WEINBRECK, F.; NIEUWENHUIJSE, H.; ROBIJN, G. W.; DE KRUIF, C. G. Complex Formation of Whey Proteins: Exocellular Polysaccharide EPS B40. Langmuir, v. 19, p. 9404-9410, 2003. YANG, Y.; ANVARI, M.; PAN, C.H.; CHUNG. D. Characterisation of interactions between fish gelatin and gum arabic in aqueous solutions. Food Chemistry, v.135 p. 555–561, 2012. YE, A.; FLANAGAN, J.; SINGH, H. Formation of stable nanoparticles via electrostatic complexation between sodium caseinate and gum arabic. Biopolymers, v. 82, n. 2, p. 121-133, 2006. YOSHIDA, K;. SOKHAKIAN, S; DUBIN, P.L. Binding of Polycarboxylic Acids to Cationic Mixed Micelles: Effect of Polymer Counterion Binding and Polyion Charge Distribution. Jornal of Colloid and Interface Science, v. 205, p. 257-264, 1998 YUAN, Y.; WAN, Z.-L.; YANG, X.-Q. ; YIN, S.-W. Associative interactions between chitosan and soy protein fractions: Effects of pH, mixing ratio, heat treatment and ionic strength. Food Research International, v. 55, p. 207–214, 2014. ZHANG, L. Y.; ZHANG, X. H.; ABBAS, S.; KARANGWA, E. The study of Ph dependent complexation between gelatin and gum arabic by morphology evolution and conformational transition. Food Hydrocolloids, v. 30, p. 323-332, 2013. ZHAO, Y.; LI, F.; CARVAJAL, M.T.; HARRIS, M.T. Interactions between bovine serum albumin and alginate: an evaluation of alginate as protein carrier. Journal of Colloid and Interface Science, v. 332 , p. 345–353, 2009.https://tede.ufrrj.br/retrieve/4753/2016%20-%20%20Monique%20Barreto%20Santos.pdf.jpghttps://tede.ufrrj.br/retrieve/11835/2016%20-%20Monique%20Barreto%20Santos.pdf.jpghttps://tede.ufrrj.br/retrieve/19386/2016%20-%20Monique%20Barreto%20Santos.pdf.jpghttps://tede.ufrrj.br/retrieve/25685/2016%20-%20Monique%20Barreto%20Santos.pdf.jpghttps://tede.ufrrj.br/retrieve/32102/2016%20-%20Monique%20Barreto%20Santos.pdf.jpghttps://tede.ufrrj.br/retrieve/38524/2016%20-%20Monique%20Barreto%20Santos.pdf.jpghttps://tede.ufrrj.br/retrieve/44884/2016%20-%20Monique%20Barreto%20Santos.pdf.jpghttps://tede.ufrrj.br/retrieve/51294/2016%20-%20Monique%20Barreto%20Santos.pdf.jpghttps://tede.ufrrj.br/retrieve/57750/2016%20-%20Monique%20Barreto%20Santos.pdf.jpghttps://tede.ufrrj.br/jspui/handle/jspui/1297Submitted by Sandra Pereira (srpereira@ufrrj.br) on 2016-10-17T10:53:24Z No. of bitstreams: 1 2016 - Monique Barreto Santos.pdf: 2356049 bytes, checksum: 8a379b47682a5e067746503ee59b6d27 (MD5)Made available in DSpace on 2016-10-17T10:53:24Z (GMT). No. of bitstreams: 1 2016 - Monique Barreto Santos.pdf: 2356049 bytes, checksum: 8a379b47682a5e067746503ee59b6d27 (MD5) Previous issue date: 2016-02-29info:eu-repo/semantics/openAccessreponame:Biblioteca Digital de Teses e Dissertações da UFRRJinstname:Universidade Federal Rural do Rio de Janeiro (UFRRJ)instacron:UFRRJORIGINAL2016 - Monique Barreto Santos.pdfDocumento principalapplication/pdf2356049https://rima.ufrrj.br/jspui/bitstream/20.500.14407/9313/1/2016%20-%20Monique%20Barreto%20Santos.pdf8a379b47682a5e067746503ee59b6d27MD51THUMBNAIL2016 - Monique Barreto Santos.pdf.jpgGenerated Thumbnailimage/jpeg1943https://rima.ufrrj.br/jspui/bitstream/20.500.14407/9313/2/2016%20-%20%20Monique%20Barreto%20Santos.pdf.jpgcc73c4c239a4c332d642ba1e7c7a9fb2MD522016 - Monique Barreto Santos.pdf.jpgGenerated Thumbnailimage/jpeg1943https://rima.ufrrj.br/jspui/bitstream/20.500.14407/9313/3/2016%20-%20Monique%20Barreto%20Santos.pdf.jpgcc73c4c239a4c332d642ba1e7c7a9fb2MD53TEXT2016 - Monique Barreto Santos.pdf.txtExtracted Texttext/plain222028https://rima.ufrrj.br/jspui/bitstream/20.500.14407/9313/4/2016%20-%20%20Monique%20Barreto%20Santos.pdf.txtabcaea7a9cb2098d4c9c90a169502de6MD542016 - Monique Barreto Santos.pdf.txtExtracted Texttext/plain222028https://rima.ufrrj.br/jspui/bitstream/20.500.14407/9313/5/2016%20-%20Monique%20Barreto%20Santos.pdf.txtabcaea7a9cb2098d4c9c90a169502de6MD55LICENSElicense.txttext/plain2089https://rima.ufrrj.br/jspui/bitstream/20.500.14407/9313/6/license.txt7b5ba3d2445355f386edab96125d42b7MD5620.500.14407/93132023-12-21 15:37:23.868oai:rima.ufrrj.br:20.500.14407/9313Tk9UQTogQ09MT1FVRSBBUVVJIEEgU1VBIFBSP1BSSUEgTElDRU4/QQpFc3RhIGxpY2VuP2EgZGUgZXhlbXBsbyA/IGZvcm5lY2lkYSBhcGVuYXMgcGFyYSBmaW5zIGluZm9ybWF0aXZvcy4KCkxJQ0VOP0EgREUgRElTVFJJQlVJPz9PIE4/Ty1FWENMVVNJVkEKCkNvbSBhIGFwcmVzZW50YT8/byBkZXN0YSBsaWNlbj9hLCB2b2M/IChvIGF1dG9yIChlcykgb3UgbyB0aXR1bGFyIGRvcyBkaXJlaXRvcyBkZSBhdXRvcikgY29uY2VkZSA/IFVuaXZlcnNpZGFkZSAKWFhYIChTaWdsYSBkYSBVbml2ZXJzaWRhZGUpIG8gZGlyZWl0byBuP28tZXhjbHVzaXZvIGRlIHJlcHJvZHV6aXIsICB0cmFkdXppciAoY29uZm9ybWUgZGVmaW5pZG8gYWJhaXhvKSwgZS9vdSAKZGlzdHJpYnVpciBhIHN1YSB0ZXNlIG91IGRpc3NlcnRhPz9vIChpbmNsdWluZG8gbyByZXN1bW8pIHBvciB0b2RvIG8gbXVuZG8gbm8gZm9ybWF0byBpbXByZXNzbyBlIGVsZXRyP25pY28gZSAKZW0gcXVhbHF1ZXIgbWVpbywgaW5jbHVpbmRvIG9zIGZvcm1hdG9zID91ZGlvIG91IHY/ZGVvLgoKVm9jPyBjb25jb3JkYSBxdWUgYSBTaWdsYSBkZSBVbml2ZXJzaWRhZGUgcG9kZSwgc2VtIGFsdGVyYXIgbyBjb250ZT9kbywgdHJhbnNwb3IgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YT8/byAKcGFyYSBxdWFscXVlciBtZWlvIG91IGZvcm1hdG8gcGFyYSBmaW5zIGRlIHByZXNlcnZhPz9vLgoKVm9jPyB0YW1iP20gY29uY29yZGEgcXVlIGEgU2lnbGEgZGUgVW5pdmVyc2lkYWRlIHBvZGUgbWFudGVyIG1haXMgZGUgdW1hIGM/cGlhIGEgc3VhIHRlc2Ugb3UgCmRpc3NlcnRhPz9vIHBhcmEgZmlucyBkZSBzZWd1cmFuP2EsIGJhY2stdXAgZSBwcmVzZXJ2YT8/by4KClZvYz8gZGVjbGFyYSBxdWUgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YT8/byA/IG9yaWdpbmFsIGUgcXVlIHZvYz8gdGVtIG8gcG9kZXIgZGUgY29uY2VkZXIgb3MgZGlyZWl0b3MgY29udGlkb3MgCm5lc3RhIGxpY2VuP2EuIFZvYz8gdGFtYj9tIGRlY2xhcmEgcXVlIG8gZGVwP3NpdG8gZGEgc3VhIHRlc2Ugb3UgZGlzc2VydGE/P28gbj9vLCBxdWUgc2VqYSBkZSBzZXUgCmNvbmhlY2ltZW50bywgaW5mcmluZ2UgZGlyZWl0b3MgYXV0b3JhaXMgZGUgbmluZ3U/bS4KCkNhc28gYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YT8/byBjb250ZW5oYSBtYXRlcmlhbCBxdWUgdm9jPyBuP28gcG9zc3VpIGEgdGl0dWxhcmlkYWRlIGRvcyBkaXJlaXRvcyBhdXRvcmFpcywgdm9jPyAKZGVjbGFyYSBxdWUgb2J0ZXZlIGEgcGVybWlzcz9vIGlycmVzdHJpdGEgZG8gZGV0ZW50b3IgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIHBhcmEgY29uY2VkZXIgPyBTaWdsYSBkZSBVbml2ZXJzaWRhZGUgCm9zIGRpcmVpdG9zIGFwcmVzZW50YWRvcyBuZXN0YSBsaWNlbj9hLCBlIHF1ZSBlc3NlIG1hdGVyaWFsIGRlIHByb3ByaWVkYWRlIGRlIHRlcmNlaXJvcyBlc3Q/IGNsYXJhbWVudGUgCmlkZW50aWZpY2FkbyBlIHJlY29uaGVjaWRvIG5vIHRleHRvIG91IG5vIGNvbnRlP2RvIGRhIHRlc2Ugb3UgZGlzc2VydGE/P28gb3JhIGRlcG9zaXRhZGEuCgpDQVNPIEEgVEVTRSBPVSBESVNTRVJUQT8/TyBPUkEgREVQT1NJVEFEQSBURU5IQSBTSURPIFJFU1VMVEFETyBERSBVTSBQQVRST0M/TklPIE9VIApBUE9JTyBERSBVTUEgQUc/TkNJQSBERSBGT01FTlRPIE9VIE9VVFJPIE9SR0FOSVNNTyBRVUUgTj9PIFNFSkEgQSBTSUdMQSBERSAKVU5JVkVSU0lEQURFLCBWT0M/IERFQ0xBUkEgUVVFIFJFU1BFSVRPVSBUT0RPUyBFIFFVQUlTUVVFUiBESVJFSVRPUyBERSBSRVZJUz9PIENPTU8gClRBTUI/TSBBUyBERU1BSVMgT0JSSUdBPz9FUyBFWElHSURBUyBQT1IgQ09OVFJBVE8gT1UgQUNPUkRPLgoKQSBTaWdsYSBkZSBVbml2ZXJzaWRhZGUgc2UgY29tcHJvbWV0ZSBhIGlkZW50aWZpY2FyIGNsYXJhbWVudGUgbyBzZXUgbm9tZSAocykgb3UgbyhzKSBub21lKHMpIGRvKHMpIApkZXRlbnRvcihlcykgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIGRhIHRlc2Ugb3UgZGlzc2VydGE/P28sIGUgbj9vIGZhcj8gcXVhbHF1ZXIgYWx0ZXJhPz9vLCBhbD9tIGRhcXVlbGFzIApjb25jZWRpZGFzIHBvciBlc3RhIGxpY2VuP2EuCg==Biblioteca Digital de Teses e Dissertaçõeshttps://tede.ufrrj.br/PUBhttps://tede.ufrrj.br/oai/requestbibliot@ufrrj.br||bibliot@ufrrj.bropendoar:2023-12-21T18:37:23Biblioteca Digital de Teses e Dissertações da UFRRJ - Universidade Federal Rural do Rio de Janeiro (UFRRJ)false
dc.title.por.fl_str_mv Estudo da formação dos complexos coacervados obtidos a partir de proteínas globulares
dc.title.alternative.eng.fl_str_mv Study of formation of complex coacervates obtained from globular proteins
title Estudo da formação dos complexos coacervados obtidos a partir de proteínas globulares
spellingShingle Estudo da formação dos complexos coacervados obtidos a partir de proteínas globulares
Santos, Monique Barreto
Microencapsulation
Differential scanning calorimetry
Microencapsulante
Calorimetria diferencial de varredura
Calorimetria de titulação isotérmica
Isothermal titration calorimetry
Ciência e Tecnologia de Alimentos
title_short Estudo da formação dos complexos coacervados obtidos a partir de proteínas globulares
title_full Estudo da formação dos complexos coacervados obtidos a partir de proteínas globulares
title_fullStr Estudo da formação dos complexos coacervados obtidos a partir de proteínas globulares
title_full_unstemmed Estudo da formação dos complexos coacervados obtidos a partir de proteínas globulares
title_sort Estudo da formação dos complexos coacervados obtidos a partir de proteínas globulares
author Santos, Monique Barreto
author_facet Santos, Monique Barreto
author_role author
dc.contributor.author.fl_str_mv Santos, Monique Barreto
dc.contributor.advisor1.fl_str_mv Rojas, Edwin Elard Garcia
dc.contributor.advisor1Lattes.fl_str_mv http://lattes.cnpq.br/1205756654416987
dc.contributor.referee1.fl_str_mv Souza, Clitor Junior Fernandes de
dc.contributor.referee2.fl_str_mv Carvalho, Carlos Wanderlei Piler
dc.contributor.authorID.fl_str_mv 124.432.767-08
dc.contributor.authorLattes.fl_str_mv http://lattes.cnpq.br/1122184213413791
contributor_str_mv Rojas, Edwin Elard Garcia
Souza, Clitor Junior Fernandes de
Carvalho, Carlos Wanderlei Piler
dc.subject.eng.fl_str_mv Microencapsulation
Differential scanning calorimetry
topic Microencapsulation
Differential scanning calorimetry
Microencapsulante
Calorimetria diferencial de varredura
Calorimetria de titulação isotérmica
Isothermal titration calorimetry
Ciência e Tecnologia de Alimentos
dc.subject.por.fl_str_mv Microencapsulante
Calorimetria diferencial de varredura
Calorimetria de titulação isotérmica
Isothermal titration calorimetry
dc.subject.cnpq.fl_str_mv Ciência e Tecnologia de Alimentos
description Proteínas são biopolímeros de grande importância nutricional e funcional tendo sido amplamente utilizadas como ingredientes alimentares. A interação entre duas proteínas diferentes e opostamente carregadas pode dar origem aos complexo coacervado, atualmente utilizados como ingrediente na tecnologia de alimentos ou como agente de microencapsulação. A formação de complexos coacervados entre Ovalbumina e Lisozima e entre Albumina sérica bovina (BSA) e Lisozima foi investigada em função do pH, razão de massa total e concentração de NaCl. Para as duas interações estudadas, a complexação acorreu em uma ampla faixa de pH, que corresponde ao intervalo entre os pI das proteínas. Entre Ovalbumina e Lisozima a interação foi mais intensa na razão r=1 em pH 7,5 e para BSA e Lisozima a maior formação de complexos ocorreu na razão r=0,5 e pH 9,0. Alterações na força iônica por adição de NaCl influenciaram negativamente a interação entre Albumina BSA e Lisozima já na concentração de 0,01 mol/L e a 0,03 mol/L suprimiu a interação entre Ovalbumina e Lisozima. Por meio do Potencial - zeta pode-se verificar que a formação de complexos insolúveis foi máxima próximo ao pI para todas as razões estudadas, indicando que a interação se deu por neutralização de cargas opostas. Os espectros no infravermelho sugeriram que interações eletrostáticas conduziram as interações no entanto, ligações de hidrogênio também tiveram participação no processo de coacervação para as proteínas em estudo. As micrografias revelaram que os complexos insolúveis apresentavam estrutura esférica e o tamanho de partícula demonstrou a formação de estruturas com tamanho médio em torno de 2 m, as quais são bem maiores do que o tamanho obervado para as proteínas isoladas. A calorimetria de titulação isotérmica demonstrou que a interação entre Ovalbumina e Lisozima foi exotérmica, a qual ocorreu em duas etapas, a primeira entropicamente dirigida e a segunda entalpicamente dirigida. A calorimetria diferencial de varredura sugeriu, pela presença de um único ponto de desnaturação, que a interação entre BSA e Lisozima deu origem a um novo biopolímero com temperatura de desnaturação a 67°C, diferente das proteínas isoladas. Estes estudos sugeriram que complexos coacervados formados entre Ovalbumina / Lisozima e BSA / Lisozima poderiam ser utilizados como agente encapsulante de bioativos ou como ingredientes alimentares com o objetivo de agregar valor nutricional.
publishDate 2016
dc.date.issued.fl_str_mv 2016-02-29
dc.date.accessioned.fl_str_mv 2023-12-21T18:37:23Z
dc.date.available.fl_str_mv 2023-12-21T18:37:23Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv SANTOS, Monique Barreto. Estudo da formação dos complexos coacervados obtidos a partir de proteínas globulares. 2016. 97 f. Dissertação (mestrado em CIÊNCIA E TECNOLOGIA DE ALIMENTOS). Instituto de Tecnologia, Universidade Federal Rural do Rio de Janeiro, Seropédica, RJ, 2016.
dc.identifier.uri.fl_str_mv https://rima.ufrrj.br/jspui/handle/20.500.14407/9313
identifier_str_mv SANTOS, Monique Barreto. Estudo da formação dos complexos coacervados obtidos a partir de proteínas globulares. 2016. 97 f. Dissertação (mestrado em CIÊNCIA E TECNOLOGIA DE ALIMENTOS). Instituto de Tecnologia, Universidade Federal Rural do Rio de Janeiro, Seropédica, RJ, 2016.
url https://rima.ufrrj.br/jspui/handle/20.500.14407/9313
dc.language.iso.fl_str_mv por
language por
dc.relation.references.por.fl_str_mv ANEMA, S. G.; KRUIF, C. G. Coacervates of lysozyme and β-casein. Journal of Colloid and Interface Science, v. 398, p. 255–261, 2013. ANEMA, S. G.; KRUIF, C. G. K. DE. Complex coacervates of lactotransferrin and β-lactoglobulin. Journal of Colloid and Interface Science, v.430, p.214–220, 2014. ANTONOV, Y. A.; ZHURAVLEVA, I. L.; CARDINAELS, R.; MOLDENAERS, P.. Structural studies on the interaction of lysozyme with dextran sulfate. Food Hydrocolloids, v. 44, p.71-80, 2015. ARZENŠEK, D; PODGORNIK, R; KUZMAN, D. Dynamic light scattering and application to proteins in solutions. University Ljubljana, Faculty of mathematics and physics, p.1-19, 2010 C 81 BARTH, A. & ZSCHERP, C. What vibrations tell us about proteins. Q. Rev. Biophys., v. 35, n. 4, p. 369–430, 2002. BYE, J. W.; FALCONER, R. J. Thermal stability of lysozyme as a function of ion concentration: A reappraisal of the relationship between the Hofmeister series and protein stability. Protein Sci, v. 22, n. 11, p. 1563–1570, 2013. CHAI, C.; LEE, J.; HUANG, Q. The effect of ionic strength on the rheology of pH-induced bovine serum albumin/κ-carrageenan coacervates. LWT - Food Science and Technology, v. 59, n. 1, p. 356–360, 2014. DAMODARAN, S.; PARKIN, K. L.; FENNEMA, O. R. Química de Alimentos de Fennema. 4. ed., Artmed, Porto Alegre, p. 900. 2010. DESFOUGÈRES, Y.; CROGUENNEC, T.; LECHEVALIER, V.; BOUHALLAB, S.; NAU, F. Charge and Size Drive Spontaneous Self-Assembly of Oppositely Charged Globular Proteins into Microspheres. The Journal of Physical Chemistry B, v. 114, n. 12, p. 4138–4144, 2010. DE VRIES, R.; COHEN STUART, M. Theory and simulations of macroion complexation. Current Opinion in Colloid & Interface Science, v. 11, n. 5, p. 295-301, 2006. DIARRASSOUBA, F. G. R. et al. Self-assembly of β-lactoglobulin and egg white lysozyme as a potential carrier for nutraceuticals. Food Chemistry, v. 173, p. 203–209, 2015. DONG, A., HUANG, P., CAUGHEY, W. S. Protein secondary structures in water from second derivative amide I infrared spectra. Biochemistry, v.29, p.3303-3308, 1990. FAO-DATABASE. FOOD AND AGRICULTURE ORGANIZATION OF THE UNITED NATIONS. 2015. Acesso em: 01 Fevereiro GIRARD, M.; TURGEON, S. L.; GAUTHIER, S. F. Interbiopolymer complexing between β-lactoglobulin and low- and high-methylated pectin measured by potentiometric titration and ultrafiltration. Food Hydrocolloids, v. 16, p. 585 - 591, 2002. GULÃO, E. D. S.; DE SOUZA, C. J. F.; DA SILVA, F. A. S.; COIMBRA, J. S. R.; GARCIA-ROJA, E. E. Complex coacervates obtained from lactoferrin and gum arabic: Formation and characterization. Food Research International, n. 0, 2014. GULÃO, E. DA S.; SOUZA, C. J. F. DE; ANDRADE, C. T.; GARCIA-ROJAS, E. E. Complex coacervates obtained from peptide leucine and gum arabic: formation and characterization. Food Chem, v. 194, p. 680–686, 2016. HIROSHI, M.A.; KIKUCHI, R.; OGAWA, K.; KOKUFUTA, E. Light scattering study of complex formation between protein and polyelectrolyte at various ionic strengths. Colloids and Surfaces B: Biointerfaces, v.56, p. 142–148, 2007. HOWELL, N. K., YEBOAH, N. A., & LEWIS, D. F. V. Studies on the electrostatic interactions of lysozyme with a-lactalbumin and b-lactoglobulin. International Journal of Food Science and Technology, v. 30, p. 813–824, 1995. 82 HUANG, C.Y.; BALAKRISHNAN, G.; SPIRO, T. G. Protein secondary structure from deep-UV resonance Raman spectroscopy. Journal of Raman Spectroscopy, v. 37, n. 1-3, p. 277-282, 2006. HUANG, G.Q.; SUN, Y.T.; XIAO, J.X.; YANG, J. Complex coacervation of soybean protein isolate and chitosan. Food Chemistry, v. 135, n. 2, p. 534–539, 2012. IUPAC, Compendium of Chemical Terminology. second ed., Blackwell Scientific Publications, Oxford, 1997. JONES, O. G.; MCCLEMENTS, D. J. Functional Biopolymer Particles: Design, Fabrication, and Applications. Comprehensive Reviews in Food Science and Food Safety, v. 9, p. 374 - 397, 2010. KHURSHID, S.; SARIDAKIS, E.; GOVADA, L.; CHAYEN, N. E. Porous nucleating agents for protein crystallization. Nat Protoc, v. 9, n. 7, p. 1621–1633, 2014. KLASSEN, D. R.; ELMER, C. M.; NICKERSON, M. T. Associative phase separation involving canola protein isolate with both sulphated and carboxylated polysaccharides. Food Chemistry, v. 126, n. 3, p. 1094-1101, 2011. KRUIF, C. G.; TUINIER, R. Polysaccharide protein interactions. Food Hydrocolloids, v.15, p.555-563, 2001. KOVACS-NOLAN, J.; PHILLIPS, M.; MINE, Y. Advances in the Value of Eggs and Egg Components for Human Health. Journal of Agricultural and Food Chemistry, v. 53, n. 22, p. 8421-8431, 2005. LI, X.; FANG, Y.; AL-ASSAF, S.; PHILLIPS, G. O.; YAO, X.; ZHANG, Y.; ZHAO, M.; ZHANG, K.; JIANG, F. Complexation of bovine serum albumin and sugar beet pectin: structural transitions and phase diagram. Langmuir, v. 28, n. 27, p. 10164–10176, 2012. LIU, J.; SHIM, Y. Y.; WANG, Y.; REANEY, M. J. T. Intermolecular interaction and complex coacervation between bovine serum albumin and gum from whole flaxseed (Linum usitatissimum L.). Food Hydrocolloids, v. 49, p. 95–103, 2015. MICHNIK, A. Thermal stability of bovine serum albumin DSC study. Journal of Thermal Analysis and Calorimetry, v. 71, n. 2, p. 509–519, 2003. ORDÓÑEZ, J. A.; RODRIGUEZ, M. I. C.; ÁLVAREZ, L. F.; SANZ, M. L. G.; MINGUILLÓN, G. D. G. F.; PERALES, L. H.; CORTECERCO, M. D. S. Tecnologia de Alimentos: alimentos de origem animal. Porto Alegre: Artmed, v. 2, p. 269-294, 2005. PARMAR, A. S.; MUSCHOL, M. Hydration and hydrodynamic interactions of lysozyme: effects of chaotropic vs. kosmotropic ions. Biophysical Journal, v. 97, p. 590-598, 2009. 83 PELEGRINE, D. H. G. e CARRASQUEIRA, R. L. Aproveitamento do soro do leite no enriquecimento nutricional de bebidas. Braz. J. Food Technol., VII BMCFB, P.145-151, 2008. QIN, B. Y., BEWLEY, M. C., CREAMER, L. K., BAKER, H. M., BAKER, E. N., & JAMESON, G. B. Structural basis of the Tanford transition of bovine b-lactoglobulin. Biochemistry, v.37, p.14014–14023, 1998. SEYREK, E.; DUBIN, P. L.; TRIBET, C.; GAMBLE, E. A. Ionic Strength Dependence of Protein-Polyelectrolyte Interactions. Biomacromolecules, v. 4, n. 2, p. 273-282, 2003. SGARBIERI, V. C. Proteínas em alimentos proteicos.São Paulo: Varela, p. 57-172, 1996. SOUZA, C. J. F.; GARCIA-ROJAS, E. E. Effects of salt and protein concentrations on the association and dissociation of ovalbumin-pectin complexes. Food Hydrocolloids , v. 47, n. 5, p. 124-129, 5. 2015 SCHMITT, C.; PALMA DA SILVA, T.; RAMI-SHOJAEI, C. B. S.; FROSSARD, P.; KOLODZIEJCZYK, E.; LESER, M. E. Effect of time on the interfacial and foaming properties of β-lactoglobulin/acacia gum electrostatic complexes and coacervates at pH 4.2. Langmuir, v.21, p.7786-7795, 2005. SCHMITT, C.; SANCHEZ, C.; DESOBRY-BANON, S.; HARDY, J. Structure and Technofunctional Properties of Protein-Polysaccharide Complexes: A Review. Critical Reviews in Food Science and Nutrition, v. 38, n. 8, p. 689-753, 1998 SCHMIDT, V. ; GIACOMELLI, C.; SOLDI, V.Thermal stability of films formed by soy protein isolate–sodium dodecyl sulfate. Polymer Degradation and Stability, v.87, p. 25–31, 2005 SCHMITT, C.; TURGEON, S. L. Protein/polysaccharide complexes and coacervates in food systems. Advances in Colloid and Interface Science, v. 167, n. 1–2, p. 63-70, 2011. SOUZA, C. J.F.; ROJAS, E. E. G.; MELO, N. R. G., LINS, J.F.C. Complex coacervates obtained from interaction egg yolk lipoprotein and polysaccharides. Food Hydrocolloids, v. 30, p. 375-381, 2013. STADELMAN, W. J.; COTTERILL, O. J. Egg Science and Technology. Food Products Press, 1995. STUART, B. H. Infrared Spectroscopy of Biological Applications: An Overview. In: (Ed.). Encyclopedia of Analytical Chemistry: John Wiley & Sons, Ltd, 2006. TOLSTOGUZOV, V.B. Functional properties of food proteins and role of protein polysaccharide interaction. Food Hydrocolloid, v.4, p. 429-468, 1991. TURGEON, S. L.; SCHMITT, C.; SANCHEZ, C. Protein-polysaccharide complexes and coacervates. Current Opinion in Colloid & Interface Science, v.12. p.166–178. 2007. 84 TURGEON, S. L., BEAULIEU, M., SCHMITT, C., & SANCHEZ, C. Protein-polysaccharide interactions: phase-ordering kinetics, thermodynamic and structural aspects. Current Opinion in Colloid & Interface Science, v. 8, p. 401-414, 2003. TURGEON, S. L.; LANEUVILLE, S.I. CHAPTER 11 - Protein + Polysaccharide Coacervates And Complexes: From Scientific Background To Their Application As Functional Ingredients In Food Products. In: STEFAN, K.;IAN, T. N.;JOHAN B. UBBINKA2 - STEFAN KASAPIS, I. T. N. e JOHAN, B. U. (Ed.). Modern Biopolymer Science. San Diego: Academic Press, 2009. p.225-260. VINAYAHAN, T.; WILLIAMS, P. A.; PHILLIPS, G. O. Electrostatic interaction and complex formation between gum arabic and bovine serum albumin. Biomacromolecules, v. 11, n. 12, p. 3367–3374, 2010. WATER, J. J.; SCHACK, M. M. ; VELAZQUEZ-CAMPOY, A.; MALTESEN, M. J.; VAN DE WEERT, M.; JORGENSEN, L. Complex coacervates of hyaluronic acid and lysozyme: effect on protein structure and physical stability. Eur J Pharm Biopharm, v. 88, n. 2, p. 325–331, 2014. WEINBRECK, F.; NIEUWENHUIJSE, H.; ROBIJN, G. W.; DE KRUIF, C. G. Complex Formation of Whey Proteins: Exocellular Polysaccharide EPS B40. Langmuir, v. 19, p. 9404-9410, 2003. YANG, Y.; ANVARI, M.; PAN, C.H.; CHUNG. D. Characterisation of interactions between fish gelatin and gum arabic in aqueous solutions. Food Chemistry, v.135 p. 555–561, 2012. YE, A.; FLANAGAN, J.; SINGH, H. Formation of stable nanoparticles via electrostatic complexation between sodium caseinate and gum arabic. Biopolymers, v. 82, n. 2, p. 121-133, 2006. YOSHIDA, K;. SOKHAKIAN, S; DUBIN, P.L. Binding of Polycarboxylic Acids to Cationic Mixed Micelles: Effect of Polymer Counterion Binding and Polyion Charge Distribution. Jornal of Colloid and Interface Science, v. 205, p. 257-264, 1998 YUAN, Y.; WAN, Z.-L.; YANG, X.-Q. ; YIN, S.-W. Associative interactions between chitosan and soy protein fractions: Effects of pH, mixing ratio, heat treatment and ionic strength. Food Research International, v. 55, p. 207–214, 2014. ZHANG, L. Y.; ZHANG, X. H.; ABBAS, S.; KARANGWA, E. The study of Ph dependent complexation between gelatin and gum arabic by morphology evolution and conformational transition. Food Hydrocolloids, v. 30, p. 323-332, 2013. ZHAO, Y.; LI, F.; CARVAJAL, M.T.; HARRIS, M.T. Interactions between bovine serum albumin and alginate: an evaluation of alginate as protein carrier. Journal of Colloid and Interface Science, v. 332 , p. 345–353, 2009.
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal Rural do Rio de Janeiro
dc.publisher.program.fl_str_mv Programa de Pós-Graduação em Ciência e Tecnologia de Alimentos
dc.publisher.initials.fl_str_mv UFRRJ
dc.publisher.country.fl_str_mv Brasil
dc.publisher.department.fl_str_mv Instituto de Tecnologia
publisher.none.fl_str_mv Universidade Federal Rural do Rio de Janeiro
dc.source.none.fl_str_mv reponame:Biblioteca Digital de Teses e Dissertações da UFRRJ
instname:Universidade Federal Rural do Rio de Janeiro (UFRRJ)
instacron:UFRRJ
instname_str Universidade Federal Rural do Rio de Janeiro (UFRRJ)
instacron_str UFRRJ
institution UFRRJ
reponame_str Biblioteca Digital de Teses e Dissertações da UFRRJ
collection Biblioteca Digital de Teses e Dissertações da UFRRJ
bitstream.url.fl_str_mv https://rima.ufrrj.br/jspui/bitstream/20.500.14407/9313/1/2016%20-%20Monique%20Barreto%20Santos.pdf
https://rima.ufrrj.br/jspui/bitstream/20.500.14407/9313/2/2016%20-%20%20Monique%20Barreto%20Santos.pdf.jpg
https://rima.ufrrj.br/jspui/bitstream/20.500.14407/9313/3/2016%20-%20Monique%20Barreto%20Santos.pdf.jpg
https://rima.ufrrj.br/jspui/bitstream/20.500.14407/9313/4/2016%20-%20%20Monique%20Barreto%20Santos.pdf.txt
https://rima.ufrrj.br/jspui/bitstream/20.500.14407/9313/5/2016%20-%20Monique%20Barreto%20Santos.pdf.txt
https://rima.ufrrj.br/jspui/bitstream/20.500.14407/9313/6/license.txt
bitstream.checksum.fl_str_mv 8a379b47682a5e067746503ee59b6d27
cc73c4c239a4c332d642ba1e7c7a9fb2
cc73c4c239a4c332d642ba1e7c7a9fb2
abcaea7a9cb2098d4c9c90a169502de6
abcaea7a9cb2098d4c9c90a169502de6
7b5ba3d2445355f386edab96125d42b7
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da UFRRJ - Universidade Federal Rural do Rio de Janeiro (UFRRJ)
repository.mail.fl_str_mv bibliot@ufrrj.br||bibliot@ufrrj.br
_version_ 1810108138392649728