Abordagens de Teoria dos Jogos para modelagem de Sistemas de Recomendação para grupos
Autor(a) principal: | |
---|---|
Data de Publicação: | 2013 |
Tipo de documento: | Dissertação |
Idioma: | por |
Título da fonte: | Repositório Institucional da UFS |
Texto Completo: | https://ri.ufs.br/handle/riufs/3334 |
Resumo: | Recommendation systems have traditionally recommended items to individual users. In some scenarios, however, a recommendation for a group of individuals is necessary. The difficulty in performing recommendation for a group is how to properly deal with the preferences of its members to generate the recommendation. Different methods of aggregating these preferences have been proposed in the scientific literature, where the main goals are to maximize the average satisfaction of the group and ensure justice in the group recommendation. However, characteristics of the group greatly influence the results obtained by various aggregation methods. This paper defends the hypothesis that the Recommendation for Group of users can be modeled as a problem of finding the items in Nash Equilibrium. The items available for potential recommendation are modeled as actions of a Non-Cooperative Game. This approach selects items in a rational manner and treats members of the group as self-interested players. This ensures the existence of at least one Nash equilibrium as a solution to the group recommendation. The experiment compares the group average satisfaction between the proposed approach and some State of the Art aggregations strategies among them one known as Average. For groups of different levels of homogeneity, the results are very promising. Another hypothesis defended in this dissertation is that the formation of a group of users within a given context should be based on Alliance Structures with the goal of maximizing total Social Welfare of the group. While most recommender systems for groups recommend to a fixed group and predetermined user, groups organization can be performed according to a goal, for example, the suggestion of more homogeneous subgroups for better items recommendation for each of these subgroups. An experiment compared the outcome of the groups formation approach based on Alliance Structures with an approach based on a clustering method using K-Means algorithm. The results showed that the groups formed according to this new approach have an internal similarity index greater. |
id |
UFS-2_b41f40382e1123e45d8a8a7e77cc8ca5 |
---|---|
oai_identifier_str |
oai:ufs.br:riufs/3334 |
network_acronym_str |
UFS-2 |
network_name_str |
Repositório Institucional da UFS |
repository_id_str |
|
spelling |
Carvalho, Lucas Augusto Montalvão Costahttp://lattes.cnpq.br/7119477874134821Macedo, Hendrik Teixeirahttp://lattes.cnpq.br/16967978484541472017-09-26T11:34:17Z2017-09-26T11:34:17Z2013-02-20https://ri.ufs.br/handle/riufs/3334Recommendation systems have traditionally recommended items to individual users. In some scenarios, however, a recommendation for a group of individuals is necessary. The difficulty in performing recommendation for a group is how to properly deal with the preferences of its members to generate the recommendation. Different methods of aggregating these preferences have been proposed in the scientific literature, where the main goals are to maximize the average satisfaction of the group and ensure justice in the group recommendation. However, characteristics of the group greatly influence the results obtained by various aggregation methods. This paper defends the hypothesis that the Recommendation for Group of users can be modeled as a problem of finding the items in Nash Equilibrium. The items available for potential recommendation are modeled as actions of a Non-Cooperative Game. This approach selects items in a rational manner and treats members of the group as self-interested players. This ensures the existence of at least one Nash equilibrium as a solution to the group recommendation. The experiment compares the group average satisfaction between the proposed approach and some State of the Art aggregations strategies among them one known as Average. For groups of different levels of homogeneity, the results are very promising. Another hypothesis defended in this dissertation is that the formation of a group of users within a given context should be based on Alliance Structures with the goal of maximizing total Social Welfare of the group. While most recommender systems for groups recommend to a fixed group and predetermined user, groups organization can be performed according to a goal, for example, the suggestion of more homogeneous subgroups for better items recommendation for each of these subgroups. An experiment compared the outcome of the groups formation approach based on Alliance Structures with an approach based on a clustering method using K-Means algorithm. The results showed that the groups formed according to this new approach have an internal similarity index greater.Sistemas de Recomendação tradicionalmente recomendam itens para usuários individuais. Em alguns cenários, entretanto, a recomendação para um grupo de indivíduos faz-se necessária, onde a grande dificuldade é como lidar adequadamente com as preferências de seus integrantes para geração da recomendação. Diferentes métodos de agregação dessas preferências têm sido propostos na literatura científica relacionada, onde o objetivo principal é a maximização da satisfação média do grupo e assegurar justiça na recomendação. Porém, características do grupo influenciam sobremaneira os resultados obtidos pelos diferentes métodos de agregação. Esta dissertação defende a hipótese de que a Recomendação para Grupo de usuários pode ser modelada como um problema de encontrar os itens em Equilíbrio de Nash. Os itens disponíveis para potencial recomendação são modelados como ações de um Jogo Não-Cooperativo. A abordagem seleciona os itens de forma racional e trata os membros do grupo como jogadores com interesses próprios. Garante-se a existência de ao menos um Equilíbrio de Nash como solução para a recomendação. O experimento realizado compara a satisfação média do grupo entre a abordagem proposta e estratégias de agregaçãos entre elas a conhecida como Average, pertencente ao Estado da Arte. Para grupos de diferentes níveis de homogeneidade, os resultados alcançados são bastante promissores. Uma outra hipótese defendida nesta dissertação é a de que a formação de um grupo de usuários dentro de um determinado contexto deve ser baseada em Estruturas de Aliança com o objetivo de maximizar o bem-estar social total do grupo (Social Welfare). Enquanto a maioria das recomendações para grupos são realizadas para um grupo fixo e pré-determinado de usuários, a organização em grupos poderia ser de acordo com um objetivo. Um experimento comparou o resultado da abordagem de formação de grupos baseadas em Estruturas de Aliança com uma abordagem baseada em agrupamento com o algoritmo K-Means. Resultados mostraram que os grupos formados com a nova abordagem possuem um índice de similaridade interna maior.application/pdfporInteligência artificialTeoria dos jogosSistema de recomendaçãoEquilíbrio de Nash, Social WelfareArtificial intelligenceGame theoryCNPQ::CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAOAbordagens de Teoria dos Jogos para modelagem de Sistemas de Recomendação para gruposinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisPós-Graduação em Ciência da Computaçãoinfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFSinstname:Universidade Federal de Sergipe (UFS)instacron:UFSTEXTLUCAS_AUGUSTO_MONTALVAO.pdf.txtLUCAS_AUGUSTO_MONTALVAO.pdf.txtExtracted texttext/plain155267https://ri.ufs.br/jspui/bitstream/riufs/3334/2/LUCAS_AUGUSTO_MONTALVAO.pdf.txtccb446bdb9b2c820dbd386a0d26b6286MD52THUMBNAILLUCAS_AUGUSTO_MONTALVAO.pdf.jpgLUCAS_AUGUSTO_MONTALVAO.pdf.jpgGenerated Thumbnailimage/jpeg1337https://ri.ufs.br/jspui/bitstream/riufs/3334/3/LUCAS_AUGUSTO_MONTALVAO.pdf.jpgcfa813d5103d4dc1748dd00ffc6f5c02MD53ORIGINALLUCAS_AUGUSTO_MONTALVAO.pdfapplication/pdf762912https://ri.ufs.br/jspui/bitstream/riufs/3334/1/LUCAS_AUGUSTO_MONTALVAO.pdf2ec5014825371234dbc1e022b475a6c3MD51riufs/33342017-11-24 21:35:18.388oai:ufs.br:riufs/3334Repositório InstitucionalPUBhttps://ri.ufs.br/oai/requestrepositorio@academico.ufs.bropendoar:2017-11-25T00:35:18Repositório Institucional da UFS - Universidade Federal de Sergipe (UFS)false |
dc.title.por.fl_str_mv |
Abordagens de Teoria dos Jogos para modelagem de Sistemas de Recomendação para grupos |
title |
Abordagens de Teoria dos Jogos para modelagem de Sistemas de Recomendação para grupos |
spellingShingle |
Abordagens de Teoria dos Jogos para modelagem de Sistemas de Recomendação para grupos Carvalho, Lucas Augusto Montalvão Costa Inteligência artificial Teoria dos jogos Sistema de recomendação Equilíbrio de Nash, Social Welfare Artificial intelligence Game theory CNPQ::CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO |
title_short |
Abordagens de Teoria dos Jogos para modelagem de Sistemas de Recomendação para grupos |
title_full |
Abordagens de Teoria dos Jogos para modelagem de Sistemas de Recomendação para grupos |
title_fullStr |
Abordagens de Teoria dos Jogos para modelagem de Sistemas de Recomendação para grupos |
title_full_unstemmed |
Abordagens de Teoria dos Jogos para modelagem de Sistemas de Recomendação para grupos |
title_sort |
Abordagens de Teoria dos Jogos para modelagem de Sistemas de Recomendação para grupos |
author |
Carvalho, Lucas Augusto Montalvão Costa |
author_facet |
Carvalho, Lucas Augusto Montalvão Costa |
author_role |
author |
dc.contributor.author.fl_str_mv |
Carvalho, Lucas Augusto Montalvão Costa |
dc.contributor.advisor1Lattes.fl_str_mv |
http://lattes.cnpq.br/7119477874134821 |
dc.contributor.advisor1.fl_str_mv |
Macedo, Hendrik Teixeira |
dc.contributor.authorLattes.fl_str_mv |
http://lattes.cnpq.br/1696797848454147 |
contributor_str_mv |
Macedo, Hendrik Teixeira |
dc.subject.por.fl_str_mv |
Inteligência artificial Teoria dos jogos Sistema de recomendação Equilíbrio de Nash, Social Welfare |
topic |
Inteligência artificial Teoria dos jogos Sistema de recomendação Equilíbrio de Nash, Social Welfare Artificial intelligence Game theory CNPQ::CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO |
dc.subject.eng.fl_str_mv |
Artificial intelligence Game theory |
dc.subject.cnpq.fl_str_mv |
CNPQ::CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO |
description |
Recommendation systems have traditionally recommended items to individual users. In some scenarios, however, a recommendation for a group of individuals is necessary. The difficulty in performing recommendation for a group is how to properly deal with the preferences of its members to generate the recommendation. Different methods of aggregating these preferences have been proposed in the scientific literature, where the main goals are to maximize the average satisfaction of the group and ensure justice in the group recommendation. However, characteristics of the group greatly influence the results obtained by various aggregation methods. This paper defends the hypothesis that the Recommendation for Group of users can be modeled as a problem of finding the items in Nash Equilibrium. The items available for potential recommendation are modeled as actions of a Non-Cooperative Game. This approach selects items in a rational manner and treats members of the group as self-interested players. This ensures the existence of at least one Nash equilibrium as a solution to the group recommendation. The experiment compares the group average satisfaction between the proposed approach and some State of the Art aggregations strategies among them one known as Average. For groups of different levels of homogeneity, the results are very promising. Another hypothesis defended in this dissertation is that the formation of a group of users within a given context should be based on Alliance Structures with the goal of maximizing total Social Welfare of the group. While most recommender systems for groups recommend to a fixed group and predetermined user, groups organization can be performed according to a goal, for example, the suggestion of more homogeneous subgroups for better items recommendation for each of these subgroups. An experiment compared the outcome of the groups formation approach based on Alliance Structures with an approach based on a clustering method using K-Means algorithm. The results showed that the groups formed according to this new approach have an internal similarity index greater. |
publishDate |
2013 |
dc.date.issued.fl_str_mv |
2013-02-20 |
dc.date.accessioned.fl_str_mv |
2017-09-26T11:34:17Z |
dc.date.available.fl_str_mv |
2017-09-26T11:34:17Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://ri.ufs.br/handle/riufs/3334 |
url |
https://ri.ufs.br/handle/riufs/3334 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.program.fl_str_mv |
Pós-Graduação em Ciência da Computação |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFS instname:Universidade Federal de Sergipe (UFS) instacron:UFS |
instname_str |
Universidade Federal de Sergipe (UFS) |
instacron_str |
UFS |
institution |
UFS |
reponame_str |
Repositório Institucional da UFS |
collection |
Repositório Institucional da UFS |
bitstream.url.fl_str_mv |
https://ri.ufs.br/jspui/bitstream/riufs/3334/2/LUCAS_AUGUSTO_MONTALVAO.pdf.txt https://ri.ufs.br/jspui/bitstream/riufs/3334/3/LUCAS_AUGUSTO_MONTALVAO.pdf.jpg https://ri.ufs.br/jspui/bitstream/riufs/3334/1/LUCAS_AUGUSTO_MONTALVAO.pdf |
bitstream.checksum.fl_str_mv |
ccb446bdb9b2c820dbd386a0d26b6286 cfa813d5103d4dc1748dd00ffc6f5c02 2ec5014825371234dbc1e022b475a6c3 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional da UFS - Universidade Federal de Sergipe (UFS) |
repository.mail.fl_str_mv |
repositorio@academico.ufs.br |
_version_ |
1802110735993536512 |