Optimizing the fog service placement with r3gp: a rotation-guided greedy genetic particle algorithm

Detalhes bibliográficos
Autor(a) principal: Cunha, Jonathan Santos
Data de Publicação: 2023
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Repositório Institucional da UFS
Texto Completo: https://ri.ufs.br/jspui/handle/riufs/19477
Resumo: The Fog Computing paradigm emerged as a complementary solution to the Cloud Computing to bring application processing to edge computing devices, which interconnect with typical Internet of Things (IoT) devices. However, the limited capacity of edge nodes poses some challenges in managing the resources available to distributed applications. Service placement in Fog Computing is an NP-complete problem that consists of managing the decision on which Fog node the service of an IoT application will run. If there is not enough resource in the Fog, the application is sent to the Cloud. This work consists of optimizing the Fog Service Placement Problem for the execution of IoT applications, applying a case study regarding vehicle collisions on urban roads. The problem is formulated as a Constraint Satisfaction Problem for optimization of five objective functions: makespan, energy consumption gap, CPU load-balancing, memory load-balancing and bandwidth load-balancing. In this work, an algorithm for optimization of the problem, named Rotation-Guided Greedy Genetic Particle (R3GP), is proposed. The study is conducted with an in silico experiment that compares the algorithm with others found in the literature. Statistical results show that R3GP can outperform the compared algorithms, mainly in optimizing the energy consumption gap metric.
id UFS-2_96548e05b70ea0faf19b208c09d58d0e
oai_identifier_str oai:oai:ri.ufs.br:repo_01:riufs/19477
network_acronym_str UFS-2
network_name_str Repositório Institucional da UFS
repository_id_str
spelling Cunha, Jonathan SantosSouza Júnior, Rubens Matos de2024-07-05T19:18:26Z2024-07-05T19:18:26Z2023-08-17CUNHA, Jonathan Santos. Optimizing the fog service placement with r3gp: a rotation-guided greedy genetic particle algorithm. 2023. 129 f. Dissertação (Mestrado em Ciência da Computação) – Universidade Federal de Sergipe, São Cristóvão, 2023.https://ri.ufs.br/jspui/handle/riufs/19477The Fog Computing paradigm emerged as a complementary solution to the Cloud Computing to bring application processing to edge computing devices, which interconnect with typical Internet of Things (IoT) devices. However, the limited capacity of edge nodes poses some challenges in managing the resources available to distributed applications. Service placement in Fog Computing is an NP-complete problem that consists of managing the decision on which Fog node the service of an IoT application will run. If there is not enough resource in the Fog, the application is sent to the Cloud. This work consists of optimizing the Fog Service Placement Problem for the execution of IoT applications, applying a case study regarding vehicle collisions on urban roads. The problem is formulated as a Constraint Satisfaction Problem for optimization of five objective functions: makespan, energy consumption gap, CPU load-balancing, memory load-balancing and bandwidth load-balancing. In this work, an algorithm for optimization of the problem, named Rotation-Guided Greedy Genetic Particle (R3GP), is proposed. The study is conducted with an in silico experiment that compares the algorithm with others found in the literature. Statistical results show that R3GP can outperform the compared algorithms, mainly in optimizing the energy consumption gap metric.O paradigma Fog Computing surgiu como uma solução complementar à Cloud Computing para levar o processamento de aplicações para dispositivos da borda da rede (edge computing devices), que interligam-se aos dispositivos típicos da Internet das Coisas (IoT - Internet of Things). Entretanto, a capacidade limitada dos nós edge lança alguns desafios no gerenciamento dos recursos disponíveis para as aplicações distribuídas. O service placement em Fog Computing é um problema NP-completo que consiste no gerenciamento da decisão sobre em qual nó da Fog o serviço de uma aplicação IoT será executado. Se não houver recurso suficiente na Fog, a aplicação é enviada para a Cloud. Este trabalho consiste na otimização do Fog Service Placement Problem para execução de aplicações IoT, empregando um estudo de caso referente a sistemas de prevenção de colisões de veículos em vias urbanas. O problema é formulado como um modelo de satisfação de restrições para otimização de cinco funções objetivos: makespan, energy consumption gap, CPU load-balancing, memory load-balancing e bandwidth load-balancing. Neste trabalho é proposto um algoritmo para otimização do problema, denominado Rotation-Guided Greedy Genetic Particle (R3GP). O estudo é conduzido com um experimento in silico que compara o algoritmo com outros encontrados na literatura. Os resultados estatísticos mostram que o R3GP consegue superar os algoritmos comparados, principalmente, na otimização da métrica energy consumption gap.São CristóvãoporInternet das coisasComputação em nuvemService placementFog computingCloud computingEdge computingOptimizationInternet of thingsCIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAOOptimizing the fog service placement with r3gp: a rotation-guided greedy genetic particle algorithminfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisPós-Graduação em Ciência da ComputaçãoUniversidade Federal de Sergipe (UFS)reponame:Repositório Institucional da UFSinstname:Universidade Federal de Sergipe (UFS)instacron:UFSinfo:eu-repo/semantics/openAccessORIGINALJONATHAN_SANTOS_CUNHA.pdfJONATHAN_SANTOS_CUNHA.pdfapplication/pdf3308539https://ri.ufs.br/jspui/bitstream/riufs/19477/2/JONATHAN_SANTOS_CUNHA.pdfd4c73037b831d73d21a7b7c7862fc2bcMD52LICENSElicense.txtlicense.txttext/plain; charset=utf-81475https://ri.ufs.br/jspui/bitstream/riufs/19477/3/license.txt098cbbf65c2c15e1fb2e49c5d306a44cMD53riufs/194772024-07-05 16:18:31.438oai:oai:ri.ufs.br:repo_01:riufs/19477TElDRU7Dh0EgREUgRElTVFJJQlVJw4fDg08gTsODTy1FWENMVVNJVkEKCkNvbSBhIGFwcmVzZW50YcOnw6NvIGRlc3RhIGxpY2Vuw6dhLCB2b2PDqiAobyBhdXRvcihlcykgb3UgbyB0aXR1bGFyIGRvcyBkaXJlaXRvcyBkZSBhdXRvcikgY29uY2VkZSDDoCBVbml2ZXJzaWRhZGUgRmVkZXJhbCBkZSBTZXJnaXBlIG8gZGlyZWl0byBuw6NvLWV4Y2x1c2l2byBkZSByZXByb2R1emlyIHNldSB0cmFiYWxobyBubyBmb3JtYXRvIGVsZXRyw7RuaWNvLCBpbmNsdWluZG8gb3MgZm9ybWF0b3Mgw6F1ZGlvIG91IHbDrWRlby4KClZvY8OqIGNvbmNvcmRhIHF1ZSBhIFVuaXZlcnNpZGFkZSBGZWRlcmFsIGRlIFNlcmdpcGUgcG9kZSwgc2VtIGFsdGVyYXIgbyBjb250ZcO6ZG8sIHRyYW5zcG9yIHNldSB0cmFiYWxobyBwYXJhIHF1YWxxdWVyIG1laW8gb3UgZm9ybWF0byBwYXJhIGZpbnMgZGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIHRhbWLDqW0gY29uY29yZGEgcXVlIGEgVW5pdmVyc2lkYWRlIEZlZGVyYWwgZGUgU2VyZ2lwZSBwb2RlIG1hbnRlciBtYWlzIGRlIHVtYSBjw7NwaWEgZGUgc2V1IHRyYWJhbGhvIHBhcmEgZmlucyBkZSBzZWd1cmFuw6dhLCBiYWNrLXVwIGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIGRlY2xhcmEgcXVlIHNldSB0cmFiYWxobyDDqSBvcmlnaW5hbCBlIHF1ZSB2b2PDqiB0ZW0gbyBwb2RlciBkZSBjb25jZWRlciBvcyBkaXJlaXRvcyBjb250aWRvcyBuZXN0YSBsaWNlbsOnYS4gVm9jw6ogdGFtYsOpbSBkZWNsYXJhIHF1ZSBvIGRlcMOzc2l0bywgcXVlIHNlamEgZGUgc2V1IGNvbmhlY2ltZW50bywgbsOjbyBpbmZyaW5nZSBkaXJlaXRvcyBhdXRvcmFpcyBkZSBuaW5ndcOpbS4KCkNhc28gbyB0cmFiYWxobyBjb250ZW5oYSBtYXRlcmlhbCBxdWUgdm9jw6ogbsOjbyBwb3NzdWkgYSB0aXR1bGFyaWRhZGUgZG9zIGRpcmVpdG9zIGF1dG9yYWlzLCB2b2PDqiBkZWNsYXJhIHF1ZSBvYnRldmUgYSBwZXJtaXNzw6NvIGlycmVzdHJpdGEgZG8gZGV0ZW50b3IgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIHBhcmEgY29uY2VkZXIgw6AgVW5pdmVyc2lkYWRlIEZlZGVyYWwgZGUgU2VyZ2lwZSBvcyBkaXJlaXRvcyBhcHJlc2VudGFkb3MgbmVzdGEgbGljZW7Dp2EsIGUgcXVlIGVzc2UgbWF0ZXJpYWwgZGUgcHJvcHJpZWRhZGUgZGUgdGVyY2Vpcm9zIGVzdMOhIGNsYXJhbWVudGUgaWRlbnRpZmljYWRvIGUgcmVjb25oZWNpZG8gbm8gdGV4dG8gb3Ugbm8gY29udGXDumRvLgoKQSBVbml2ZXJzaWRhZGUgRmVkZXJhbCBkZSBTZXJnaXBlIHNlIGNvbXByb21ldGUgYSBpZGVudGlmaWNhciBjbGFyYW1lbnRlIG8gc2V1IG5vbWUocykgb3UgbyhzKSBub21lKHMpIGRvKHMpIApkZXRlbnRvcihlcykgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIGRvIHRyYWJhbGhvLCBlIG7Do28gZmFyw6EgcXVhbHF1ZXIgYWx0ZXJhw6fDo28sIGFsw6ltIGRhcXVlbGFzIGNvbmNlZGlkYXMgcG9yIGVzdGEgbGljZW7Dp2EuIAo=Repositório InstitucionalPUBhttps://ri.ufs.br/oai/requestrepositorio@academico.ufs.bropendoar:2024-07-05T19:18:31Repositório Institucional da UFS - Universidade Federal de Sergipe (UFS)false
dc.title.pt_BR.fl_str_mv Optimizing the fog service placement with r3gp: a rotation-guided greedy genetic particle algorithm
title Optimizing the fog service placement with r3gp: a rotation-guided greedy genetic particle algorithm
spellingShingle Optimizing the fog service placement with r3gp: a rotation-guided greedy genetic particle algorithm
Cunha, Jonathan Santos
Internet das coisas
Computação em nuvem
Service placement
Fog computing
Cloud computing
Edge computing
Optimization
Internet of things
CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO
title_short Optimizing the fog service placement with r3gp: a rotation-guided greedy genetic particle algorithm
title_full Optimizing the fog service placement with r3gp: a rotation-guided greedy genetic particle algorithm
title_fullStr Optimizing the fog service placement with r3gp: a rotation-guided greedy genetic particle algorithm
title_full_unstemmed Optimizing the fog service placement with r3gp: a rotation-guided greedy genetic particle algorithm
title_sort Optimizing the fog service placement with r3gp: a rotation-guided greedy genetic particle algorithm
author Cunha, Jonathan Santos
author_facet Cunha, Jonathan Santos
author_role author
dc.contributor.author.fl_str_mv Cunha, Jonathan Santos
dc.contributor.advisor1.fl_str_mv Souza Júnior, Rubens Matos de
contributor_str_mv Souza Júnior, Rubens Matos de
dc.subject.por.fl_str_mv Internet das coisas
Computação em nuvem
topic Internet das coisas
Computação em nuvem
Service placement
Fog computing
Cloud computing
Edge computing
Optimization
Internet of things
CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO
dc.subject.eng.fl_str_mv Service placement
Fog computing
Cloud computing
Edge computing
Optimization
Internet of things
dc.subject.cnpq.fl_str_mv CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO
description The Fog Computing paradigm emerged as a complementary solution to the Cloud Computing to bring application processing to edge computing devices, which interconnect with typical Internet of Things (IoT) devices. However, the limited capacity of edge nodes poses some challenges in managing the resources available to distributed applications. Service placement in Fog Computing is an NP-complete problem that consists of managing the decision on which Fog node the service of an IoT application will run. If there is not enough resource in the Fog, the application is sent to the Cloud. This work consists of optimizing the Fog Service Placement Problem for the execution of IoT applications, applying a case study regarding vehicle collisions on urban roads. The problem is formulated as a Constraint Satisfaction Problem for optimization of five objective functions: makespan, energy consumption gap, CPU load-balancing, memory load-balancing and bandwidth load-balancing. In this work, an algorithm for optimization of the problem, named Rotation-Guided Greedy Genetic Particle (R3GP), is proposed. The study is conducted with an in silico experiment that compares the algorithm with others found in the literature. Statistical results show that R3GP can outperform the compared algorithms, mainly in optimizing the energy consumption gap metric.
publishDate 2023
dc.date.issued.fl_str_mv 2023-08-17
dc.date.accessioned.fl_str_mv 2024-07-05T19:18:26Z
dc.date.available.fl_str_mv 2024-07-05T19:18:26Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv CUNHA, Jonathan Santos. Optimizing the fog service placement with r3gp: a rotation-guided greedy genetic particle algorithm. 2023. 129 f. Dissertação (Mestrado em Ciência da Computação) – Universidade Federal de Sergipe, São Cristóvão, 2023.
dc.identifier.uri.fl_str_mv https://ri.ufs.br/jspui/handle/riufs/19477
identifier_str_mv CUNHA, Jonathan Santos. Optimizing the fog service placement with r3gp: a rotation-guided greedy genetic particle algorithm. 2023. 129 f. Dissertação (Mestrado em Ciência da Computação) – Universidade Federal de Sergipe, São Cristóvão, 2023.
url https://ri.ufs.br/jspui/handle/riufs/19477
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.program.fl_str_mv Pós-Graduação em Ciência da Computação
dc.publisher.initials.fl_str_mv Universidade Federal de Sergipe (UFS)
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFS
instname:Universidade Federal de Sergipe (UFS)
instacron:UFS
instname_str Universidade Federal de Sergipe (UFS)
instacron_str UFS
institution UFS
reponame_str Repositório Institucional da UFS
collection Repositório Institucional da UFS
bitstream.url.fl_str_mv https://ri.ufs.br/jspui/bitstream/riufs/19477/2/JONATHAN_SANTOS_CUNHA.pdf
https://ri.ufs.br/jspui/bitstream/riufs/19477/3/license.txt
bitstream.checksum.fl_str_mv d4c73037b831d73d21a7b7c7862fc2bc
098cbbf65c2c15e1fb2e49c5d306a44c
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFS - Universidade Federal de Sergipe (UFS)
repository.mail.fl_str_mv repositorio@academico.ufs.br
_version_ 1813824998234652672