Estudo das interações dos sistemas formados a partir biopolímeros

Detalhes bibliográficos
Autor(a) principal: Gulão, Eliana da Silva
Data de Publicação: 2014
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Biblioteca Digital de Teses e Dissertações da UFRRJ
Texto Completo: https://rima.ufrrj.br/jspui/handle/20.500.14407/11112
Resumo: As interações entre biopolímeros exercem importante influência nas propriedades dos alimentos em que são empregadas, podendo controlar e melhorar suas propriedades funcionais e organolépticas. No presente trabalho, foi estudada a formação de complexos coacervados a partir de biopolímeros do soro de leite, a proteína lactoferrina (Lf) e o polipeptídeo-leucina (PL) com o polissacarídeo goma arábica (GA). Em todos os sistemas formados, a partir dos dados de turbidez e potencial- ζ foi possível observar que a formação dos precipitados insolúveis ocorreu abaixo do ponto isoelétrico (pI) da proteína e polipeptídeo. A presença de íons pode suspender ou beneficiar o fenômeno de complexação dependendo da natureza dos polímeros utilizados, foi observado que determinadas concentrações de cloreto de sódio (NaCl) influenciaram positivamente no aumento da turbidez, indicando a formação de macromoléculas nos complexos formados entre Lf/GA e o contrário foi observado para os coacervados formados entre PL/GA. Tal fato pode ser comprovado a partir dos dados de tamanho de partícula. Os complexos formados a partir dos biopolímeros apresentaram microcápsulas esféricas devido ao natural potencial de encapsulamento da goma arábica. Foi possível obter emulsões óleo-água estáveis formadas a partir da lactoferrina e ovalbumina (OVA). Emulsões contendo apenas 3%lactoferrina se mostraram estáveis à agregação nos diferentes pH estudados, já as emulsões contendo apenas 3% OVA se mantiveram estáveis apenas em alto valor de pH (8.0). Quando as duas proteínas eram misturadas para formar as emulsões, foi possível observar sistemas estáveis em valores de pH intermediários ao ponto isoelétrico das proteínas. Nestas regiões as proteínas apresentavam-se com cargas opostas promovendo uma ligação eletrostática e provável complexação, que contribuiu para a estabilidade das emulsões. Palavras-
id UFRRJ-1_e3fa3de7b0a6053718bdb194d5a388a8
oai_identifier_str oai:rima.ufrrj.br:20.500.14407/11112
network_acronym_str UFRRJ-1
network_name_str Repositório Institucional da UFRRJ
repository_id_str
spelling Gulão, Eliana da SilvaGarcia Rojas, Edwin Elardhttp://lattes.cnpq.br/1205756654416987Melo, Nathália Ramos deSabino, Silvio José122.077.047-77http://lattes.cnpq.br/59866381086430182023-12-22T01:46:58Z2023-12-22T01:46:58Z2014-02-27GULÃO, Eliana da Silva. Estudo das interações dos sistemas formados a partir biopolímeros. 2014. 90 f. Dissertação (Mestrado em Ciência e Tecnologia de Alimentos) - Instituto de Tecnologia, Universidade Federal Rural do Rio de Janeiro, Seropédica, 2014.https://rima.ufrrj.br/jspui/handle/20.500.14407/11112As interações entre biopolímeros exercem importante influência nas propriedades dos alimentos em que são empregadas, podendo controlar e melhorar suas propriedades funcionais e organolépticas. No presente trabalho, foi estudada a formação de complexos coacervados a partir de biopolímeros do soro de leite, a proteína lactoferrina (Lf) e o polipeptídeo-leucina (PL) com o polissacarídeo goma arábica (GA). Em todos os sistemas formados, a partir dos dados de turbidez e potencial- ζ foi possível observar que a formação dos precipitados insolúveis ocorreu abaixo do ponto isoelétrico (pI) da proteína e polipeptídeo. A presença de íons pode suspender ou beneficiar o fenômeno de complexação dependendo da natureza dos polímeros utilizados, foi observado que determinadas concentrações de cloreto de sódio (NaCl) influenciaram positivamente no aumento da turbidez, indicando a formação de macromoléculas nos complexos formados entre Lf/GA e o contrário foi observado para os coacervados formados entre PL/GA. Tal fato pode ser comprovado a partir dos dados de tamanho de partícula. Os complexos formados a partir dos biopolímeros apresentaram microcápsulas esféricas devido ao natural potencial de encapsulamento da goma arábica. Foi possível obter emulsões óleo-água estáveis formadas a partir da lactoferrina e ovalbumina (OVA). Emulsões contendo apenas 3%lactoferrina se mostraram estáveis à agregação nos diferentes pH estudados, já as emulsões contendo apenas 3% OVA se mantiveram estáveis apenas em alto valor de pH (8.0). Quando as duas proteínas eram misturadas para formar as emulsões, foi possível observar sistemas estáveis em valores de pH intermediários ao ponto isoelétrico das proteínas. Nestas regiões as proteínas apresentavam-se com cargas opostas promovendo uma ligação eletrostática e provável complexação, que contribuiu para a estabilidade das emulsões. Palavras-Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPESInteractions between biopolymers have an important influence on the properties of foods in which they are employed, and can monitor and improve their functional and organoleptic properties. In the present work, the formation of complex coacervates of biopolymers from whey protein lactoferrin (Lf) and the polypeptide-leucine (PL) with polysaccharide gum arabic (GA) was studied. In all systems studied, from data of turbidity and ζ−potential was observed that the formation of insoluble precipitates occurred below the isoelectric point (IP) of the protein and polypeptide. The presence of ions able to suspend or benefit complexation phenomenon depending on the nature of the polymers used, it was observed that certain concentrations of sodium chloride (NaCl) had a positive influence on the increase in turbidity, indicating the formation of the macromolecular complexes formed between Lf / GA and the opposite was observed for the coacervates formed between PL/GA. This fact can be seen from data of particle size. Complexes formed from polymers showed spherical microcapsules due to potential natural of encapsulation of gum arabic. It was possible to obtain stable oil-water emulsions formed from lactoferrin and ovalbumin (OVA). Emulsions containing only 3% lactoferrin were stable to aggregation at different pH in the study, the emulsions containing only 3% OVA were stable only at high pH (8.0). When the two proteins were mixed to form emulsions, we observed stable systems in intermediate pH values of the isoelectric point of proteins. In these regions the proteins presented with opposite charges and likely promoting an electrostatic complexation bond, which contributed to the stability of emulsions.application/pdfporUniversidade Federal Rural do Rio de JaneiroPrograma de Pós-Graduação em Ciência e Tecnologia de AlimentosUFRRJBrasilInstituto de Tecnologiacoacervadosproteínas do soro de leiteemulsificantescoacervateswhey proteinsemulsifierEngenharia QuímicaEstudo das interações dos sistemas formados a partir biopolímerosStudying of interactions of systems formed from biopolymersinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisALLEONI, A. C. C. Propriedades funcionais do albume e qualidade de ovos de galinha cobertos com concentrado proteico de soro de leite bovino. 2003. ANTON, M.; GANDEMER, G. Composition, solubility and emulsifying properties of granules and plasma of egg yolk. J Food Sci, v. 62, n. 3, p. 484-487, 1997. ANTUNES, A. J. Funcionalidade de proteínas do soro de leite bovino. Editora Manole Ltda, 2003. AUGUSTIN, M. A.; HEMAR, Y. Nano- and micro-structured assemblies for encapsulation of food ingredients. Chem Soc Rev, v. 38, n. 4, p. 902-912, Apr 2009. BENGOECHEA, C.; JONES, O. G.; GUERRERO, A.; MCCLEMENTS, D. J. Formation and characterization of lactoferrin/pectin electrostatic complexes: Impact of composition, pH and thermal treatment. Food Hydrocolloids, v. 25, n. 5, p. 1227-1232, 2011. BOUYER, E.; MEKHLOUFI, G.; ROSILIO, V.; GROSSIORD, J. L.; AGNELY, F. Proteins, polysaccharides, and their complexes used as stabilizers for emulsions: alternatives to synthetic surfactants in the pharmaceutical field? Int J Pharm, v. 436, n. 1-2, p. 359-378, Oct 15 2012. BRASIL. Regulamento Técnico: Aditivos Alimentares - definições, classificação e emprego. Diário Oficial da União: Ministério da Saúde. Secretaria de Vigilância Sanitária 1997. ______. Instrução Normativa n.51. MINISTÉRIO DA AGRICULTURA, P. E. A. Brasília: Ministério da Agricultura, Pecuária e Abastecimento, Diário Oficial da União 2002. BURGESS. Pratical analysis complex coacervates. 1990. CAMILO, K. F. B. Complexo pectina/caseína: aspectos básicos e aplicados. 2007. (Doutorado). Faculdade de Ciências Farmacêuticas Universidade de São Paulo, Ribeirão Preto. CAPITANI, C. D.; PACHECO, M. T. B.; GUMERATO, H. F.; VITALI, A.; SCHMIDT, F. L. Recuperação de proteínas do soro de leite por meio de coacervação com polissacarídeo. Pesq. Agropec. Bras.. Brasília–DF, v. 40, n. 11, p. 1123-1128, 2005. CUNHA, P. L. R. D.; PAULA, R. C. M. D.; FEITOSA, J. Polissacarídeos da biodiversidade brasileira: uma oportunidade de transformar conhecimento em valor econômico. Química Nova, v. 32, n. 3, p. 649-660, 2009. DICKINSON, E. Hydrocolloids at interfaces and the influence on the properties of dispersed systems. Food Hydrocolloids, v. 17, n. 1, p. 25-39, 2003. ______. Hydrocolloids as emulsifiers and emulsion stabilizers. Food Hydrocolloids, v. 23, n. 6, p. 1473-1482, 2009. 17 DUCEL, V.; RICHARD, J.; SAULNIER, P.; POPINEAU, Y.; BOURY, F. Evidence and characterization of complex coacervates containing plant proteins: application to the microencapsulation of oil droplets. Colloids and Surfaces A: Physicochemical and Engineering Aspects, v. 232, n. 2-3, p. 239-247, 2004. EISSA, A. S. Newtonian viscosity behavior of dilute solutions of polymerized whey proteins. Would viscosity measurements reveal more detailed molecular properties? Food Hydrocolloids, v. 30, n. 1, p. 200-205, 2013. ELIAS, F.; CAPITANI, C.; MOLINA, S.; AÑON, M.; PACHECO, M. Propriedades emulsificantes de complexos de proteínas de soro de leite com polissacarídeos. Brazilian Journal of Food Technology. III JIPCA, p. 75-80, 2006. FAVARO-TRINDADE, C. S.; PINHO, S. D.; ROCHA, G. Microencapsulação de ingredientes alimentícios. Brazilian Journal of Food Technology, v. 11, n. 2, p. 103-112, 2008. GARCÍA-MONTOYA, I. A.; CENDÓN, T. S.; ARÉVALO-GALLEGOS, S.; RASCÓN-CRUZ, Q. Lactoferrin a multiple bioactive protein: an overview. Biochimica et Biophysica Acta (BBA)-General Subjects, v. 1820, n. 3, p. 226-236, 2012. GIRARD, M.; TURGEON, S. L.; GAUTHIER, S. F. Interbiopolymer complexing between β-lactoglobulin and low-and high-methylated pectin measured by potentiometric titration and ultrafiltration. Food Hydrocolloids, v. 16, n. 6, p. 585-591, 2002. GONZALEZ-CHAVEZ, S. A.; AREVALO-GALLEGOS, S.; RASCON-CRUZ, Q. Lactoferrin: structure, function and applications. Int J Antimicrob Agents, v. 33, n. 4, p. 301 e301-308, Apr 2009. GONZÁLEZ-CHÁVEZ, S. A.; ARÉVALO-GALLEGOS, S.; RASCÓN-CRUZ, Q. Lactoferrin: structure, function and applications. International journal of antimicrobial agents, v. 33, n. 4, p. 301. e301-301. e308, 2009. GROSSIORD, J.; SEILLER, M. W/O/W multiple emulsions: a review of the release mechanisms by break-up of the oily membrane. STP pharma sciences, v. 11, n. 5, p. 331-339, 2001. GUMMEL, J.; BOUÉ, F.; DEMÉ, B.; COUSIN, F. Charge stoichiometry inside polyelectrolyte-protein complexes: a direct SANS measurement for the PSSNa-lysozyme system. The Journal of Physical Chemistry B, v. 110, n. 49, p. 24837-24846, 2006. HUANG, G. Q.; SUN, Y. T.; XIAO, J. X.; YANG, J. Complex coacervation of soybean protein isolate and chitosan. Food Chem, v. 135, n. 2, p. 534-539, Nov 15 2012. KLEIN, M.; ASERIN, A.; SVITOV, I.; GARTI, N. Enhanced stabilization of cloudy emulsions with gum Arabic and whey protein isolate. Colloids Surf B Biointerfaces, v. 77, n. 1, p. 75-81, May 1 2010. 18 LINDHOUD, S.; DE VRIES, R.; NORDE, W.; STUART, M. A. C. Structure and stability of complex coacervate core micelles with lysozyme. Biomacromolecules, v. 8, n. 7, p. 2219-2227, 2007. LIU, S.; ELMER, C.; LOW, N. H.; NICKERSON, M. T. Effect of pH on the functional behaviour of pea protein isolate–gum Arabic complexes. Food Research International, v. 43, n. 2, p. 489-495, 2010. LOLLO, P. C. B.; BATISTA, T. M.; MOURA, C. S.; MORATO, P. N.; CRUZ, A. G.; FARIA, J. A. F.; CARNEIRO, E. M.; AMAYA-FARFAN, J. l-Leucine supplemented whey protein. Dose–response effect on heart mTOR activation of sedentary and trained rats. Food Research International, v. 53, n. 1, p. 543-550, 8// 2013. LV, Y.; ZHANG, X.; ZHANG, H.; ABBAS, S.; KARANGWA, E. The study of pH-dependent complexation between gelatin and gum arabic by morphology evolution and conformational transition. Food Hydrocolloids, v. 30, n. 1, p. 323-332, 2013. MINE, Y. Recent advances in the understanding of egg white protein functionality. Trends in Food Science & Technology, v. 6, n. 7, p. 225-232, 1995. NAIDU, A. Natural food antimicrobial systems. CRC press, 2000. NAKAGAWA, K.; NAGAO, H. Microencapsulation of oil droplets using freezing-induced gelatin–acacia complex coacervation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, v. 411, p. 129-139, 2012. NICASTRO, H.; LIRA, F. S.; ROSA, J. C.; COSTA, A. D. S.; LANCHA JUNIOR, A. H. Suplementação de leucina: nova estratégia antiatrófica? < br/>< b> Warning</b>: get_class () expects parameter 1 to be object, array given in< b>/home/abadan/web/tmp1/ojs-2.2. 2/classes/cache/GenericCache. inc. php</b> on line< b> 63</b>< br/> REMEFE-Revista Mackenzie de Educação Física e Esporte, v. 8, n. 1, 2009. OCAK, B. Complex coacervation of collagen hydrolysate extracted from leather solid wastes and chitosan for controlled release of lavender oil. Journal of environmental management, v. 100, p. 22-28, 2012. PERSIN, Z.; STANA-KLEINSCHEK, K.; FOSTER, T. J.; VAN DAM, J. E.; BOERIU, C. G.; NAVARD, P. Challenges and opportunities in polysaccharides research and technology: The EPNOE views for the next decade in the areas of materials, food and health care. Carbohydrate Polymers, v. 84, n. 1, p. 22-32, 2011. PRAZERES, A. R.; CARVALHO, F.; RIVAS, J. Cheese whey management: a review. J Environ Manage, v. 110, p. 48-68, Nov 15 2012. QI, P.; ONWULATA, C. Physical properties, molecular structures, and protein quality of texturized whey protein isolate: Effect of extrusion moisture content. Journal of dairy science, v. 94, n. 5, p. 2231-2244, 2011. 19 QUINTIERI, L.; CAPUTO, L.; MONACI, L.; DESERIO, D.; MOREA, M.; BARUZZI, F. Antimicrobial efficacy of pepsin-digested bovine lactoferrin on spoilage bacteria contaminating traditional Mozzarella cheese. Food microbiology, v. 31, n. 1, p. 64-71, 2012. RAMÍREZ-SANTIAGO, C.; LOBATO-CALLEROS, C.; ESPINOSA-ANDREWS, H.; VERNON-CARTER, E. J. Viscoelastic properties and overall sensory acceptability of reduced-fat Petit-Suisse cheese made by replacing milk fat with complex coacervate. Dairy Science & Technology, v. 92, n. 4, p. 383-398, 2012. RODRÍGUEZ-FRANCO, D. A.; VÁZQUEZ-MORENO, L.; RAMOS-CLAMONT, M. G. Actividad antimicrobiana de la lactoferrina: Mecanismos y aplicaciones clínicas potenciales. Rev Latino-am Microbiol, v. 47, p. 101-111, 2005. SCHMITT, C.; SANCHEZ, C.; DESOBRY-BANON, S.; HARDY, J. Structure and technofunctional properties of protein-polysaccharide complexes: a review. Crit Rev Food Sci Nutr, v. 38, n. 8, p. 689-753, 1998. SCHMITT, C.; SANCHEZ, C.; LAMPRECHT, A.; RENARD, D.; LEHR, C.; DE KRUIF, C. G.; HARDY, J. Study of beta-lactoglobulin/acacia gum complex coacervation by diffusing-wave spectroscopy and confocal scanning laser microscopy. Colloids Surf B Biointerfaces, v. 20, n. 3, p. 267-280, Mar 2001. SCHMITT, C.; TURGEON, S. L. Protein/polysaccharide complexes and coacervates in food systems. Adv Colloid Interface Sci, v. 167, n. 1-2, p. 63-70, Sep 14 2011. SERRANO, M. E. D. Lactoferrina: producción industrial y aplicaciones. Revista Mexicana de Ciencias Farmaceuticas, v. 38, n. 3, p. 30-38, 2007. SGARBIERI, V. C. Propriedades fisiológicas-funcionais das proteínas do soro de leite. Rev Nutr, v. 17, n. 4, p. 397-409, 2004. SHE, P.; OLSON, K. C.; KADOTA, Y.; INUKAI, A.; SHIMOMURA, Y.; HOPPEL, C. L.; ADAMS, S. H.; KAWAMATA, Y.; MATSUMOTO, H.; SAKAI, R. Leucine and Protein Metabolism in Obese Zucker Rats. PloS one, v. 8, n. 3, p. e59443, 2013. SIM, J. S.; NAKAI, S. Egg uses and processing technologies: new developments. Cab International, 1994. SINGH, S. S.; SIDDHANTA, A. K.; MEENA, R.; PRASAD, K.; BANDYOPADHYAY, S.; BOHIDAR, H. B. Intermolecular complexation and phase separation in aqueous solutions of oppositely charged biopolymers. Int J Biol Macromol, v. 41, n. 2, p. 185-192, Jul 1 2007. SOUZA, C. J. F.; GARCIA ROJAS, E. E.; MELO, N. R.; GASPAR, A.; LINS, J. F. C. Complex coacervates obtained from interaction egg yolk lipoprotein and polysaccharides. Food Hydrocolloids, v. 30, n. 1, p. 375-381, 2013. STADELMAN, W. J.; NEWKIRK, D.; NEWBY, L. Egg science and technology. CRC Press, 1995. 20 SU, Y.; LAM, T. K.; HE, W.; POCAI, A.; BRYAN, J.; AGUILAR-BRYAN, L.; GUTIÉRREZ-JUÁREZ, R. Hypothalamic leucine metabolism regulates liver glucose production. Diabetes, v. 61, n. 1, p. 85-93, 2012. TAKENAKA, H.; KAWASHIMA, Y.; LIN, S. Y. Micromeritic properties of sulfamethoxazole microcapsules prepared by gelatin–acacia coacervation. Journal of pharmaceutical sciences, v. 69, n. 5, p. 513-516, 1980. TURGEON, S.; BEAULIEU, M.; SCHMITT, C.; SANCHEZ, C. Protein–polysaccharide interactions: phase-ordering kinetics, thermodynamic and structural aspects. Current Opinion in Colloid & Interface Science, v. 8, n. 4, p. 401-414, 2003. TURGEON, S. L.; SCHMITT, C.; SANCHEZ, C. Protein–polysaccharide complexes and coacervates. Current Opinion in Colloid & Interface Science, v. 12, n. 4-5, p. 166-178, 2007. WANG, X.; LEE, J.; WANG, Y. W.; HUANG, Q. Composition and rheological properties of beta-Lactoglobulin/pectin coacervates: effects of salt concentration and initial protein/polysaccharide ratio. Biomacromolecules, v. 8, n. 3, p. 992-997, Mar 2007. WANG, X.; LI, Y.; LI, J.; WANG, J.; WANG, Y.; GUO, Z.; YAN, H. Salt effect on the complex formation between polyelectrolyte and oppositely charged surfactant in aqueous solution. J Phys Chem B, v. 109, n. 21, p. 10807-10812, Jun 2 2005. WATANABE, K.; TSUGE, Y.; SHIMOYAMADA, M.; OGAMA, N.; EBINA, T. Antitumor effects of pronase-treated fragments, glycopeptides, from ovomucin in hen egg white in a double grafted tumor system. J Agric Food Chem, v. 46, n. 8, p. 3033-3038, 1998. WEINBRECK, F.; NIEUWENHUIJSE, H.; ROBIJN, G. W.; DE KRUIF, C. G. Complexation of whey proteins with carrageenan. J Agric Food Chem, v. 52, n. 11, p. 3550-3555, 2004. WILLIAMS, P.; PHILLIPS, G. Gum arabic. Handbook of hydrocolloids, p. 252-273, 2009. YU, J.-Y.; LEE, W.-C. Microencapsulation of pyrrolnitrin from< i> Pseudomonas cepacia</i> using gluten and casein. Journal of fermentation and bioengineering, v. 84, n. 5, p. 444-448, 1997. AUGUSTIN, M. A.; HEMAR, Y. Nano- and micro-structured assemblies for encapsulation of food ingredients. Chem Soc Rev, v. 38, n. 4, p. 902-912, Apr 2009. BALCÃO, V. M.; COSTA, C. I.; MATOS, C. M.; MOUTINHO, C. G.; AMORIM, M.; PINTADO, M. E.; GOMES, A. P.; VILA, M. M.; TEIXEIRA, J. A. Nanoencapsulation of bovine lactoferrin for food and biopharmaceutical applications. Food Hydrocolloids, v. 32, n. 2, p. 425-431, 2013. BÉDIÉ, G. K.; TURGEON, S. L.; MAKHLOUF, J. Formation of native whey protein isolate–low methoxyl pectin complexes as a matrix for hydro-soluble food ingredient entrapment in acidic foods. Food Hydrocolloids, v. 22, n. 5, p. 836-844, 2008. BENGOECHEA, C.; JONES, O. G.; GUERRERO, A.; MCCLEMENTS, D. J. Formation and characterization of lactoferrin/pectin electrostatic complexes: Impact of composition, pH and thermal treatment. Food Hydrocolloids, v. 25, n. 5, p. 1227-1232, 2011. BENGOECHEA, C.; PEINADO, I.; MCCLEMENTS, D. J. Formation of protein nanoparticles by controlled heat treatment of lactoferrin: Factors affecting particle characteristics. Food Hydrocolloids, v. 25, n. 5, p. 1354-1360, 2011. BURGESS. Pratical analysis complex coacervates. 1990. DE KRUIF, C. G.; WEINBRECK, F.; DE VRIES, R. Complex coacervation of proteins and anionic polysaccharides. Current Opinion in Colloid & Interface Science, v. 9, n. 5, p. 340-349, 2004. ESPINOSA-ANDREWS, H.; BAEZ-GONZALEZ, J. G.; CRUZ-SOSA, F.; VERNON-CARTER, E. J. Gum arabic-chitosan complex coacervation. Biomacromolecules, v. 8, n. 4, p. 1313-1318, Apr 2007. FUJIMOTO, J.; DE OREIS, E.; PETRI, D. F.; FILHO, S. Formação de multicamadas de polissacarídeos e proteína. Química Nova, v. 25, n. 5, p. 757-761, 2002. GENTES, M. C.; ST-GELAIS, D.; TURGEON, S. L. Stabilization of whey protein isolate-pectin complexes by heat. J Agric Food Chem, v. 58, n. 11, p. 7051-7058, Jun 9 2010. GONZALEZ-CHAVEZ, S. A.; AREVALO-GALLEGOS, S.; RASCON-CRUZ, Q. Lactoferrin: structure, function and applications. Int J Antimicrob Agents, v. 33, n. 4, p. 301 e301-308, Apr 2009. GUMMEL, J.; BOUÉ, F.; DEMÉ, B.; COUSIN, F. Charge stoichiometry inside polyelectrolyte-protein complexes: a direct SANS measurement for the PSSNa-lysozyme system. The Journal of Physical Chemistry B, v. 110, n. 49, p. 24837-24846, 2006. HELLEN, K. S.; MONIKA, P. T.; SILVA, M. A.; LARANJEIRA, M. C.; DE QUALIDADE, L. D. C. Desenvolvimento, Avaliação e Caracterização Físico Química de Micropartículas 42 Constituídas de Aciclovir/Quitosana Desenvolvidas pela Técnica de Spray-drying. Lat. Am. J. Pharm, v. 26, n. 6, p. 866-871, 2007. HUANG, G. Q.; SUN, Y. T.; XIAO, J. X.; YANG, J. Complex coacervation of soybean protein isolate and chitosan. Food Chem, v. 135, n. 2, p. 534-539, Nov 15 2012. JONES, O.; DECKER, E.; MCCLEMENTS, D. Thermal analysis of β-lactoglobulin complexes with pectins or carrageenan for production of stable biopolymer particles. Food Hydrocolloids, v. 24, n. 2-3, p. 239-248, 03/14/ 2010. KLEIN, M.; ASERIN, A.; SVITOV, I.; GARTI, N. Enhanced stabilization of cloudy emulsions with gum Arabic and whey protein isolate. Colloids Surf B Biointerfaces, v. 77, n. 1, p. 75-81, May 1 2010. LAOS, K.; BROWNSEY, G. J.; RING, S. G. Interactions between furcellaran and the globular proteins bovine serum albumin and β-lactoglobulin. Carbohydrate Polymers, v. 67, n. 1, p. 116-123, 1/2/ 2007. LIU, S.; ELMER, C.; LOW, N. H.; NICKERSON, M. T. Effect of pH on the functional behaviour of pea protein isolate–gum Arabic complexes. Food Research International, v. 43, n. 2, p. 489-495, 2010. LV, Y.; ZHANG, X.; ZHANG, H.; ABBAS, S.; KARANGWA, E. The study of pH-dependent complexation between gelatin and gum arabic by morphology evolution and conformational transition. Food Hydrocolloids, v. 30, n. 1, p. 323-332, 2013. MATA, L.; SÁNCHEZ, L.; HEADON, D. R.; CALVO, M. Thermal denaturation of human lactoferrin and its effect on the ability to bind iron. J Agric Food Chem, v. 46, n. 10, p. 3964-3970, 1998. MAYYA, K. S.; BHATTACHARYYA, A.; ARGILLIER, J. F. Micro-encapsulation by complex coacervation: influence of surfactant. Polymer International, v. 52, n. 4, p. 644-647, 2003. MCCLEMENTS, D. J.; DECKER, E. A.; PARK, Y.; WEISS, J. Structural design principles for delivery of bioactive components in nutraceuticals and functional foods. Crit Rev Food Sci Nutr, v. 49, n. 6, p. 577-606, Jun 2009. MOHANTY, B.; BOHIDAR, H. B. Microscopic structure of gelatin coacervates. Int J Biol Macromol, v. 36, n. 1-2, p. 39-46, Jul 2005. PRIFTIS, D.; TIRRELL, M. Phase behaviour and complex coacervation of aqueous polypeptide solutions. Soft Matter, v. 8, n. 36, p. 9396, 2012. REMUNAN-LOPEZ, C.; BODMEIER, R. Effect of formulation and process variables on the formation of chitosan-gelatin coacervates. Int J Pharm, v. 135, n. 1, p. 63-72, 1996. RU, Q.; WANG, Y.; LEE, J.; DING, Y.; HUANG, Q. Turbidity and rheological properties of bovine serum albumin/pectin coacervates: Effect of salt concentration and initial protein/polysaccharide ratio. Carbohydrate Polymers, v. 88, n. 3, p. 838-846, 2012. 43 SCHMITT, C.; SANCHEZ, C.; THOMAS, F.; HARDY, J. Complex coacervation between β-lactoglobulin and acacia gum in aqueous medium. Food Hydrocolloids, v. 13, n. 6, p. 483-496, 1999. SEYREK, E.; DUBIN, P. L.; TRIBET, C.; GAMBLE, E. A. Ionic Strength Dependence of Protein-Polyelectrolyte Interactions. Biomacromolecules, v. 4, n. 2, p. 273-282, 2003/03/01 2003. SOUZA, C. J. F.; GARCIA ROJAS, E. E.; MELO, N. R.; GASPAR, A.; LINS, J. F. C. Complex coacervates obtained from interaction egg yolk lipoprotein and polysaccharides. Food Hydrocolloids, v. 30, n. 1, p. 375-381, 2013. TOLSTOGUZOV, V. Functional properties of food proteins and role of protein-polysaccharide interaction. Food Hydrocolloids, v. 4, n. 6, p. 429-468, 1991. TURGEON, S.; BEAULIEU, M.; SCHMITT, C.; SANCHEZ, C. Protein–polysaccharide interactions: phase-ordering kinetics, thermodynamic and structural aspects. Current Opinion in Colloid & Interface Science, v. 8, n. 4, p. 401-414, 2003. TURGEON, S. L.; SCHMITT, C.; SANCHEZ, C. Protein–polysaccharide complexes and coacervates. Current Opinion in Colloid & Interface Science, v. 12, n. 4-5, p. 166-178, 2007. WANG, X.; LEE, J.; WANG, Y. W.; HUANG, Q. Composition and rheological properties of beta-Lactoglobulin/pectin coacervates: effects of salt concentration and initial protein/polysaccharide ratio. Biomacromolecules, v. 8, n. 3, p. 992-997, Mar 2007. WANG, X.; LI, Y.; LI, J.; WANG, J.; WANG, Y.; GUO, Z.; YAN, H. Salt effect on the complex formation between polyelectrolyte and oppositely charged surfactant in aqueous solution. J Phys Chem B, v. 109, n. 21, p. 10807-10812, Jun 2 2005. WEINBRECK, F.; DE VRIES, R.; SCHROOYEN, P.; DE KRUIF, C. Complex coacervation of whey proteins and gum arabic. Biomacromolecules, v. 4, n. 2, p. 293-303, 2003. WEINBRECK, F.; NIEUWENHUIJSE, H.; ROBIJN, G. W.; DE KRUIF, C. G. Complexation of whey proteins with carrageenan. J Agric Food Chem, v. 52, n. 11, p. 3550-3555, 2004. YU, L. Amorphous pharmaceutical solids: Oreparation, characterization and stabilization. International Journal of Pharmaceutics, v.48, n.1, p.27-42, AUGUSTIN, M. A.; HEMAR, Y. Nano- and micro-structured assemblies for encapsulation of food ingredients. Chem Soc Rev, v. 38, n. 4, p. 902-912, Apr 2009. BASTOS, D. D. S.; GONÇALVES, M. D. P.; ANDRADE, C. T. D.; ARAÚJO, K. G. D. L.; ROCHA LEÃO, M. H. M. D. Microencapsulation of cashew apple (Anacardium occidentale, L.) juice using a new chitosan–commercial bovine whey protein isolate system in spray drying. Food and Bioproducts Processing, v. 90, n. 4, p. 683-692, 10// 2012. BASTOS, D. S.; BARRETO, B. N.; SOUZA, H. K. S.; BASTOS, M.; ROCHA-LEÃO, M. H. M.; ANDRADE, C. T.; GONÇALVES, M. P. Characterization of a chitosan sample extracted from Brazilian shrimps and its application to obtain insoluble complexes with a commercial whey protein isolate. Food Hydrocolloids, v. 24, n. 8, p. 709-718, 2010. BENGOECHEA, C.; JONES, O. G.; GUERRERO, A.; MCCLEMENTS, D. J. Formation and characterization of lactoferrin/pectin electrostatic complexes: Impact of composition, pH and thermal treatment. Food Hydrocolloids, v. 25, n. 5, p. 1227-1232, 2011. COELHO, S.; MORENO-FLORES, S.; TOCA-HERRERA, J. L.; COELHO, M. A.; PEREIRA, M. C.; ROCHA, S. Nanostructure of polysaccharide complexes. J Colloid Interface Sci, v. 363, n. 2, p. 450-455, Nov 15 2011. COOPER, C. L.; DUBIN, P. L.; KAYITMAZER, A. B.; TURKSEN, S. Polyelectrolyte–protein complexes. Current Opinion in Colloid & Interface Science, v. 10, n. 1-2, p. 52-78, 2005. DE KRUIF, C. G.; WEINBRECK, F.; DE VRIES, R. Complex coacervation of proteins and anionic polysaccharides. Current Opinion in Colloid & Interface Science, v. 9, n. 5, p. 340-349, 2004. FOEGEDING, E. A.; LUCK, P. J.; DAVIS, J. P. Factors determining the physical properties of protein foams. Food Hydrocolloids, v. 20, n. 2-3, p. 284-292, 2006. GUZEY, D.; KIM, H. J.; MCCLEMENTS, D. J. Factors influencing the production of o/w emulsions stabilized by β-lactoglobulin–pectin membranes. Food Hydrocolloids, v. 18, n. 6, p. 967-975, 2004. HELLEN, K. S.; MONIKA, P. T.; SILVA, M. A.; LARANJEIRA, M. C.; DE QUALIDADE, L. D. C. Desenvolvimento, Avaliação e Caracterização Físico Química de Micropartículas Constituídas de Aciclovir/Quitosana Desenvolvidas pela Técnica de Spray-drying. Lat. Am. J. Pharm, v. 26, n. 6, p. 866-871, 2007. HUANG, G. Q.; SUN, Y. T.; XIAO, J. X.; YANG, J. Complex coacervation of soybean protein isolate and chitosan. Food Chem, v. 135, n. 2, p. 534-539, Nov 15 2012. 63 KADOWAKI, T.; YAMAUCHI, T.; KUBOTA, N.; HARA, K.; UEKI, K.; TOBE, K. Adiponectin and adiponectin receptors in insulin resistance, diabetes, and the metabolic syndrome. Journal of Clinical Investigation, v. 116, n. 7, p. 1784-1792, 2006. LI, X.; FANG, Y.; AL-ASSAF, S.; PHILLIPS, G. O.; YAO, X.; ZHANG, Y.; ZHAO, M.; ZHANG, K.; JIANG, F. Complexation of bovine serum albumin and sugar beet pectin: structural transitions and phase diagram. Langmuir, v. 28, n. 27, p. 10164-10176, Jul 10 2012. LIVNEY, Y. D. Milk proteins as vehicles for bioactives. Current Opinion in Colloid & Interface Science, v. 15, n. 1-2, p. 73-83, 2010. LOLLO, P. C. B.; BATISTA, T. M.; MOURA, C. S.; MORATO, P. N.; CRUZ, A. G.; FARIA, J. A. F.; CARNEIRO, E. M.; AMAYA-FARFAN, J. l-Leucine supplemented whey protein. Dose–response effect on heart mTOR activation of sedentary and trained rats. Food Research International, v. 53, n. 1, p. 543-550, 8// 2013. LV, Y.; ZHANG, X.; ZHANG, H.; ABBAS, S.; KARANGWA, E. The study of pH-dependent complexation between gelatin and gum arabic by morphology evolution and conformational transition. Food Hydrocolloids, v. 30, n. 1, p. 323-332, 2013. OU, Z.; MUTHUKUMAR, M. Entropy and enthalpy of polyelectrolyte complexation: Langevin dynamics simulations. J Chem Phys, v. 124, n. 15, p. 154902, Apr 21 2006. PRIFTIS, D.; TIRRELL, M. Phase behaviour and complex coacervation of aqueous polypeptide solutions. Soft Matter, v. 8, n. 36, p. 9396, 2012. RU, Q.; WANG, Y.; LEE, J.; DING, Y.; HUANG, Q. Turbidity and rheological properties of bovine serum albumin/pectin coacervates: Effect of salt concentration and initial protein/polysaccharide ratio. Carbohydrate Polymers, v. 88, n. 3, p. 838-846, 2012. SCHMITT, C.; SANCHEZ, C.; LAMPRECHT, A.; RENARD, D.; LEHR, C.; DE KRUIF, C. G.; HARDY, J. Study of beta-lactoglobulin/acacia gum complex coacervation by diffusing-wave spectroscopy and confocal scanning laser microscopy. Colloids Surf B Biointerfaces, v. 20, n. 3, p. 267-280, Mar 2001. SCHMITT, C.; TURGEON, S. L. Protein/polysaccharide complexes and coacervates in food systems. Adv Colloid Interface Sci, v. 167, n. 1-2, p. 63-70, Sep 14 2011. SINGH, S. S.; SIDDHANTA, A. K.; MEENA, R.; PRASAD, K.; BANDYOPADHYAY, S.; BOHIDAR, H. B. Intermolecular complexation and phase separation in aqueous solutions of oppositely charged biopolymers. Int J Biol Macromol, v. 41, n. 2, p. 185-192, Jul 1 2007. SOUZA, C. J. F.; GARCIA ROJAS, E. E.; MELO, N. R.; GASPAR, A.; LINS, J. F. C. Complex coacervates obtained from interaction egg yolk lipoprotein and polysaccharides. Food Hydrocolloids, v. 30, n. 1, p. 375-381, 2013. SU, Y.; LAM, T. K.; HE, W.; POCAI, A.; BRYAN, J.; AGUILAR-BRYAN, L.; GUTIÉRREZ-JUÁREZ, R. Hypothalamic leucine metabolism regulates liver glucose production. Diabetes, v. 61, n. 1, p. 85-93, 2012. 64 TURGEON, S. L.; SCHMITT, C.; SANCHEZ, C. Protein–polysaccharide complexes and coacervates. Current Opinion in Colloid & Interface Science, v. 12, n. 4-5, p. 166-178, 2007. WANG, X.; LEE, J.; WANG, Y. W.; HUANG, Q. Composition and rheological properties of beta-Lactoglobulin/pectin coacervates: effects of salt concentration and initial protein/polysaccharide ratio. Biomacromolecules, v. 8, n. 3, p. 992-997, Mar 2007. WEINBRECK, F.; DE VRIES, R.; SCHROOYEN, P.; DE KRUIF, C. Complex coacervation of whey proteins and gum arabic. Biomacromolecules, v. 4, n. 2, p. 293-303, 2003. WEINBRECK, F.; NIEUWENHUIJSE, H.; ROBIJN, G. W.; DE KRUIF, C. G. Complexation of whey proteins with carrageenan. J Agric Food Chem, v. 52, n. 11, p. 3550-3555, 2004. WITTEMANN, A.; BALLAUFF, M. Interaction of proteins with linear polyelectrolytes and spherical polyelectrolyte brushes in aqueous solution. Physical Chemistry Chemical Physics, v. 8, n. 45, p. 5269, 2006. BENGOECHEA, C.; JONES, O. G.; GUERRERO, A.; MCCLEMENTS, D. J. Formation and characterization of lactoferrin/pectin electrostatic complexes: Impact of composition, pH and thermal treatment. Food Hydrocolloids, v. 25, n. 5, p. 1227-1232, 2011. CAPITANI, C.; PEREZ, O.; PILOSOF, A.; BERTOLDO PACHECO, M. T. Influence of complexing carboxymethylcellulose on the thermostability and gelation of a-lactalbumin and b-lactoglobulin. Food Hydrocolloids, v. 21, n. 8, p. 1344-1355, 2007. CONESA, C.; ROTA, C.; CASTILLO, E.; PÉREZ, M. D.; CALVO, M.; SÁNCHEZ, L. Effect of heat treatment on the antibacterial activity of bovine lactoferrin against three foodborne pathogens. International Journal of Dairy Technology, v. 63, n. 2, p. 209-215, 2010. CROGUENNEC, T.; RENAULT, A.; BEAUFILS, S.; DUBOIS, J. J.; PEZENNEC, S. Interfacial properties of heat-treated ovalbumin. J Colloid Interface Sci, v. 315, n. 2, p. 627-636, Nov 15 2007. DEMETRIADES, K.; COUPLAND, J.; MCCLEMENTS, D. Physicochemical Properties of Whey Protein‐Stabilized Emulsions as affected by Heating and Ionic Strength. J Food Sci, v. 62, n. 3, p. 462-467, 1997. GONZALEZ-CHAVEZ, S. A.; AREVALO-GALLEGOS, S.; RASCON-CRUZ, Q. Lactoferrin: structure, function and applications. Int J Antimicrob Agents, v. 33, n. 4, p. 301 e301-308, Apr 2009. MCCARTHY, N. A.; KELLY, A. L.; O'MAHONY, J. A.; FENELON, M. A. Sensitivity of emulsions stabilised by bovine β-casein and lactoferrin to heat and CaCl2. Food Hydrocolloids, v. 35, p. 420-428, 2014. MCCLEMENTS, D. J. Theoretical analysis of factors affecting the formation and stability of multilayered colloidal dispersions. Langmuir, v. 21, n. 21, p. 9777-9785, 2005. MCCLEMENTS, D. J.; LI, Y. Structured emulsion-based delivery systems: controlling the digestion and release of lipophilic food components. Adv Colloid Interface Sci, v. 159, n. 2, p. 213-228, Sep 15 2010. NEVIN, K.; RAJAMOHAN, T. Beneficial effects of virgin coconut oil on lipid parameters and in vitro LDL oxidation. Clinical Biochemistry, v. 37, n. 9, p. 830-835, 2004. ______. Influence of virgin coconut oil on blood coagulation factors, lipid levels and LDL oxidation in cholesterol fed Sprague–Dawley rats. e-SPEN, the European e-Journal of Clinical Nutrition and Metabolism, v. 3, n. 1, p. e1-e8, 2008. RAO, J.; MCCLEMENTS, D. J. Impact of lemon oil composition on formation and stability of model food and beverage emulsions. Food Chem, v. 134, n. 2, p. 749-757, Sep 15 2012. 81 SUN, C.; GUNASEKARAN, S. Effects of protein concentration and oil-phase volume fraction on the stability and rheology of menhaden oil-in-water emulsions stabilized by whey protein isolate with xanthan gum. Food Hydrocolloids, v. 23, n. 1, p. 165-174, 2009. SUN, X. D.; ARNTFIELD, S. D. Gelation properties of salt-extracted pea protein induced by heat treatment. Food Research International, v. 43, n. 2, p. 509-515, 2010. TIAN, S.; CHEN, J. I. E.; SMALL, D. M. Enhancement of Solubility and Emulsifying Properties of Soy Protein Isolates by Glucose Conjugation. Journal of Food Processing and Preservation, v. 35, n. 1, p. 80-95, 2011. TOKLE, T.; DECKER, E. A.; MCCLEMENTS, D. J. Utilization of interfacial engineering to produce novel emulsion properties: Pre-mixed lactoferrin/β-lactoglobulin protein emulsifiers. Food Research International, v. 49, n. 1, p. 46-52, 2012. TOKLE, T.; MCCLEMENTS, D. J. Physicochemical properties of lactoferrin stabilized oil-in-water emulsions: Effects of pH, salt and heating. Food Hydrocolloids, v. 25, n. 5, p. 976-982, 2011. VAN VLIET, T.; LAKEMOND, C. M. M.; VISSCHERS, R. W. Rheology and structure of milk protein gels. Current Opinion in Colloid & Interface Science, v. 9, n. 5, p. 298-304, 2004. WILDE, P.; MACKIE, A.; HUSBAND, F.; GUNNING, P.; MORRIS, V. Proteins and emulsifiers at liquid interfaces. Adv Colloid Interface Sci, v. 108-109, p. 63-71, May 20 2004. WOOSTER, T. J.; AUGUSTIN, M. A. Rheology of whey protein–dextran conjugate films at the air/water interface. Food Hydrocolloids, v. 21, n. 7, p. 1072-1080, 2007. XU, K.; YAO, P. Stable oil-in-water emulsions prepared from soy protein-dextran conjugates. Langmuir, v. 25, n. 17, p. 9714-9720, Sep 1 2009. YADAV, M. P.; PARRIS, N.; JOHNSTON, D. B.; ONWULATA, C. I.; HICKS, K. B. Corn fiber gum and milk protein conjugates with improved emulsion stability. Carbohydrate Polymers, v. 81, n. 2, p. 476-483, 2010. YE, A.; SINGH, H. Adsorption behaviour of lactoferrin in oil-in-water emulsions as influenced by interactions with beta-lactoglobulin. J Colloid Interface Sci, v. 295, n. 1, p. 249-254, Mar 1 2006. ZIANI, K.; FANG, Y.; MCCLEMENTS, D. J. Fabrication and stability of colloidal delivery systems for flavor oils: Effect of composition and storage conditions. Food Research International, v. 46, n. 1, p. 209-216, 2012.https://tede.ufrrj.br/retrieve/11069/2014%20-%20Eliana%20da%20Silva%20Gul%c3%a3o.pdf.jpghttps://tede.ufrrj.br/retrieve/16616/2014%20-%20Eliana%20da%20Silva%20Gul%c3%a3o.pdf.jpghttps://tede.ufrrj.br/retrieve/22934/2014%20-%20Eliana%20da%20Silva%20Gul%c3%a3o.pdf.jpghttps://tede.ufrrj.br/retrieve/29314/2014%20-%20Eliana%20da%20Silva%20Gul%c3%a3o.pdf.jpghttps://tede.ufrrj.br/retrieve/35688/2014%20-%20Eliana%20da%20Silva%20Gul%c3%a3o.pdf.jpghttps://tede.ufrrj.br/retrieve/42086/2014%20-%20Eliana%20da%20Silva%20Gul%c3%a3o.pdf.jpghttps://tede.ufrrj.br/retrieve/48466/2014%20-%20Eliana%20da%20Silva%20Gul%c3%a3o.pdf.jpghttps://tede.ufrrj.br/retrieve/54916/2014%20-%20Eliana%20da%20Silva%20Gul%c3%a3o.pdf.jpghttps://tede.ufrrj.br/jspui/handle/jspui/2995Submitted by Celso Magalhaes (celsomagalhaes@ufrrj.br) on 2019-10-24T13:18:59Z No. of bitstreams: 1 2014 - Eliana da Silva Gulão.pdf: 2963873 bytes, checksum: 5e8178dd5ad9a03c0fb6824b1749cdb7 (MD5)Made available in DSpace on 2019-10-24T13:19:00Z (GMT). No. of bitstreams: 1 2014 - Eliana da Silva Gulão.pdf: 2963873 bytes, checksum: 5e8178dd5ad9a03c0fb6824b1749cdb7 (MD5) Previous issue date: 2014-02-27info:eu-repo/semantics/openAccessreponame:Biblioteca Digital de Teses e Dissertações da UFRRJinstname:Universidade Federal Rural do Rio de Janeiro (UFRRJ)instacron:UFRRJTHUMBNAIL2014 - Eliana da Silva Gulão.pdf.jpgGenerated Thumbnailimage/jpeg1943https://rima.ufrrj.br/jspui/bitstream/20.500.14407/11112/1/2014%20-%20Eliana%20da%20Silva%20Gul%c3%a3o.pdf.jpgcc73c4c239a4c332d642ba1e7c7a9fb2MD51TEXT2014 - Eliana da Silva Gulão.pdf.txtExtracted Texttext/plain193713https://rima.ufrrj.br/jspui/bitstream/20.500.14407/11112/2/2014%20-%20Eliana%20da%20Silva%20Gul%c3%a3o.pdf.txtcd42246ca12afc7a6b49eab50588984dMD52ORIGINAL2014 - Eliana da Silva Gulão.pdfEliana da Silva Gulãoapplication/pdf2963873https://rima.ufrrj.br/jspui/bitstream/20.500.14407/11112/3/2014%20-%20Eliana%20da%20Silva%20Gul%c3%a3o.pdf5e8178dd5ad9a03c0fb6824b1749cdb7MD53LICENSElicense.txttext/plain2089https://rima.ufrrj.br/jspui/bitstream/20.500.14407/11112/4/license.txt7b5ba3d2445355f386edab96125d42b7MD5420.500.14407/111122023-12-21 22:46:58.168oai:rima.ufrrj.br:20.500.14407/11112Tk9UQTogQ09MT1FVRSBBUVVJIEEgU1VBIFBSP1BSSUEgTElDRU4/QQpFc3RhIGxpY2VuP2EgZGUgZXhlbXBsbyA/IGZvcm5lY2lkYSBhcGVuYXMgcGFyYSBmaW5zIGluZm9ybWF0aXZvcy4KCkxJQ0VOP0EgREUgRElTVFJJQlVJPz9PIE4/Ty1FWENMVVNJVkEKCkNvbSBhIGFwcmVzZW50YT8/byBkZXN0YSBsaWNlbj9hLCB2b2M/IChvIGF1dG9yIChlcykgb3UgbyB0aXR1bGFyIGRvcyBkaXJlaXRvcyBkZSBhdXRvcikgY29uY2VkZSA/IFVuaXZlcnNpZGFkZSAKWFhYIChTaWdsYSBkYSBVbml2ZXJzaWRhZGUpIG8gZGlyZWl0byBuP28tZXhjbHVzaXZvIGRlIHJlcHJvZHV6aXIsICB0cmFkdXppciAoY29uZm9ybWUgZGVmaW5pZG8gYWJhaXhvKSwgZS9vdSAKZGlzdHJpYnVpciBhIHN1YSB0ZXNlIG91IGRpc3NlcnRhPz9vIChpbmNsdWluZG8gbyByZXN1bW8pIHBvciB0b2RvIG8gbXVuZG8gbm8gZm9ybWF0byBpbXByZXNzbyBlIGVsZXRyP25pY28gZSAKZW0gcXVhbHF1ZXIgbWVpbywgaW5jbHVpbmRvIG9zIGZvcm1hdG9zID91ZGlvIG91IHY/ZGVvLgoKVm9jPyBjb25jb3JkYSBxdWUgYSBTaWdsYSBkZSBVbml2ZXJzaWRhZGUgcG9kZSwgc2VtIGFsdGVyYXIgbyBjb250ZT9kbywgdHJhbnNwb3IgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YT8/byAKcGFyYSBxdWFscXVlciBtZWlvIG91IGZvcm1hdG8gcGFyYSBmaW5zIGRlIHByZXNlcnZhPz9vLgoKVm9jPyB0YW1iP20gY29uY29yZGEgcXVlIGEgU2lnbGEgZGUgVW5pdmVyc2lkYWRlIHBvZGUgbWFudGVyIG1haXMgZGUgdW1hIGM/cGlhIGEgc3VhIHRlc2Ugb3UgCmRpc3NlcnRhPz9vIHBhcmEgZmlucyBkZSBzZWd1cmFuP2EsIGJhY2stdXAgZSBwcmVzZXJ2YT8/by4KClZvYz8gZGVjbGFyYSBxdWUgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YT8/byA/IG9yaWdpbmFsIGUgcXVlIHZvYz8gdGVtIG8gcG9kZXIgZGUgY29uY2VkZXIgb3MgZGlyZWl0b3MgY29udGlkb3MgCm5lc3RhIGxpY2VuP2EuIFZvYz8gdGFtYj9tIGRlY2xhcmEgcXVlIG8gZGVwP3NpdG8gZGEgc3VhIHRlc2Ugb3UgZGlzc2VydGE/P28gbj9vLCBxdWUgc2VqYSBkZSBzZXUgCmNvbmhlY2ltZW50bywgaW5mcmluZ2UgZGlyZWl0b3MgYXV0b3JhaXMgZGUgbmluZ3U/bS4KCkNhc28gYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YT8/byBjb250ZW5oYSBtYXRlcmlhbCBxdWUgdm9jPyBuP28gcG9zc3VpIGEgdGl0dWxhcmlkYWRlIGRvcyBkaXJlaXRvcyBhdXRvcmFpcywgdm9jPyAKZGVjbGFyYSBxdWUgb2J0ZXZlIGEgcGVybWlzcz9vIGlycmVzdHJpdGEgZG8gZGV0ZW50b3IgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIHBhcmEgY29uY2VkZXIgPyBTaWdsYSBkZSBVbml2ZXJzaWRhZGUgCm9zIGRpcmVpdG9zIGFwcmVzZW50YWRvcyBuZXN0YSBsaWNlbj9hLCBlIHF1ZSBlc3NlIG1hdGVyaWFsIGRlIHByb3ByaWVkYWRlIGRlIHRlcmNlaXJvcyBlc3Q/IGNsYXJhbWVudGUgCmlkZW50aWZpY2FkbyBlIHJlY29uaGVjaWRvIG5vIHRleHRvIG91IG5vIGNvbnRlP2RvIGRhIHRlc2Ugb3UgZGlzc2VydGE/P28gb3JhIGRlcG9zaXRhZGEuCgpDQVNPIEEgVEVTRSBPVSBESVNTRVJUQT8/TyBPUkEgREVQT1NJVEFEQSBURU5IQSBTSURPIFJFU1VMVEFETyBERSBVTSBQQVRST0M/TklPIE9VIApBUE9JTyBERSBVTUEgQUc/TkNJQSBERSBGT01FTlRPIE9VIE9VVFJPIE9SR0FOSVNNTyBRVUUgTj9PIFNFSkEgQSBTSUdMQSBERSAKVU5JVkVSU0lEQURFLCBWT0M/IERFQ0xBUkEgUVVFIFJFU1BFSVRPVSBUT0RPUyBFIFFVQUlTUVVFUiBESVJFSVRPUyBERSBSRVZJUz9PIENPTU8gClRBTUI/TSBBUyBERU1BSVMgT0JSSUdBPz9FUyBFWElHSURBUyBQT1IgQ09OVFJBVE8gT1UgQUNPUkRPLgoKQSBTaWdsYSBkZSBVbml2ZXJzaWRhZGUgc2UgY29tcHJvbWV0ZSBhIGlkZW50aWZpY2FyIGNsYXJhbWVudGUgbyBzZXUgbm9tZSAocykgb3UgbyhzKSBub21lKHMpIGRvKHMpIApkZXRlbnRvcihlcykgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIGRhIHRlc2Ugb3UgZGlzc2VydGE/P28sIGUgbj9vIGZhcj8gcXVhbHF1ZXIgYWx0ZXJhPz9vLCBhbD9tIGRhcXVlbGFzIApjb25jZWRpZGFzIHBvciBlc3RhIGxpY2VuP2EuCg==Biblioteca Digital de Teses e Dissertaçõeshttps://tede.ufrrj.br/PUBhttps://tede.ufrrj.br/oai/requestbibliot@ufrrj.br||bibliot@ufrrj.bropendoar:2023-12-22T01:46:58Biblioteca Digital de Teses e Dissertações da UFRRJ - Universidade Federal Rural do Rio de Janeiro (UFRRJ)false
dc.title.por.fl_str_mv Estudo das interações dos sistemas formados a partir biopolímeros
dc.title.alternative.eng.fl_str_mv Studying of interactions of systems formed from biopolymers
title Estudo das interações dos sistemas formados a partir biopolímeros
spellingShingle Estudo das interações dos sistemas formados a partir biopolímeros
Gulão, Eliana da Silva
coacervados
proteínas do soro de leite
emulsificantes
coacervates
whey proteins
emulsifier
Engenharia Química
title_short Estudo das interações dos sistemas formados a partir biopolímeros
title_full Estudo das interações dos sistemas formados a partir biopolímeros
title_fullStr Estudo das interações dos sistemas formados a partir biopolímeros
title_full_unstemmed Estudo das interações dos sistemas formados a partir biopolímeros
title_sort Estudo das interações dos sistemas formados a partir biopolímeros
author Gulão, Eliana da Silva
author_facet Gulão, Eliana da Silva
author_role author
dc.contributor.author.fl_str_mv Gulão, Eliana da Silva
dc.contributor.advisor1.fl_str_mv Garcia Rojas, Edwin Elard
dc.contributor.advisor1Lattes.fl_str_mv http://lattes.cnpq.br/1205756654416987
dc.contributor.referee1.fl_str_mv Melo, Nathália Ramos de
dc.contributor.referee2.fl_str_mv Sabino, Silvio José
dc.contributor.authorID.fl_str_mv 122.077.047-77
dc.contributor.authorLattes.fl_str_mv http://lattes.cnpq.br/5986638108643018
contributor_str_mv Garcia Rojas, Edwin Elard
Melo, Nathália Ramos de
Sabino, Silvio José
dc.subject.por.fl_str_mv coacervados
proteínas do soro de leite
emulsificantes
topic coacervados
proteínas do soro de leite
emulsificantes
coacervates
whey proteins
emulsifier
Engenharia Química
dc.subject.eng.fl_str_mv coacervates
whey proteins
emulsifier
dc.subject.cnpq.fl_str_mv Engenharia Química
description As interações entre biopolímeros exercem importante influência nas propriedades dos alimentos em que são empregadas, podendo controlar e melhorar suas propriedades funcionais e organolépticas. No presente trabalho, foi estudada a formação de complexos coacervados a partir de biopolímeros do soro de leite, a proteína lactoferrina (Lf) e o polipeptídeo-leucina (PL) com o polissacarídeo goma arábica (GA). Em todos os sistemas formados, a partir dos dados de turbidez e potencial- ζ foi possível observar que a formação dos precipitados insolúveis ocorreu abaixo do ponto isoelétrico (pI) da proteína e polipeptídeo. A presença de íons pode suspender ou beneficiar o fenômeno de complexação dependendo da natureza dos polímeros utilizados, foi observado que determinadas concentrações de cloreto de sódio (NaCl) influenciaram positivamente no aumento da turbidez, indicando a formação de macromoléculas nos complexos formados entre Lf/GA e o contrário foi observado para os coacervados formados entre PL/GA. Tal fato pode ser comprovado a partir dos dados de tamanho de partícula. Os complexos formados a partir dos biopolímeros apresentaram microcápsulas esféricas devido ao natural potencial de encapsulamento da goma arábica. Foi possível obter emulsões óleo-água estáveis formadas a partir da lactoferrina e ovalbumina (OVA). Emulsões contendo apenas 3%lactoferrina se mostraram estáveis à agregação nos diferentes pH estudados, já as emulsões contendo apenas 3% OVA se mantiveram estáveis apenas em alto valor de pH (8.0). Quando as duas proteínas eram misturadas para formar as emulsões, foi possível observar sistemas estáveis em valores de pH intermediários ao ponto isoelétrico das proteínas. Nestas regiões as proteínas apresentavam-se com cargas opostas promovendo uma ligação eletrostática e provável complexação, que contribuiu para a estabilidade das emulsões. Palavras-
publishDate 2014
dc.date.issued.fl_str_mv 2014-02-27
dc.date.accessioned.fl_str_mv 2023-12-22T01:46:58Z
dc.date.available.fl_str_mv 2023-12-22T01:46:58Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv GULÃO, Eliana da Silva. Estudo das interações dos sistemas formados a partir biopolímeros. 2014. 90 f. Dissertação (Mestrado em Ciência e Tecnologia de Alimentos) - Instituto de Tecnologia, Universidade Federal Rural do Rio de Janeiro, Seropédica, 2014.
dc.identifier.uri.fl_str_mv https://rima.ufrrj.br/jspui/handle/20.500.14407/11112
identifier_str_mv GULÃO, Eliana da Silva. Estudo das interações dos sistemas formados a partir biopolímeros. 2014. 90 f. Dissertação (Mestrado em Ciência e Tecnologia de Alimentos) - Instituto de Tecnologia, Universidade Federal Rural do Rio de Janeiro, Seropédica, 2014.
url https://rima.ufrrj.br/jspui/handle/20.500.14407/11112
dc.language.iso.fl_str_mv por
language por
dc.relation.references.por.fl_str_mv ALLEONI, A. C. C. Propriedades funcionais do albume e qualidade de ovos de galinha cobertos com concentrado proteico de soro de leite bovino. 2003. ANTON, M.; GANDEMER, G. Composition, solubility and emulsifying properties of granules and plasma of egg yolk. J Food Sci, v. 62, n. 3, p. 484-487, 1997. ANTUNES, A. J. Funcionalidade de proteínas do soro de leite bovino. Editora Manole Ltda, 2003. AUGUSTIN, M. A.; HEMAR, Y. Nano- and micro-structured assemblies for encapsulation of food ingredients. Chem Soc Rev, v. 38, n. 4, p. 902-912, Apr 2009. BENGOECHEA, C.; JONES, O. G.; GUERRERO, A.; MCCLEMENTS, D. J. Formation and characterization of lactoferrin/pectin electrostatic complexes: Impact of composition, pH and thermal treatment. Food Hydrocolloids, v. 25, n. 5, p. 1227-1232, 2011. BOUYER, E.; MEKHLOUFI, G.; ROSILIO, V.; GROSSIORD, J. L.; AGNELY, F. Proteins, polysaccharides, and their complexes used as stabilizers for emulsions: alternatives to synthetic surfactants in the pharmaceutical field? Int J Pharm, v. 436, n. 1-2, p. 359-378, Oct 15 2012. BRASIL. Regulamento Técnico: Aditivos Alimentares - definições, classificação e emprego. Diário Oficial da União: Ministério da Saúde. Secretaria de Vigilância Sanitária 1997. ______. Instrução Normativa n.51. MINISTÉRIO DA AGRICULTURA, P. E. A. Brasília: Ministério da Agricultura, Pecuária e Abastecimento, Diário Oficial da União 2002. BURGESS. Pratical analysis complex coacervates. 1990. CAMILO, K. F. B. Complexo pectina/caseína: aspectos básicos e aplicados. 2007. (Doutorado). Faculdade de Ciências Farmacêuticas Universidade de São Paulo, Ribeirão Preto. CAPITANI, C. D.; PACHECO, M. T. B.; GUMERATO, H. F.; VITALI, A.; SCHMIDT, F. L. Recuperação de proteínas do soro de leite por meio de coacervação com polissacarídeo. Pesq. Agropec. Bras.. Brasília–DF, v. 40, n. 11, p. 1123-1128, 2005. CUNHA, P. L. R. D.; PAULA, R. C. M. D.; FEITOSA, J. Polissacarídeos da biodiversidade brasileira: uma oportunidade de transformar conhecimento em valor econômico. Química Nova, v. 32, n. 3, p. 649-660, 2009. DICKINSON, E. Hydrocolloids at interfaces and the influence on the properties of dispersed systems. Food Hydrocolloids, v. 17, n. 1, p. 25-39, 2003. ______. Hydrocolloids as emulsifiers and emulsion stabilizers. Food Hydrocolloids, v. 23, n. 6, p. 1473-1482, 2009. 17 DUCEL, V.; RICHARD, J.; SAULNIER, P.; POPINEAU, Y.; BOURY, F. Evidence and characterization of complex coacervates containing plant proteins: application to the microencapsulation of oil droplets. Colloids and Surfaces A: Physicochemical and Engineering Aspects, v. 232, n. 2-3, p. 239-247, 2004. EISSA, A. S. Newtonian viscosity behavior of dilute solutions of polymerized whey proteins. Would viscosity measurements reveal more detailed molecular properties? Food Hydrocolloids, v. 30, n. 1, p. 200-205, 2013. ELIAS, F.; CAPITANI, C.; MOLINA, S.; AÑON, M.; PACHECO, M. Propriedades emulsificantes de complexos de proteínas de soro de leite com polissacarídeos. Brazilian Journal of Food Technology. III JIPCA, p. 75-80, 2006. FAVARO-TRINDADE, C. S.; PINHO, S. D.; ROCHA, G. Microencapsulação de ingredientes alimentícios. Brazilian Journal of Food Technology, v. 11, n. 2, p. 103-112, 2008. GARCÍA-MONTOYA, I. A.; CENDÓN, T. S.; ARÉVALO-GALLEGOS, S.; RASCÓN-CRUZ, Q. Lactoferrin a multiple bioactive protein: an overview. Biochimica et Biophysica Acta (BBA)-General Subjects, v. 1820, n. 3, p. 226-236, 2012. GIRARD, M.; TURGEON, S. L.; GAUTHIER, S. F. Interbiopolymer complexing between β-lactoglobulin and low-and high-methylated pectin measured by potentiometric titration and ultrafiltration. Food Hydrocolloids, v. 16, n. 6, p. 585-591, 2002. GONZALEZ-CHAVEZ, S. A.; AREVALO-GALLEGOS, S.; RASCON-CRUZ, Q. Lactoferrin: structure, function and applications. Int J Antimicrob Agents, v. 33, n. 4, p. 301 e301-308, Apr 2009. GONZÁLEZ-CHÁVEZ, S. A.; ARÉVALO-GALLEGOS, S.; RASCÓN-CRUZ, Q. Lactoferrin: structure, function and applications. International journal of antimicrobial agents, v. 33, n. 4, p. 301. e301-301. e308, 2009. GROSSIORD, J.; SEILLER, M. W/O/W multiple emulsions: a review of the release mechanisms by break-up of the oily membrane. STP pharma sciences, v. 11, n. 5, p. 331-339, 2001. GUMMEL, J.; BOUÉ, F.; DEMÉ, B.; COUSIN, F. Charge stoichiometry inside polyelectrolyte-protein complexes: a direct SANS measurement for the PSSNa-lysozyme system. The Journal of Physical Chemistry B, v. 110, n. 49, p. 24837-24846, 2006. HUANG, G. Q.; SUN, Y. T.; XIAO, J. X.; YANG, J. Complex coacervation of soybean protein isolate and chitosan. Food Chem, v. 135, n. 2, p. 534-539, Nov 15 2012. KLEIN, M.; ASERIN, A.; SVITOV, I.; GARTI, N. Enhanced stabilization of cloudy emulsions with gum Arabic and whey protein isolate. Colloids Surf B Biointerfaces, v. 77, n. 1, p. 75-81, May 1 2010. 18 LINDHOUD, S.; DE VRIES, R.; NORDE, W.; STUART, M. A. C. Structure and stability of complex coacervate core micelles with lysozyme. Biomacromolecules, v. 8, n. 7, p. 2219-2227, 2007. LIU, S.; ELMER, C.; LOW, N. H.; NICKERSON, M. T. Effect of pH on the functional behaviour of pea protein isolate–gum Arabic complexes. Food Research International, v. 43, n. 2, p. 489-495, 2010. LOLLO, P. C. B.; BATISTA, T. M.; MOURA, C. S.; MORATO, P. N.; CRUZ, A. G.; FARIA, J. A. F.; CARNEIRO, E. M.; AMAYA-FARFAN, J. l-Leucine supplemented whey protein. Dose–response effect on heart mTOR activation of sedentary and trained rats. Food Research International, v. 53, n. 1, p. 543-550, 8// 2013. LV, Y.; ZHANG, X.; ZHANG, H.; ABBAS, S.; KARANGWA, E. The study of pH-dependent complexation between gelatin and gum arabic by morphology evolution and conformational transition. Food Hydrocolloids, v. 30, n. 1, p. 323-332, 2013. MINE, Y. Recent advances in the understanding of egg white protein functionality. Trends in Food Science & Technology, v. 6, n. 7, p. 225-232, 1995. NAIDU, A. Natural food antimicrobial systems. CRC press, 2000. NAKAGAWA, K.; NAGAO, H. Microencapsulation of oil droplets using freezing-induced gelatin–acacia complex coacervation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, v. 411, p. 129-139, 2012. NICASTRO, H.; LIRA, F. S.; ROSA, J. C.; COSTA, A. D. S.; LANCHA JUNIOR, A. H. Suplementação de leucina: nova estratégia antiatrófica? < br/>< b> Warning</b>: get_class () expects parameter 1 to be object, array given in< b>/home/abadan/web/tmp1/ojs-2.2. 2/classes/cache/GenericCache. inc. php</b> on line< b> 63</b>< br/> REMEFE-Revista Mackenzie de Educação Física e Esporte, v. 8, n. 1, 2009. OCAK, B. Complex coacervation of collagen hydrolysate extracted from leather solid wastes and chitosan for controlled release of lavender oil. Journal of environmental management, v. 100, p. 22-28, 2012. PERSIN, Z.; STANA-KLEINSCHEK, K.; FOSTER, T. J.; VAN DAM, J. E.; BOERIU, C. G.; NAVARD, P. Challenges and opportunities in polysaccharides research and technology: The EPNOE views for the next decade in the areas of materials, food and health care. Carbohydrate Polymers, v. 84, n. 1, p. 22-32, 2011. PRAZERES, A. R.; CARVALHO, F.; RIVAS, J. Cheese whey management: a review. J Environ Manage, v. 110, p. 48-68, Nov 15 2012. QI, P.; ONWULATA, C. Physical properties, molecular structures, and protein quality of texturized whey protein isolate: Effect of extrusion moisture content. Journal of dairy science, v. 94, n. 5, p. 2231-2244, 2011. 19 QUINTIERI, L.; CAPUTO, L.; MONACI, L.; DESERIO, D.; MOREA, M.; BARUZZI, F. Antimicrobial efficacy of pepsin-digested bovine lactoferrin on spoilage bacteria contaminating traditional Mozzarella cheese. Food microbiology, v. 31, n. 1, p. 64-71, 2012. RAMÍREZ-SANTIAGO, C.; LOBATO-CALLEROS, C.; ESPINOSA-ANDREWS, H.; VERNON-CARTER, E. J. Viscoelastic properties and overall sensory acceptability of reduced-fat Petit-Suisse cheese made by replacing milk fat with complex coacervate. Dairy Science & Technology, v. 92, n. 4, p. 383-398, 2012. RODRÍGUEZ-FRANCO, D. A.; VÁZQUEZ-MORENO, L.; RAMOS-CLAMONT, M. G. Actividad antimicrobiana de la lactoferrina: Mecanismos y aplicaciones clínicas potenciales. Rev Latino-am Microbiol, v. 47, p. 101-111, 2005. SCHMITT, C.; SANCHEZ, C.; DESOBRY-BANON, S.; HARDY, J. Structure and technofunctional properties of protein-polysaccharide complexes: a review. Crit Rev Food Sci Nutr, v. 38, n. 8, p. 689-753, 1998. SCHMITT, C.; SANCHEZ, C.; LAMPRECHT, A.; RENARD, D.; LEHR, C.; DE KRUIF, C. G.; HARDY, J. Study of beta-lactoglobulin/acacia gum complex coacervation by diffusing-wave spectroscopy and confocal scanning laser microscopy. Colloids Surf B Biointerfaces, v. 20, n. 3, p. 267-280, Mar 2001. SCHMITT, C.; TURGEON, S. L. Protein/polysaccharide complexes and coacervates in food systems. Adv Colloid Interface Sci, v. 167, n. 1-2, p. 63-70, Sep 14 2011. SERRANO, M. E. D. Lactoferrina: producción industrial y aplicaciones. Revista Mexicana de Ciencias Farmaceuticas, v. 38, n. 3, p. 30-38, 2007. SGARBIERI, V. C. Propriedades fisiológicas-funcionais das proteínas do soro de leite. Rev Nutr, v. 17, n. 4, p. 397-409, 2004. SHE, P.; OLSON, K. C.; KADOTA, Y.; INUKAI, A.; SHIMOMURA, Y.; HOPPEL, C. L.; ADAMS, S. H.; KAWAMATA, Y.; MATSUMOTO, H.; SAKAI, R. Leucine and Protein Metabolism in Obese Zucker Rats. PloS one, v. 8, n. 3, p. e59443, 2013. SIM, J. S.; NAKAI, S. Egg uses and processing technologies: new developments. Cab International, 1994. SINGH, S. S.; SIDDHANTA, A. K.; MEENA, R.; PRASAD, K.; BANDYOPADHYAY, S.; BOHIDAR, H. B. Intermolecular complexation and phase separation in aqueous solutions of oppositely charged biopolymers. Int J Biol Macromol, v. 41, n. 2, p. 185-192, Jul 1 2007. SOUZA, C. J. F.; GARCIA ROJAS, E. E.; MELO, N. R.; GASPAR, A.; LINS, J. F. C. Complex coacervates obtained from interaction egg yolk lipoprotein and polysaccharides. Food Hydrocolloids, v. 30, n. 1, p. 375-381, 2013. STADELMAN, W. J.; NEWKIRK, D.; NEWBY, L. Egg science and technology. CRC Press, 1995. 20 SU, Y.; LAM, T. K.; HE, W.; POCAI, A.; BRYAN, J.; AGUILAR-BRYAN, L.; GUTIÉRREZ-JUÁREZ, R. Hypothalamic leucine metabolism regulates liver glucose production. Diabetes, v. 61, n. 1, p. 85-93, 2012. TAKENAKA, H.; KAWASHIMA, Y.; LIN, S. Y. Micromeritic properties of sulfamethoxazole microcapsules prepared by gelatin–acacia coacervation. Journal of pharmaceutical sciences, v. 69, n. 5, p. 513-516, 1980. TURGEON, S.; BEAULIEU, M.; SCHMITT, C.; SANCHEZ, C. Protein–polysaccharide interactions: phase-ordering kinetics, thermodynamic and structural aspects. Current Opinion in Colloid & Interface Science, v. 8, n. 4, p. 401-414, 2003. TURGEON, S. L.; SCHMITT, C.; SANCHEZ, C. Protein–polysaccharide complexes and coacervates. Current Opinion in Colloid & Interface Science, v. 12, n. 4-5, p. 166-178, 2007. WANG, X.; LEE, J.; WANG, Y. W.; HUANG, Q. Composition and rheological properties of beta-Lactoglobulin/pectin coacervates: effects of salt concentration and initial protein/polysaccharide ratio. Biomacromolecules, v. 8, n. 3, p. 992-997, Mar 2007. WANG, X.; LI, Y.; LI, J.; WANG, J.; WANG, Y.; GUO, Z.; YAN, H. Salt effect on the complex formation between polyelectrolyte and oppositely charged surfactant in aqueous solution. J Phys Chem B, v. 109, n. 21, p. 10807-10812, Jun 2 2005. WATANABE, K.; TSUGE, Y.; SHIMOYAMADA, M.; OGAMA, N.; EBINA, T. Antitumor effects of pronase-treated fragments, glycopeptides, from ovomucin in hen egg white in a double grafted tumor system. J Agric Food Chem, v. 46, n. 8, p. 3033-3038, 1998. WEINBRECK, F.; NIEUWENHUIJSE, H.; ROBIJN, G. W.; DE KRUIF, C. G. Complexation of whey proteins with carrageenan. J Agric Food Chem, v. 52, n. 11, p. 3550-3555, 2004. WILLIAMS, P.; PHILLIPS, G. Gum arabic. Handbook of hydrocolloids, p. 252-273, 2009. YU, J.-Y.; LEE, W.-C. Microencapsulation of pyrrolnitrin from< i> Pseudomonas cepacia</i> using gluten and casein. Journal of fermentation and bioengineering, v. 84, n. 5, p. 444-448, 1997. AUGUSTIN, M. A.; HEMAR, Y. Nano- and micro-structured assemblies for encapsulation of food ingredients. Chem Soc Rev, v. 38, n. 4, p. 902-912, Apr 2009. BALCÃO, V. M.; COSTA, C. I.; MATOS, C. M.; MOUTINHO, C. G.; AMORIM, M.; PINTADO, M. E.; GOMES, A. P.; VILA, M. M.; TEIXEIRA, J. A. Nanoencapsulation of bovine lactoferrin for food and biopharmaceutical applications. Food Hydrocolloids, v. 32, n. 2, p. 425-431, 2013. BÉDIÉ, G. K.; TURGEON, S. L.; MAKHLOUF, J. Formation of native whey protein isolate–low methoxyl pectin complexes as a matrix for hydro-soluble food ingredient entrapment in acidic foods. Food Hydrocolloids, v. 22, n. 5, p. 836-844, 2008. BENGOECHEA, C.; JONES, O. G.; GUERRERO, A.; MCCLEMENTS, D. J. Formation and characterization of lactoferrin/pectin electrostatic complexes: Impact of composition, pH and thermal treatment. Food Hydrocolloids, v. 25, n. 5, p. 1227-1232, 2011. BENGOECHEA, C.; PEINADO, I.; MCCLEMENTS, D. J. Formation of protein nanoparticles by controlled heat treatment of lactoferrin: Factors affecting particle characteristics. Food Hydrocolloids, v. 25, n. 5, p. 1354-1360, 2011. BURGESS. Pratical analysis complex coacervates. 1990. DE KRUIF, C. G.; WEINBRECK, F.; DE VRIES, R. Complex coacervation of proteins and anionic polysaccharides. Current Opinion in Colloid & Interface Science, v. 9, n. 5, p. 340-349, 2004. ESPINOSA-ANDREWS, H.; BAEZ-GONZALEZ, J. G.; CRUZ-SOSA, F.; VERNON-CARTER, E. J. Gum arabic-chitosan complex coacervation. Biomacromolecules, v. 8, n. 4, p. 1313-1318, Apr 2007. FUJIMOTO, J.; DE OREIS, E.; PETRI, D. F.; FILHO, S. Formação de multicamadas de polissacarídeos e proteína. Química Nova, v. 25, n. 5, p. 757-761, 2002. GENTES, M. C.; ST-GELAIS, D.; TURGEON, S. L. Stabilization of whey protein isolate-pectin complexes by heat. J Agric Food Chem, v. 58, n. 11, p. 7051-7058, Jun 9 2010. GONZALEZ-CHAVEZ, S. A.; AREVALO-GALLEGOS, S.; RASCON-CRUZ, Q. Lactoferrin: structure, function and applications. Int J Antimicrob Agents, v. 33, n. 4, p. 301 e301-308, Apr 2009. GUMMEL, J.; BOUÉ, F.; DEMÉ, B.; COUSIN, F. Charge stoichiometry inside polyelectrolyte-protein complexes: a direct SANS measurement for the PSSNa-lysozyme system. The Journal of Physical Chemistry B, v. 110, n. 49, p. 24837-24846, 2006. HELLEN, K. S.; MONIKA, P. T.; SILVA, M. A.; LARANJEIRA, M. C.; DE QUALIDADE, L. D. C. Desenvolvimento, Avaliação e Caracterização Físico Química de Micropartículas 42 Constituídas de Aciclovir/Quitosana Desenvolvidas pela Técnica de Spray-drying. Lat. Am. J. Pharm, v. 26, n. 6, p. 866-871, 2007. HUANG, G. Q.; SUN, Y. T.; XIAO, J. X.; YANG, J. Complex coacervation of soybean protein isolate and chitosan. Food Chem, v. 135, n. 2, p. 534-539, Nov 15 2012. JONES, O.; DECKER, E.; MCCLEMENTS, D. Thermal analysis of β-lactoglobulin complexes with pectins or carrageenan for production of stable biopolymer particles. Food Hydrocolloids, v. 24, n. 2-3, p. 239-248, 03/14/ 2010. KLEIN, M.; ASERIN, A.; SVITOV, I.; GARTI, N. Enhanced stabilization of cloudy emulsions with gum Arabic and whey protein isolate. Colloids Surf B Biointerfaces, v. 77, n. 1, p. 75-81, May 1 2010. LAOS, K.; BROWNSEY, G. J.; RING, S. G. Interactions between furcellaran and the globular proteins bovine serum albumin and β-lactoglobulin. Carbohydrate Polymers, v. 67, n. 1, p. 116-123, 1/2/ 2007. LIU, S.; ELMER, C.; LOW, N. H.; NICKERSON, M. T. Effect of pH on the functional behaviour of pea protein isolate–gum Arabic complexes. Food Research International, v. 43, n. 2, p. 489-495, 2010. LV, Y.; ZHANG, X.; ZHANG, H.; ABBAS, S.; KARANGWA, E. The study of pH-dependent complexation between gelatin and gum arabic by morphology evolution and conformational transition. Food Hydrocolloids, v. 30, n. 1, p. 323-332, 2013. MATA, L.; SÁNCHEZ, L.; HEADON, D. R.; CALVO, M. Thermal denaturation of human lactoferrin and its effect on the ability to bind iron. J Agric Food Chem, v. 46, n. 10, p. 3964-3970, 1998. MAYYA, K. S.; BHATTACHARYYA, A.; ARGILLIER, J. F. Micro-encapsulation by complex coacervation: influence of surfactant. Polymer International, v. 52, n. 4, p. 644-647, 2003. MCCLEMENTS, D. J.; DECKER, E. A.; PARK, Y.; WEISS, J. Structural design principles for delivery of bioactive components in nutraceuticals and functional foods. Crit Rev Food Sci Nutr, v. 49, n. 6, p. 577-606, Jun 2009. MOHANTY, B.; BOHIDAR, H. B. Microscopic structure of gelatin coacervates. Int J Biol Macromol, v. 36, n. 1-2, p. 39-46, Jul 2005. PRIFTIS, D.; TIRRELL, M. Phase behaviour and complex coacervation of aqueous polypeptide solutions. Soft Matter, v. 8, n. 36, p. 9396, 2012. REMUNAN-LOPEZ, C.; BODMEIER, R. Effect of formulation and process variables on the formation of chitosan-gelatin coacervates. Int J Pharm, v. 135, n. 1, p. 63-72, 1996. RU, Q.; WANG, Y.; LEE, J.; DING, Y.; HUANG, Q. Turbidity and rheological properties of bovine serum albumin/pectin coacervates: Effect of salt concentration and initial protein/polysaccharide ratio. Carbohydrate Polymers, v. 88, n. 3, p. 838-846, 2012. 43 SCHMITT, C.; SANCHEZ, C.; THOMAS, F.; HARDY, J. Complex coacervation between β-lactoglobulin and acacia gum in aqueous medium. Food Hydrocolloids, v. 13, n. 6, p. 483-496, 1999. SEYREK, E.; DUBIN, P. L.; TRIBET, C.; GAMBLE, E. A. Ionic Strength Dependence of Protein-Polyelectrolyte Interactions. Biomacromolecules, v. 4, n. 2, p. 273-282, 2003/03/01 2003. SOUZA, C. J. F.; GARCIA ROJAS, E. E.; MELO, N. R.; GASPAR, A.; LINS, J. F. C. Complex coacervates obtained from interaction egg yolk lipoprotein and polysaccharides. Food Hydrocolloids, v. 30, n. 1, p. 375-381, 2013. TOLSTOGUZOV, V. Functional properties of food proteins and role of protein-polysaccharide interaction. Food Hydrocolloids, v. 4, n. 6, p. 429-468, 1991. TURGEON, S.; BEAULIEU, M.; SCHMITT, C.; SANCHEZ, C. Protein–polysaccharide interactions: phase-ordering kinetics, thermodynamic and structural aspects. Current Opinion in Colloid & Interface Science, v. 8, n. 4, p. 401-414, 2003. TURGEON, S. L.; SCHMITT, C.; SANCHEZ, C. Protein–polysaccharide complexes and coacervates. Current Opinion in Colloid & Interface Science, v. 12, n. 4-5, p. 166-178, 2007. WANG, X.; LEE, J.; WANG, Y. W.; HUANG, Q. Composition and rheological properties of beta-Lactoglobulin/pectin coacervates: effects of salt concentration and initial protein/polysaccharide ratio. Biomacromolecules, v. 8, n. 3, p. 992-997, Mar 2007. WANG, X.; LI, Y.; LI, J.; WANG, J.; WANG, Y.; GUO, Z.; YAN, H. Salt effect on the complex formation between polyelectrolyte and oppositely charged surfactant in aqueous solution. J Phys Chem B, v. 109, n. 21, p. 10807-10812, Jun 2 2005. WEINBRECK, F.; DE VRIES, R.; SCHROOYEN, P.; DE KRUIF, C. Complex coacervation of whey proteins and gum arabic. Biomacromolecules, v. 4, n. 2, p. 293-303, 2003. WEINBRECK, F.; NIEUWENHUIJSE, H.; ROBIJN, G. W.; DE KRUIF, C. G. Complexation of whey proteins with carrageenan. J Agric Food Chem, v. 52, n. 11, p. 3550-3555, 2004. YU, L. Amorphous pharmaceutical solids: Oreparation, characterization and stabilization. International Journal of Pharmaceutics, v.48, n.1, p.27-42, AUGUSTIN, M. A.; HEMAR, Y. Nano- and micro-structured assemblies for encapsulation of food ingredients. Chem Soc Rev, v. 38, n. 4, p. 902-912, Apr 2009. BASTOS, D. D. S.; GONÇALVES, M. D. P.; ANDRADE, C. T. D.; ARAÚJO, K. G. D. L.; ROCHA LEÃO, M. H. M. D. Microencapsulation of cashew apple (Anacardium occidentale, L.) juice using a new chitosan–commercial bovine whey protein isolate system in spray drying. Food and Bioproducts Processing, v. 90, n. 4, p. 683-692, 10// 2012. BASTOS, D. S.; BARRETO, B. N.; SOUZA, H. K. S.; BASTOS, M.; ROCHA-LEÃO, M. H. M.; ANDRADE, C. T.; GONÇALVES, M. P. Characterization of a chitosan sample extracted from Brazilian shrimps and its application to obtain insoluble complexes with a commercial whey protein isolate. Food Hydrocolloids, v. 24, n. 8, p. 709-718, 2010. BENGOECHEA, C.; JONES, O. G.; GUERRERO, A.; MCCLEMENTS, D. J. Formation and characterization of lactoferrin/pectin electrostatic complexes: Impact of composition, pH and thermal treatment. Food Hydrocolloids, v. 25, n. 5, p. 1227-1232, 2011. COELHO, S.; MORENO-FLORES, S.; TOCA-HERRERA, J. L.; COELHO, M. A.; PEREIRA, M. C.; ROCHA, S. Nanostructure of polysaccharide complexes. J Colloid Interface Sci, v. 363, n. 2, p. 450-455, Nov 15 2011. COOPER, C. L.; DUBIN, P. L.; KAYITMAZER, A. B.; TURKSEN, S. Polyelectrolyte–protein complexes. Current Opinion in Colloid & Interface Science, v. 10, n. 1-2, p. 52-78, 2005. DE KRUIF, C. G.; WEINBRECK, F.; DE VRIES, R. Complex coacervation of proteins and anionic polysaccharides. Current Opinion in Colloid & Interface Science, v. 9, n. 5, p. 340-349, 2004. FOEGEDING, E. A.; LUCK, P. J.; DAVIS, J. P. Factors determining the physical properties of protein foams. Food Hydrocolloids, v. 20, n. 2-3, p. 284-292, 2006. GUZEY, D.; KIM, H. J.; MCCLEMENTS, D. J. Factors influencing the production of o/w emulsions stabilized by β-lactoglobulin–pectin membranes. Food Hydrocolloids, v. 18, n. 6, p. 967-975, 2004. HELLEN, K. S.; MONIKA, P. T.; SILVA, M. A.; LARANJEIRA, M. C.; DE QUALIDADE, L. D. C. Desenvolvimento, Avaliação e Caracterização Físico Química de Micropartículas Constituídas de Aciclovir/Quitosana Desenvolvidas pela Técnica de Spray-drying. Lat. Am. J. Pharm, v. 26, n. 6, p. 866-871, 2007. HUANG, G. Q.; SUN, Y. T.; XIAO, J. X.; YANG, J. Complex coacervation of soybean protein isolate and chitosan. Food Chem, v. 135, n. 2, p. 534-539, Nov 15 2012. 63 KADOWAKI, T.; YAMAUCHI, T.; KUBOTA, N.; HARA, K.; UEKI, K.; TOBE, K. Adiponectin and adiponectin receptors in insulin resistance, diabetes, and the metabolic syndrome. Journal of Clinical Investigation, v. 116, n. 7, p. 1784-1792, 2006. LI, X.; FANG, Y.; AL-ASSAF, S.; PHILLIPS, G. O.; YAO, X.; ZHANG, Y.; ZHAO, M.; ZHANG, K.; JIANG, F. Complexation of bovine serum albumin and sugar beet pectin: structural transitions and phase diagram. Langmuir, v. 28, n. 27, p. 10164-10176, Jul 10 2012. LIVNEY, Y. D. Milk proteins as vehicles for bioactives. Current Opinion in Colloid & Interface Science, v. 15, n. 1-2, p. 73-83, 2010. LOLLO, P. C. B.; BATISTA, T. M.; MOURA, C. S.; MORATO, P. N.; CRUZ, A. G.; FARIA, J. A. F.; CARNEIRO, E. M.; AMAYA-FARFAN, J. l-Leucine supplemented whey protein. Dose–response effect on heart mTOR activation of sedentary and trained rats. Food Research International, v. 53, n. 1, p. 543-550, 8// 2013. LV, Y.; ZHANG, X.; ZHANG, H.; ABBAS, S.; KARANGWA, E. The study of pH-dependent complexation between gelatin and gum arabic by morphology evolution and conformational transition. Food Hydrocolloids, v. 30, n. 1, p. 323-332, 2013. OU, Z.; MUTHUKUMAR, M. Entropy and enthalpy of polyelectrolyte complexation: Langevin dynamics simulations. J Chem Phys, v. 124, n. 15, p. 154902, Apr 21 2006. PRIFTIS, D.; TIRRELL, M. Phase behaviour and complex coacervation of aqueous polypeptide solutions. Soft Matter, v. 8, n. 36, p. 9396, 2012. RU, Q.; WANG, Y.; LEE, J.; DING, Y.; HUANG, Q. Turbidity and rheological properties of bovine serum albumin/pectin coacervates: Effect of salt concentration and initial protein/polysaccharide ratio. Carbohydrate Polymers, v. 88, n. 3, p. 838-846, 2012. SCHMITT, C.; SANCHEZ, C.; LAMPRECHT, A.; RENARD, D.; LEHR, C.; DE KRUIF, C. G.; HARDY, J. Study of beta-lactoglobulin/acacia gum complex coacervation by diffusing-wave spectroscopy and confocal scanning laser microscopy. Colloids Surf B Biointerfaces, v. 20, n. 3, p. 267-280, Mar 2001. SCHMITT, C.; TURGEON, S. L. Protein/polysaccharide complexes and coacervates in food systems. Adv Colloid Interface Sci, v. 167, n. 1-2, p. 63-70, Sep 14 2011. SINGH, S. S.; SIDDHANTA, A. K.; MEENA, R.; PRASAD, K.; BANDYOPADHYAY, S.; BOHIDAR, H. B. Intermolecular complexation and phase separation in aqueous solutions of oppositely charged biopolymers. Int J Biol Macromol, v. 41, n. 2, p. 185-192, Jul 1 2007. SOUZA, C. J. F.; GARCIA ROJAS, E. E.; MELO, N. R.; GASPAR, A.; LINS, J. F. C. Complex coacervates obtained from interaction egg yolk lipoprotein and polysaccharides. Food Hydrocolloids, v. 30, n. 1, p. 375-381, 2013. SU, Y.; LAM, T. K.; HE, W.; POCAI, A.; BRYAN, J.; AGUILAR-BRYAN, L.; GUTIÉRREZ-JUÁREZ, R. Hypothalamic leucine metabolism regulates liver glucose production. Diabetes, v. 61, n. 1, p. 85-93, 2012. 64 TURGEON, S. L.; SCHMITT, C.; SANCHEZ, C. Protein–polysaccharide complexes and coacervates. Current Opinion in Colloid & Interface Science, v. 12, n. 4-5, p. 166-178, 2007. WANG, X.; LEE, J.; WANG, Y. W.; HUANG, Q. Composition and rheological properties of beta-Lactoglobulin/pectin coacervates: effects of salt concentration and initial protein/polysaccharide ratio. Biomacromolecules, v. 8, n. 3, p. 992-997, Mar 2007. WEINBRECK, F.; DE VRIES, R.; SCHROOYEN, P.; DE KRUIF, C. Complex coacervation of whey proteins and gum arabic. Biomacromolecules, v. 4, n. 2, p. 293-303, 2003. WEINBRECK, F.; NIEUWENHUIJSE, H.; ROBIJN, G. W.; DE KRUIF, C. G. Complexation of whey proteins with carrageenan. J Agric Food Chem, v. 52, n. 11, p. 3550-3555, 2004. WITTEMANN, A.; BALLAUFF, M. Interaction of proteins with linear polyelectrolytes and spherical polyelectrolyte brushes in aqueous solution. Physical Chemistry Chemical Physics, v. 8, n. 45, p. 5269, 2006. BENGOECHEA, C.; JONES, O. G.; GUERRERO, A.; MCCLEMENTS, D. J. Formation and characterization of lactoferrin/pectin electrostatic complexes: Impact of composition, pH and thermal treatment. Food Hydrocolloids, v. 25, n. 5, p. 1227-1232, 2011. CAPITANI, C.; PEREZ, O.; PILOSOF, A.; BERTOLDO PACHECO, M. T. Influence of complexing carboxymethylcellulose on the thermostability and gelation of a-lactalbumin and b-lactoglobulin. Food Hydrocolloids, v. 21, n. 8, p. 1344-1355, 2007. CONESA, C.; ROTA, C.; CASTILLO, E.; PÉREZ, M. D.; CALVO, M.; SÁNCHEZ, L. Effect of heat treatment on the antibacterial activity of bovine lactoferrin against three foodborne pathogens. International Journal of Dairy Technology, v. 63, n. 2, p. 209-215, 2010. CROGUENNEC, T.; RENAULT, A.; BEAUFILS, S.; DUBOIS, J. J.; PEZENNEC, S. Interfacial properties of heat-treated ovalbumin. J Colloid Interface Sci, v. 315, n. 2, p. 627-636, Nov 15 2007. DEMETRIADES, K.; COUPLAND, J.; MCCLEMENTS, D. Physicochemical Properties of Whey Protein‐Stabilized Emulsions as affected by Heating and Ionic Strength. J Food Sci, v. 62, n. 3, p. 462-467, 1997. GONZALEZ-CHAVEZ, S. A.; AREVALO-GALLEGOS, S.; RASCON-CRUZ, Q. Lactoferrin: structure, function and applications. Int J Antimicrob Agents, v. 33, n. 4, p. 301 e301-308, Apr 2009. MCCARTHY, N. A.; KELLY, A. L.; O'MAHONY, J. A.; FENELON, M. A. Sensitivity of emulsions stabilised by bovine β-casein and lactoferrin to heat and CaCl2. Food Hydrocolloids, v. 35, p. 420-428, 2014. MCCLEMENTS, D. J. Theoretical analysis of factors affecting the formation and stability of multilayered colloidal dispersions. Langmuir, v. 21, n. 21, p. 9777-9785, 2005. MCCLEMENTS, D. J.; LI, Y. Structured emulsion-based delivery systems: controlling the digestion and release of lipophilic food components. Adv Colloid Interface Sci, v. 159, n. 2, p. 213-228, Sep 15 2010. NEVIN, K.; RAJAMOHAN, T. Beneficial effects of virgin coconut oil on lipid parameters and in vitro LDL oxidation. Clinical Biochemistry, v. 37, n. 9, p. 830-835, 2004. ______. Influence of virgin coconut oil on blood coagulation factors, lipid levels and LDL oxidation in cholesterol fed Sprague–Dawley rats. e-SPEN, the European e-Journal of Clinical Nutrition and Metabolism, v. 3, n. 1, p. e1-e8, 2008. RAO, J.; MCCLEMENTS, D. J. Impact of lemon oil composition on formation and stability of model food and beverage emulsions. Food Chem, v. 134, n. 2, p. 749-757, Sep 15 2012. 81 SUN, C.; GUNASEKARAN, S. Effects of protein concentration and oil-phase volume fraction on the stability and rheology of menhaden oil-in-water emulsions stabilized by whey protein isolate with xanthan gum. Food Hydrocolloids, v. 23, n. 1, p. 165-174, 2009. SUN, X. D.; ARNTFIELD, S. D. Gelation properties of salt-extracted pea protein induced by heat treatment. Food Research International, v. 43, n. 2, p. 509-515, 2010. TIAN, S.; CHEN, J. I. E.; SMALL, D. M. Enhancement of Solubility and Emulsifying Properties of Soy Protein Isolates by Glucose Conjugation. Journal of Food Processing and Preservation, v. 35, n. 1, p. 80-95, 2011. TOKLE, T.; DECKER, E. A.; MCCLEMENTS, D. J. Utilization of interfacial engineering to produce novel emulsion properties: Pre-mixed lactoferrin/β-lactoglobulin protein emulsifiers. Food Research International, v. 49, n. 1, p. 46-52, 2012. TOKLE, T.; MCCLEMENTS, D. J. Physicochemical properties of lactoferrin stabilized oil-in-water emulsions: Effects of pH, salt and heating. Food Hydrocolloids, v. 25, n. 5, p. 976-982, 2011. VAN VLIET, T.; LAKEMOND, C. M. M.; VISSCHERS, R. W. Rheology and structure of milk protein gels. Current Opinion in Colloid & Interface Science, v. 9, n. 5, p. 298-304, 2004. WILDE, P.; MACKIE, A.; HUSBAND, F.; GUNNING, P.; MORRIS, V. Proteins and emulsifiers at liquid interfaces. Adv Colloid Interface Sci, v. 108-109, p. 63-71, May 20 2004. WOOSTER, T. J.; AUGUSTIN, M. A. Rheology of whey protein–dextran conjugate films at the air/water interface. Food Hydrocolloids, v. 21, n. 7, p. 1072-1080, 2007. XU, K.; YAO, P. Stable oil-in-water emulsions prepared from soy protein-dextran conjugates. Langmuir, v. 25, n. 17, p. 9714-9720, Sep 1 2009. YADAV, M. P.; PARRIS, N.; JOHNSTON, D. B.; ONWULATA, C. I.; HICKS, K. B. Corn fiber gum and milk protein conjugates with improved emulsion stability. Carbohydrate Polymers, v. 81, n. 2, p. 476-483, 2010. YE, A.; SINGH, H. Adsorption behaviour of lactoferrin in oil-in-water emulsions as influenced by interactions with beta-lactoglobulin. J Colloid Interface Sci, v. 295, n. 1, p. 249-254, Mar 1 2006. ZIANI, K.; FANG, Y.; MCCLEMENTS, D. J. Fabrication and stability of colloidal delivery systems for flavor oils: Effect of composition and storage conditions.
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal Rural do Rio de Janeiro
dc.publisher.program.fl_str_mv Programa de Pós-Graduação em Ciência e Tecnologia de Alimentos
dc.publisher.initials.fl_str_mv UFRRJ
dc.publisher.country.fl_str_mv Brasil
dc.publisher.department.fl_str_mv Instituto de Tecnologia
publisher.none.fl_str_mv Universidade Federal Rural do Rio de Janeiro
dc.source.none.fl_str_mv reponame:Biblioteca Digital de Teses e Dissertações da UFRRJ
instname:Universidade Federal Rural do Rio de Janeiro (UFRRJ)
instacron:UFRRJ
instname_str Universidade Federal Rural do Rio de Janeiro (UFRRJ)
instacron_str UFRRJ
institution UFRRJ
reponame_str Biblioteca Digital de Teses e Dissertações da UFRRJ
collection Biblioteca Digital de Teses e Dissertações da UFRRJ
bitstream.url.fl_str_mv https://rima.ufrrj.br/jspui/bitstream/20.500.14407/11112/1/2014%20-%20Eliana%20da%20Silva%20Gul%c3%a3o.pdf.jpg
https://rima.ufrrj.br/jspui/bitstream/20.500.14407/11112/2/2014%20-%20Eliana%20da%20Silva%20Gul%c3%a3o.pdf.txt
https://rima.ufrrj.br/jspui/bitstream/20.500.14407/11112/3/2014%20-%20Eliana%20da%20Silva%20Gul%c3%a3o.pdf
https://rima.ufrrj.br/jspui/bitstream/20.500.14407/11112/4/license.txt
bitstream.checksum.fl_str_mv cc73c4c239a4c332d642ba1e7c7a9fb2
cd42246ca12afc7a6b49eab50588984d
5e8178dd5ad9a03c0fb6824b1749cdb7
7b5ba3d2445355f386edab96125d42b7
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da UFRRJ - Universidade Federal Rural do Rio de Janeiro (UFRRJ)
repository.mail.fl_str_mv bibliot@ufrrj.br||bibliot@ufrrj.br
_version_ 1810107814721355776