Optimizing the fog service placement with r3gp: a rotation-guided greedy genetic particle algorithm
Autor(a) principal: | |
---|---|
Data de Publicação: | 2023 |
Tipo de documento: | Dissertação |
Idioma: | por |
Título da fonte: | Repositório Institucional da UFS |
Texto Completo: | https://ri.ufs.br/jspui/handle/riufs/19477 |
Resumo: | The Fog Computing paradigm emerged as a complementary solution to the Cloud Computing to bring application processing to edge computing devices, which interconnect with typical Internet of Things (IoT) devices. However, the limited capacity of edge nodes poses some challenges in managing the resources available to distributed applications. Service placement in Fog Computing is an NP-complete problem that consists of managing the decision on which Fog node the service of an IoT application will run. If there is not enough resource in the Fog, the application is sent to the Cloud. This work consists of optimizing the Fog Service Placement Problem for the execution of IoT applications, applying a case study regarding vehicle collisions on urban roads. The problem is formulated as a Constraint Satisfaction Problem for optimization of five objective functions: makespan, energy consumption gap, CPU load-balancing, memory load-balancing and bandwidth load-balancing. In this work, an algorithm for optimization of the problem, named Rotation-Guided Greedy Genetic Particle (R3GP), is proposed. The study is conducted with an in silico experiment that compares the algorithm with others found in the literature. Statistical results show that R3GP can outperform the compared algorithms, mainly in optimizing the energy consumption gap metric. |
id |
UFS-2_96548e05b70ea0faf19b208c09d58d0e |
---|---|
oai_identifier_str |
oai:oai:ri.ufs.br:repo_01:riufs/19477 |
network_acronym_str |
UFS-2 |
network_name_str |
Repositório Institucional da UFS |
repository_id_str |
|
spelling |
Cunha, Jonathan SantosSouza Júnior, Rubens Matos de2024-07-05T19:18:26Z2024-07-05T19:18:26Z2023-08-17CUNHA, Jonathan Santos. Optimizing the fog service placement with r3gp: a rotation-guided greedy genetic particle algorithm. 2023. 129 f. Dissertação (Mestrado em Ciência da Computação) – Universidade Federal de Sergipe, São Cristóvão, 2023.https://ri.ufs.br/jspui/handle/riufs/19477The Fog Computing paradigm emerged as a complementary solution to the Cloud Computing to bring application processing to edge computing devices, which interconnect with typical Internet of Things (IoT) devices. However, the limited capacity of edge nodes poses some challenges in managing the resources available to distributed applications. Service placement in Fog Computing is an NP-complete problem that consists of managing the decision on which Fog node the service of an IoT application will run. If there is not enough resource in the Fog, the application is sent to the Cloud. This work consists of optimizing the Fog Service Placement Problem for the execution of IoT applications, applying a case study regarding vehicle collisions on urban roads. The problem is formulated as a Constraint Satisfaction Problem for optimization of five objective functions: makespan, energy consumption gap, CPU load-balancing, memory load-balancing and bandwidth load-balancing. In this work, an algorithm for optimization of the problem, named Rotation-Guided Greedy Genetic Particle (R3GP), is proposed. The study is conducted with an in silico experiment that compares the algorithm with others found in the literature. Statistical results show that R3GP can outperform the compared algorithms, mainly in optimizing the energy consumption gap metric.O paradigma Fog Computing surgiu como uma solução complementar à Cloud Computing para levar o processamento de aplicações para dispositivos da borda da rede (edge computing devices), que interligam-se aos dispositivos típicos da Internet das Coisas (IoT - Internet of Things). Entretanto, a capacidade limitada dos nós edge lança alguns desafios no gerenciamento dos recursos disponíveis para as aplicações distribuídas. O service placement em Fog Computing é um problema NP-completo que consiste no gerenciamento da decisão sobre em qual nó da Fog o serviço de uma aplicação IoT será executado. Se não houver recurso suficiente na Fog, a aplicação é enviada para a Cloud. Este trabalho consiste na otimização do Fog Service Placement Problem para execução de aplicações IoT, empregando um estudo de caso referente a sistemas de prevenção de colisões de veículos em vias urbanas. O problema é formulado como um modelo de satisfação de restrições para otimização de cinco funções objetivos: makespan, energy consumption gap, CPU load-balancing, memory load-balancing e bandwidth load-balancing. Neste trabalho é proposto um algoritmo para otimização do problema, denominado Rotation-Guided Greedy Genetic Particle (R3GP). O estudo é conduzido com um experimento in silico que compara o algoritmo com outros encontrados na literatura. Os resultados estatísticos mostram que o R3GP consegue superar os algoritmos comparados, principalmente, na otimização da métrica energy consumption gap.São CristóvãoporInternet das coisasComputação em nuvemService placementFog computingCloud computingEdge computingOptimizationInternet of thingsCIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAOOptimizing the fog service placement with r3gp: a rotation-guided greedy genetic particle algorithminfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisPós-Graduação em Ciência da ComputaçãoUniversidade Federal de Sergipe (UFS)reponame:Repositório Institucional da UFSinstname:Universidade Federal de Sergipe (UFS)instacron:UFSinfo:eu-repo/semantics/openAccessORIGINALJONATHAN_SANTOS_CUNHA.pdfJONATHAN_SANTOS_CUNHA.pdfapplication/pdf3308539https://ri.ufs.br/jspui/bitstream/riufs/19477/2/JONATHAN_SANTOS_CUNHA.pdfd4c73037b831d73d21a7b7c7862fc2bcMD52LICENSElicense.txtlicense.txttext/plain; charset=utf-81475https://ri.ufs.br/jspui/bitstream/riufs/19477/3/license.txt098cbbf65c2c15e1fb2e49c5d306a44cMD53riufs/194772024-07-05 16:18:31.438oai:oai:ri.ufs.br:repo_01:riufs/19477TElDRU7Dh0EgREUgRElTVFJJQlVJw4fDg08gTsODTy1FWENMVVNJVkEKCkNvbSBhIGFwcmVzZW50YcOnw6NvIGRlc3RhIGxpY2Vuw6dhLCB2b2PDqiAobyBhdXRvcihlcykgb3UgbyB0aXR1bGFyIGRvcyBkaXJlaXRvcyBkZSBhdXRvcikgY29uY2VkZSDDoCBVbml2ZXJzaWRhZGUgRmVkZXJhbCBkZSBTZXJnaXBlIG8gZGlyZWl0byBuw6NvLWV4Y2x1c2l2byBkZSByZXByb2R1emlyIHNldSB0cmFiYWxobyBubyBmb3JtYXRvIGVsZXRyw7RuaWNvLCBpbmNsdWluZG8gb3MgZm9ybWF0b3Mgw6F1ZGlvIG91IHbDrWRlby4KClZvY8OqIGNvbmNvcmRhIHF1ZSBhIFVuaXZlcnNpZGFkZSBGZWRlcmFsIGRlIFNlcmdpcGUgcG9kZSwgc2VtIGFsdGVyYXIgbyBjb250ZcO6ZG8sIHRyYW5zcG9yIHNldSB0cmFiYWxobyBwYXJhIHF1YWxxdWVyIG1laW8gb3UgZm9ybWF0byBwYXJhIGZpbnMgZGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIHRhbWLDqW0gY29uY29yZGEgcXVlIGEgVW5pdmVyc2lkYWRlIEZlZGVyYWwgZGUgU2VyZ2lwZSBwb2RlIG1hbnRlciBtYWlzIGRlIHVtYSBjw7NwaWEgZGUgc2V1IHRyYWJhbGhvIHBhcmEgZmlucyBkZSBzZWd1cmFuw6dhLCBiYWNrLXVwIGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIGRlY2xhcmEgcXVlIHNldSB0cmFiYWxobyDDqSBvcmlnaW5hbCBlIHF1ZSB2b2PDqiB0ZW0gbyBwb2RlciBkZSBjb25jZWRlciBvcyBkaXJlaXRvcyBjb250aWRvcyBuZXN0YSBsaWNlbsOnYS4gVm9jw6ogdGFtYsOpbSBkZWNsYXJhIHF1ZSBvIGRlcMOzc2l0bywgcXVlIHNlamEgZGUgc2V1IGNvbmhlY2ltZW50bywgbsOjbyBpbmZyaW5nZSBkaXJlaXRvcyBhdXRvcmFpcyBkZSBuaW5ndcOpbS4KCkNhc28gbyB0cmFiYWxobyBjb250ZW5oYSBtYXRlcmlhbCBxdWUgdm9jw6ogbsOjbyBwb3NzdWkgYSB0aXR1bGFyaWRhZGUgZG9zIGRpcmVpdG9zIGF1dG9yYWlzLCB2b2PDqiBkZWNsYXJhIHF1ZSBvYnRldmUgYSBwZXJtaXNzw6NvIGlycmVzdHJpdGEgZG8gZGV0ZW50b3IgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIHBhcmEgY29uY2VkZXIgw6AgVW5pdmVyc2lkYWRlIEZlZGVyYWwgZGUgU2VyZ2lwZSBvcyBkaXJlaXRvcyBhcHJlc2VudGFkb3MgbmVzdGEgbGljZW7Dp2EsIGUgcXVlIGVzc2UgbWF0ZXJpYWwgZGUgcHJvcHJpZWRhZGUgZGUgdGVyY2Vpcm9zIGVzdMOhIGNsYXJhbWVudGUgaWRlbnRpZmljYWRvIGUgcmVjb25oZWNpZG8gbm8gdGV4dG8gb3Ugbm8gY29udGXDumRvLgoKQSBVbml2ZXJzaWRhZGUgRmVkZXJhbCBkZSBTZXJnaXBlIHNlIGNvbXByb21ldGUgYSBpZGVudGlmaWNhciBjbGFyYW1lbnRlIG8gc2V1IG5vbWUocykgb3UgbyhzKSBub21lKHMpIGRvKHMpIApkZXRlbnRvcihlcykgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIGRvIHRyYWJhbGhvLCBlIG7Do28gZmFyw6EgcXVhbHF1ZXIgYWx0ZXJhw6fDo28sIGFsw6ltIGRhcXVlbGFzIGNvbmNlZGlkYXMgcG9yIGVzdGEgbGljZW7Dp2EuIAo=Repositório InstitucionalPUBhttps://ri.ufs.br/oai/requestrepositorio@academico.ufs.bropendoar:2024-07-05T19:18:31Repositório Institucional da UFS - Universidade Federal de Sergipe (UFS)false |
dc.title.pt_BR.fl_str_mv |
Optimizing the fog service placement with r3gp: a rotation-guided greedy genetic particle algorithm |
title |
Optimizing the fog service placement with r3gp: a rotation-guided greedy genetic particle algorithm |
spellingShingle |
Optimizing the fog service placement with r3gp: a rotation-guided greedy genetic particle algorithm Cunha, Jonathan Santos Internet das coisas Computação em nuvem Service placement Fog computing Cloud computing Edge computing Optimization Internet of things CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO |
title_short |
Optimizing the fog service placement with r3gp: a rotation-guided greedy genetic particle algorithm |
title_full |
Optimizing the fog service placement with r3gp: a rotation-guided greedy genetic particle algorithm |
title_fullStr |
Optimizing the fog service placement with r3gp: a rotation-guided greedy genetic particle algorithm |
title_full_unstemmed |
Optimizing the fog service placement with r3gp: a rotation-guided greedy genetic particle algorithm |
title_sort |
Optimizing the fog service placement with r3gp: a rotation-guided greedy genetic particle algorithm |
author |
Cunha, Jonathan Santos |
author_facet |
Cunha, Jonathan Santos |
author_role |
author |
dc.contributor.author.fl_str_mv |
Cunha, Jonathan Santos |
dc.contributor.advisor1.fl_str_mv |
Souza Júnior, Rubens Matos de |
contributor_str_mv |
Souza Júnior, Rubens Matos de |
dc.subject.por.fl_str_mv |
Internet das coisas Computação em nuvem |
topic |
Internet das coisas Computação em nuvem Service placement Fog computing Cloud computing Edge computing Optimization Internet of things CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO |
dc.subject.eng.fl_str_mv |
Service placement Fog computing Cloud computing Edge computing Optimization Internet of things |
dc.subject.cnpq.fl_str_mv |
CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO |
description |
The Fog Computing paradigm emerged as a complementary solution to the Cloud Computing to bring application processing to edge computing devices, which interconnect with typical Internet of Things (IoT) devices. However, the limited capacity of edge nodes poses some challenges in managing the resources available to distributed applications. Service placement in Fog Computing is an NP-complete problem that consists of managing the decision on which Fog node the service of an IoT application will run. If there is not enough resource in the Fog, the application is sent to the Cloud. This work consists of optimizing the Fog Service Placement Problem for the execution of IoT applications, applying a case study regarding vehicle collisions on urban roads. The problem is formulated as a Constraint Satisfaction Problem for optimization of five objective functions: makespan, energy consumption gap, CPU load-balancing, memory load-balancing and bandwidth load-balancing. In this work, an algorithm for optimization of the problem, named Rotation-Guided Greedy Genetic Particle (R3GP), is proposed. The study is conducted with an in silico experiment that compares the algorithm with others found in the literature. Statistical results show that R3GP can outperform the compared algorithms, mainly in optimizing the energy consumption gap metric. |
publishDate |
2023 |
dc.date.issued.fl_str_mv |
2023-08-17 |
dc.date.accessioned.fl_str_mv |
2024-07-05T19:18:26Z |
dc.date.available.fl_str_mv |
2024-07-05T19:18:26Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.citation.fl_str_mv |
CUNHA, Jonathan Santos. Optimizing the fog service placement with r3gp: a rotation-guided greedy genetic particle algorithm. 2023. 129 f. Dissertação (Mestrado em Ciência da Computação) – Universidade Federal de Sergipe, São Cristóvão, 2023. |
dc.identifier.uri.fl_str_mv |
https://ri.ufs.br/jspui/handle/riufs/19477 |
identifier_str_mv |
CUNHA, Jonathan Santos. Optimizing the fog service placement with r3gp: a rotation-guided greedy genetic particle algorithm. 2023. 129 f. Dissertação (Mestrado em Ciência da Computação) – Universidade Federal de Sergipe, São Cristóvão, 2023. |
url |
https://ri.ufs.br/jspui/handle/riufs/19477 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.publisher.program.fl_str_mv |
Pós-Graduação em Ciência da Computação |
dc.publisher.initials.fl_str_mv |
Universidade Federal de Sergipe (UFS) |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFS instname:Universidade Federal de Sergipe (UFS) instacron:UFS |
instname_str |
Universidade Federal de Sergipe (UFS) |
instacron_str |
UFS |
institution |
UFS |
reponame_str |
Repositório Institucional da UFS |
collection |
Repositório Institucional da UFS |
bitstream.url.fl_str_mv |
https://ri.ufs.br/jspui/bitstream/riufs/19477/2/JONATHAN_SANTOS_CUNHA.pdf https://ri.ufs.br/jspui/bitstream/riufs/19477/3/license.txt |
bitstream.checksum.fl_str_mv |
d4c73037b831d73d21a7b7c7862fc2bc 098cbbf65c2c15e1fb2e49c5d306a44c |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional da UFS - Universidade Federal de Sergipe (UFS) |
repository.mail.fl_str_mv |
repositorio@academico.ufs.br |
_version_ |
1813824998234652672 |