Detecção e descrição de pontos de controle em imagens HDR

Detalhes bibliográficos
Autor(a) principal: Nascimento, Artur Santos
Data de Publicação: 2022
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Repositório Institucional da UFS
Texto Completo: https://ri.ufs.br/jspui/handle/riufs/19528
Resumo: In computer vision, a characteristic refers to image regions with unique properties, such as corners, edges, textures, or areas with high contrast. These regions are called control points (CPs). CP detectors and descriptors identify features in images and are the basis for many applications, such as object recognition, three-dimensional scene reconstruction, and biometric systems. Most CP detection and description methods use low dynamic range (LDR) images, which are sufficient for most applications involving with digital images. However, this type of representation limits the dynamic range and does not properly represent light under extreme lighting conditions. High dynamic range (HDR) images allow the representation of a wider range of lighting intensities. Consequently, lighting extremes are better represented in HDR images. This work investigates the potential of using HDR images in CP detectors and descriptors. We developed the CP_HDR library that implements Harris and Harris for HDR detection algorithms and SIFT and SIFT for HDR detection and description algorithms. Using uniformity, repeatability rate, mean average precision, and matching rate metrics, we compared the performance of the CP_HDR algorithms. We observed that when using HDR images with specialized detectors for HDR images, there is an increase in the distribution of CPs detected in the darkest, medium, and brightest areas of the images. We also observed that the description produced using HDR images with the canonical algorithms provided a better description of the CPs. The results show that using HDR images as input in detection algorithms improves its performance, and the implemented algorithms specialized for HDR images enhance the description of CPs.
id UFS-2_577461c922d820c8e17229877244f406
oai_identifier_str oai:oai:ri.ufs.br:repo_01:riufs/19528
network_acronym_str UFS-2
network_name_str Repositório Institucional da UFS
repository_id_str
spelling Nascimento, Artur SantosCarvalho, Beatriz Trinchão Andrade deDantas, Daniel Oliveira2024-07-09T19:43:16Z2024-07-09T19:43:16Z2022-08-26NASCIMENTO, Artur Santos. Detecção e descrição de pontos de controle em imagens HDR. 2022. 161 f. Dissertação (Mestrado em Ciência da Computação) – Universidade Federal de Sergipe, São Cristóvão, 2022.https://ri.ufs.br/jspui/handle/riufs/19528In computer vision, a characteristic refers to image regions with unique properties, such as corners, edges, textures, or areas with high contrast. These regions are called control points (CPs). CP detectors and descriptors identify features in images and are the basis for many applications, such as object recognition, three-dimensional scene reconstruction, and biometric systems. Most CP detection and description methods use low dynamic range (LDR) images, which are sufficient for most applications involving with digital images. However, this type of representation limits the dynamic range and does not properly represent light under extreme lighting conditions. High dynamic range (HDR) images allow the representation of a wider range of lighting intensities. Consequently, lighting extremes are better represented in HDR images. This work investigates the potential of using HDR images in CP detectors and descriptors. We developed the CP_HDR library that implements Harris and Harris for HDR detection algorithms and SIFT and SIFT for HDR detection and description algorithms. Using uniformity, repeatability rate, mean average precision, and matching rate metrics, we compared the performance of the CP_HDR algorithms. We observed that when using HDR images with specialized detectors for HDR images, there is an increase in the distribution of CPs detected in the darkest, medium, and brightest areas of the images. We also observed that the description produced using HDR images with the canonical algorithms provided a better description of the CPs. The results show that using HDR images as input in detection algorithms improves its performance, and the implemented algorithms specialized for HDR images enhance the description of CPs.Na visão computacional, o termo característica se refere a regiões de imagens com propriedades especiais, tais como regiões com cantos, bordas, texturas ou áreas de alto contraste. Essas regiões também são chamadas de pontos de controle, do inglês, Control Points (CPs). Os detectores e descritores de CPs identificam características em imagens e são a base de diversas aplicações, tais como reconhecimento de objetos, reconstrução tridimensional de cenas, e sistemas biométricos. A maioria dos métodos de detecção e descrição de CPs utiliza imagens com baixa faixa dinâmica (low dynamic range, LDR), que são suficientes para a maior parte das aplicações que trabalham com imagens digitais. Entretanto, esse tipo de representação limita o intervalo dinâmico e não representa apropriadamente a luz em extremos de iluminação. Imagens de alta faixa dinâmica (high dynamic range, HDR) possibilitam a representação de uma maior variação de intensidades de iluminação. Como consequência, extremos de iluminação são melhor representados nas imagens HDR. Neste trabalho, investigamos o potencial do uso de imagens HDR em detectores e descritores de CPs. Para isso, desenvolvemos a biblioteca CP_HDR que implementa os algoritmos de detecção Harris e Harris for HDR, e os algoritmos de detecção e descrição SIFT e SIFT for HDR. Usando as métricas de uniformidade, repetibilidade, mean average precision e matching rate, comparamos o desempenho dos algoritmos implementados. Com isso, observamos que, ao usar imagens HDR com detectores especializados para imagens HDR, há um aumento na distribuição dos CPs detectados nas áreas mais escuras, intermediárias e mais claras das imagens. Nós também observamos que a descrição produzida usando imagens HDR com os algoritmos originais proporcionaram uma descrição melhor dos CPs. Os resultados obtidos mostram que o uso de imagens HDR melhora a detecção de CPs em imagens com extremos de iluminação e que os algoritmos especializados para imagens HDR melhoram a descrição dos CPs.São CristóvãoporImagens digitaisImagens HDRDetecçãoDescrição pontos de controleHigh Dynamic Range (RDR)HDR imagesDetectionDescriptionFeature pointsHigh dynamic range imagingCIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAODetecção e descrição de pontos de controle em imagens HDRinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisPós-Graduação em Ciência da ComputaçãoUniversidade Federal de Sergipe (UFS)reponame:Repositório Institucional da UFSinstname:Universidade Federal de Sergipe (UFS)instacron:UFSinfo:eu-repo/semantics/openAccessLICENSElicense.txtlicense.txttext/plain; charset=utf-81475https://ri.ufs.br/jspui/bitstream/riufs/19528/1/license.txt098cbbf65c2c15e1fb2e49c5d306a44cMD51ORIGINALARTUR_SANTOS_NASCIMENTO.pdfARTUR_SANTOS_NASCIMENTO.pdfapplication/pdf54881993https://ri.ufs.br/jspui/bitstream/riufs/19528/2/ARTUR_SANTOS_NASCIMENTO.pdf99faf100c949c7d78126a0cc912cf808MD52riufs/195282024-07-09 16:43:21.689oai:oai:ri.ufs.br:repo_01:riufs/19528TElDRU7Dh0EgREUgRElTVFJJQlVJw4fDg08gTsODTy1FWENMVVNJVkEKCkNvbSBhIGFwcmVzZW50YcOnw6NvIGRlc3RhIGxpY2Vuw6dhLCB2b2PDqiAobyBhdXRvcihlcykgb3UgbyB0aXR1bGFyIGRvcyBkaXJlaXRvcyBkZSBhdXRvcikgY29uY2VkZSDDoCBVbml2ZXJzaWRhZGUgRmVkZXJhbCBkZSBTZXJnaXBlIG8gZGlyZWl0byBuw6NvLWV4Y2x1c2l2byBkZSByZXByb2R1emlyIHNldSB0cmFiYWxobyBubyBmb3JtYXRvIGVsZXRyw7RuaWNvLCBpbmNsdWluZG8gb3MgZm9ybWF0b3Mgw6F1ZGlvIG91IHbDrWRlby4KClZvY8OqIGNvbmNvcmRhIHF1ZSBhIFVuaXZlcnNpZGFkZSBGZWRlcmFsIGRlIFNlcmdpcGUgcG9kZSwgc2VtIGFsdGVyYXIgbyBjb250ZcO6ZG8sIHRyYW5zcG9yIHNldSB0cmFiYWxobyBwYXJhIHF1YWxxdWVyIG1laW8gb3UgZm9ybWF0byBwYXJhIGZpbnMgZGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIHRhbWLDqW0gY29uY29yZGEgcXVlIGEgVW5pdmVyc2lkYWRlIEZlZGVyYWwgZGUgU2VyZ2lwZSBwb2RlIG1hbnRlciBtYWlzIGRlIHVtYSBjw7NwaWEgZGUgc2V1IHRyYWJhbGhvIHBhcmEgZmlucyBkZSBzZWd1cmFuw6dhLCBiYWNrLXVwIGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIGRlY2xhcmEgcXVlIHNldSB0cmFiYWxobyDDqSBvcmlnaW5hbCBlIHF1ZSB2b2PDqiB0ZW0gbyBwb2RlciBkZSBjb25jZWRlciBvcyBkaXJlaXRvcyBjb250aWRvcyBuZXN0YSBsaWNlbsOnYS4gVm9jw6ogdGFtYsOpbSBkZWNsYXJhIHF1ZSBvIGRlcMOzc2l0bywgcXVlIHNlamEgZGUgc2V1IGNvbmhlY2ltZW50bywgbsOjbyBpbmZyaW5nZSBkaXJlaXRvcyBhdXRvcmFpcyBkZSBuaW5ndcOpbS4KCkNhc28gbyB0cmFiYWxobyBjb250ZW5oYSBtYXRlcmlhbCBxdWUgdm9jw6ogbsOjbyBwb3NzdWkgYSB0aXR1bGFyaWRhZGUgZG9zIGRpcmVpdG9zIGF1dG9yYWlzLCB2b2PDqiBkZWNsYXJhIHF1ZSBvYnRldmUgYSBwZXJtaXNzw6NvIGlycmVzdHJpdGEgZG8gZGV0ZW50b3IgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIHBhcmEgY29uY2VkZXIgw6AgVW5pdmVyc2lkYWRlIEZlZGVyYWwgZGUgU2VyZ2lwZSBvcyBkaXJlaXRvcyBhcHJlc2VudGFkb3MgbmVzdGEgbGljZW7Dp2EsIGUgcXVlIGVzc2UgbWF0ZXJpYWwgZGUgcHJvcHJpZWRhZGUgZGUgdGVyY2Vpcm9zIGVzdMOhIGNsYXJhbWVudGUgaWRlbnRpZmljYWRvIGUgcmVjb25oZWNpZG8gbm8gdGV4dG8gb3Ugbm8gY29udGXDumRvLgoKQSBVbml2ZXJzaWRhZGUgRmVkZXJhbCBkZSBTZXJnaXBlIHNlIGNvbXByb21ldGUgYSBpZGVudGlmaWNhciBjbGFyYW1lbnRlIG8gc2V1IG5vbWUocykgb3UgbyhzKSBub21lKHMpIGRvKHMpIApkZXRlbnRvcihlcykgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIGRvIHRyYWJhbGhvLCBlIG7Do28gZmFyw6EgcXVhbHF1ZXIgYWx0ZXJhw6fDo28sIGFsw6ltIGRhcXVlbGFzIGNvbmNlZGlkYXMgcG9yIGVzdGEgbGljZW7Dp2EuIAo=Repositório InstitucionalPUBhttps://ri.ufs.br/oai/requestrepositorio@academico.ufs.bropendoar:2024-07-09T19:43:21Repositório Institucional da UFS - Universidade Federal de Sergipe (UFS)false
dc.title.pt_BR.fl_str_mv Detecção e descrição de pontos de controle em imagens HDR
title Detecção e descrição de pontos de controle em imagens HDR
spellingShingle Detecção e descrição de pontos de controle em imagens HDR
Nascimento, Artur Santos
Imagens digitais
Imagens HDR
Detecção
Descrição pontos de controle
High Dynamic Range (RDR)
HDR images
Detection
Description
Feature points
High dynamic range imaging
CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO
title_short Detecção e descrição de pontos de controle em imagens HDR
title_full Detecção e descrição de pontos de controle em imagens HDR
title_fullStr Detecção e descrição de pontos de controle em imagens HDR
title_full_unstemmed Detecção e descrição de pontos de controle em imagens HDR
title_sort Detecção e descrição de pontos de controle em imagens HDR
author Nascimento, Artur Santos
author_facet Nascimento, Artur Santos
author_role author
dc.contributor.author.fl_str_mv Nascimento, Artur Santos
dc.contributor.advisor1.fl_str_mv Carvalho, Beatriz Trinchão Andrade de
dc.contributor.advisor-co1.fl_str_mv Dantas, Daniel Oliveira
contributor_str_mv Carvalho, Beatriz Trinchão Andrade de
Dantas, Daniel Oliveira
dc.subject.por.fl_str_mv Imagens digitais
Imagens HDR
Detecção
Descrição pontos de controle
topic Imagens digitais
Imagens HDR
Detecção
Descrição pontos de controle
High Dynamic Range (RDR)
HDR images
Detection
Description
Feature points
High dynamic range imaging
CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO
dc.subject.eng.fl_str_mv High Dynamic Range (RDR)
HDR images
Detection
Description
Feature points
High dynamic range imaging
dc.subject.cnpq.fl_str_mv CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO
description In computer vision, a characteristic refers to image regions with unique properties, such as corners, edges, textures, or areas with high contrast. These regions are called control points (CPs). CP detectors and descriptors identify features in images and are the basis for many applications, such as object recognition, three-dimensional scene reconstruction, and biometric systems. Most CP detection and description methods use low dynamic range (LDR) images, which are sufficient for most applications involving with digital images. However, this type of representation limits the dynamic range and does not properly represent light under extreme lighting conditions. High dynamic range (HDR) images allow the representation of a wider range of lighting intensities. Consequently, lighting extremes are better represented in HDR images. This work investigates the potential of using HDR images in CP detectors and descriptors. We developed the CP_HDR library that implements Harris and Harris for HDR detection algorithms and SIFT and SIFT for HDR detection and description algorithms. Using uniformity, repeatability rate, mean average precision, and matching rate metrics, we compared the performance of the CP_HDR algorithms. We observed that when using HDR images with specialized detectors for HDR images, there is an increase in the distribution of CPs detected in the darkest, medium, and brightest areas of the images. We also observed that the description produced using HDR images with the canonical algorithms provided a better description of the CPs. The results show that using HDR images as input in detection algorithms improves its performance, and the implemented algorithms specialized for HDR images enhance the description of CPs.
publishDate 2022
dc.date.issued.fl_str_mv 2022-08-26
dc.date.accessioned.fl_str_mv 2024-07-09T19:43:16Z
dc.date.available.fl_str_mv 2024-07-09T19:43:16Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv NASCIMENTO, Artur Santos. Detecção e descrição de pontos de controle em imagens HDR. 2022. 161 f. Dissertação (Mestrado em Ciência da Computação) – Universidade Federal de Sergipe, São Cristóvão, 2022.
dc.identifier.uri.fl_str_mv https://ri.ufs.br/jspui/handle/riufs/19528
identifier_str_mv NASCIMENTO, Artur Santos. Detecção e descrição de pontos de controle em imagens HDR. 2022. 161 f. Dissertação (Mestrado em Ciência da Computação) – Universidade Federal de Sergipe, São Cristóvão, 2022.
url https://ri.ufs.br/jspui/handle/riufs/19528
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.program.fl_str_mv Pós-Graduação em Ciência da Computação
dc.publisher.initials.fl_str_mv Universidade Federal de Sergipe (UFS)
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFS
instname:Universidade Federal de Sergipe (UFS)
instacron:UFS
instname_str Universidade Federal de Sergipe (UFS)
instacron_str UFS
institution UFS
reponame_str Repositório Institucional da UFS
collection Repositório Institucional da UFS
bitstream.url.fl_str_mv https://ri.ufs.br/jspui/bitstream/riufs/19528/1/license.txt
https://ri.ufs.br/jspui/bitstream/riufs/19528/2/ARTUR_SANTOS_NASCIMENTO.pdf
bitstream.checksum.fl_str_mv 098cbbf65c2c15e1fb2e49c5d306a44c
99faf100c949c7d78126a0cc912cf808
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFS - Universidade Federal de Sergipe (UFS)
repository.mail.fl_str_mv repositorio@academico.ufs.br
_version_ 1813824998323781632