Inteligência artificial para modelar o processo chuva vs. vazão natural afluente ao reservatório de Sobradinho

Detalhes bibliográficos
Autor(a) principal: Alexandre, José Pedro Lima
Data de Publicação: 2022
Tipo de documento: Trabalho de conclusão de curso
Idioma: por
Título da fonte: Repositório Institucional da UFS
Texto Completo: https://ri.ufs.br/jspui/handle/riufs/18551
Resumo: Brazil has a large amount of available water. However, part of the Northeast region suffers from a lack of this resource. The regularization of the flow regime of the São Francisco river with the construction of the Sobradinho reservoir contributed to the reduction of the abundant floods in the downstream region. This work presents the application of artificial neural networks (ANN) and the k-nearest neighbors algorithm (KNN) for modeling the rainfall-runoff process considering the natural flow to the Sobradinho reservoir. Precipitation data were collected from the HidroWeb portal and natural inflow data from the Câmara de Comercialização de Energia Elétrica (CCEE) portal. The set of data were divided into calibration (70%) and validation (30%), at random. Simulations were performed by using the Weka machine learning software, and four formulations were tested for monthly analysis. The goodness of fit of the results are shown by means of the Nash-Sutcliffe coefficient. The initial objective was to model the runoff-runoff process in Sobradinho in order to predict the total inflow of the next year based on the flows of past years. Several models were tested, with several configurations of attributes, however, the results were all unsatisfactory for the four formulations of the annual analysis with flows. For this reason, it was decided to use the monthly analysis, with rainfall and flow data. Thus, good and very good results were obtained for the four formulations, in both models investigated, ANN and KNN. In modeling, the formulation with rainfall-runoff attributes from three previous periods showed the best results for ANN and the formulation with only precipitation attributes showed the best results for KNN, with efficiency indices and classification of very good.
id UFS-2_d6e529d5b02df55135bc339d664a3b0f
oai_identifier_str oai:ufs.br:riufs/18551
network_acronym_str UFS-2
network_name_str Repositório Institucional da UFS
repository_id_str
spelling Alexandre, José Pedro LimaCeleste, Alcigeimes Batista2023-10-20T11:59:55Z2023-10-20T11:59:55Z2022-10-31ALEXANDRE, José Pedro Lima. Inteligência artificial para modelar o processo chuva vs. vazão natural afluente ao reservatório de Sobradinho. São Cristóvão, 2023. Monografia (graduação em Engenharia Civil) – Departamento de Engenharia Civil, Centro de Ciências Exatas e Tecnologia, Universidade Federal de Sergipe, São Cristóvão, SE, 2023https://ri.ufs.br/jspui/handle/riufs/18551Brazil has a large amount of available water. However, part of the Northeast region suffers from a lack of this resource. The regularization of the flow regime of the São Francisco river with the construction of the Sobradinho reservoir contributed to the reduction of the abundant floods in the downstream region. This work presents the application of artificial neural networks (ANN) and the k-nearest neighbors algorithm (KNN) for modeling the rainfall-runoff process considering the natural flow to the Sobradinho reservoir. Precipitation data were collected from the HidroWeb portal and natural inflow data from the Câmara de Comercialização de Energia Elétrica (CCEE) portal. The set of data were divided into calibration (70%) and validation (30%), at random. Simulations were performed by using the Weka machine learning software, and four formulations were tested for monthly analysis. The goodness of fit of the results are shown by means of the Nash-Sutcliffe coefficient. The initial objective was to model the runoff-runoff process in Sobradinho in order to predict the total inflow of the next year based on the flows of past years. Several models were tested, with several configurations of attributes, however, the results were all unsatisfactory for the four formulations of the annual analysis with flows. For this reason, it was decided to use the monthly analysis, with rainfall and flow data. Thus, good and very good results were obtained for the four formulations, in both models investigated, ANN and KNN. In modeling, the formulation with rainfall-runoff attributes from three previous periods showed the best results for ANN and the formulation with only precipitation attributes showed the best results for KNN, with efficiency indices and classification of very good.O Brasil possui uma grande quantidade de água disponível. Porém, parte da região do Nordeste sofre com a falta do recurso. A regularização do regime de vazões do rio São Francisco com a construção do reservatório de Sobradinho contribuiu para a diminuição das abundantes cheias nas regiões a jusante. Este trabalho apresenta a aplicação de redes neurais artificiais (RNA) e do algoritmo dos k-vizinhos mais próximos (KNN) para modelagem do processo chuva vs. vazão natural afluente ao reservatório de Sobradinho. Os dados de precipitação foram coletados do portal HidroWeb e os dados de afluências naturais do portal da Câmara de Comercialização de Energia Elétrica (CCEE). Os conjuntos de dados foram divididos entre calibração e validação, em 70% e 30%, respectivamente, selecionados de maneira randômica. As simulações foram realizadas com o software de aprendizado de máquina Weka, e testadas quatro formulações para análise mensal. Por fim, os resultados são mostrados através da eficiência das simulações realizadas, verificadas por meio do coeficiente Nash-Sutcliffe. O objetivo inicial era modelar o processo vazão-vazão em Sobradinho de forma a prever a vazão total do próximo ano baseada nas vazões de anos passados. Foram feitas diversas modelagens, com várias configurações de atributos, porém, os resultados foram todos insatisfatórios para as quatro formulações da análise anual com vazões. Por essa razão, decidiu-se utilizar a análise mensal, com os dados de chuva e vazão. Assim, foram obtidos resultados bons e muito bons para as quatro formulações, em ambos os modelos trabalhados, RNA e KNN. Na modelagem, a formulação com atributos chuva vs. vazão de até três períodos anteriores apresentou os melhores resultados para a KNN e a formulação com apenas atributos de precipitação apresentou os melhores resultados para o RNA, com os índices de eficiência e classificação de muito bom.São Cristóvão, SEporEngenharia civilEnsino superior (UFS)Modelagem chuva-vazãoRepresa de Sobradinho, BARedes neurais artificiais (RNA)Reservatório (Sobradinho, BA)Rio São FranciscoVazões naturaisHidrologiaRainfall-runoff modelingArtificial neural networksNatural flowsENGENHARIAS::ENGENHARIA CIVIL::ENGENHARIA HIDRAULICA::HIDROLOGIAInteligência artificial para modelar o processo chuva vs. vazão natural afluente ao reservatório de Sobradinhoinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/bachelorThesisUniversidade Federal de Sergipe (UFS)DEC - Departamento de Engenharia Civil – São Cristóvão - Presencialreponame:Repositório Institucional da UFSinstname:Universidade Federal de Sergipe (UFS)instacron:UFSinfo:eu-repo/semantics/openAccessORIGINALJose_Pedro_Lima_Alexandre.pdfJose_Pedro_Lima_Alexandre.pdfapplication/pdf1970508https://ri.ufs.br/jspui/bitstream/riufs/18551/2/Jose_Pedro_Lima_Alexandre.pdf7eae722960fe245f7a3daea7b175773aMD52LICENSElicense.txtlicense.txttext/plain; charset=utf-81475https://ri.ufs.br/jspui/bitstream/riufs/18551/1/license.txt098cbbf65c2c15e1fb2e49c5d306a44cMD51riufs/185512023-10-20 09:00:00.862oai:ufs.br:riufs/18551TElDRU7Dh0EgREUgRElTVFJJQlVJw4fDg08gTsODTy1FWENMVVNJVkEKCkNvbSBhIGFwcmVzZW50YcOnw6NvIGRlc3RhIGxpY2Vuw6dhLCB2b2PDqiAobyBhdXRvcihlcykgb3UgbyB0aXR1bGFyIGRvcyBkaXJlaXRvcyBkZSBhdXRvcikgY29uY2VkZSDDoCBVbml2ZXJzaWRhZGUgRmVkZXJhbCBkZSBTZXJnaXBlIG8gZGlyZWl0byBuw6NvLWV4Y2x1c2l2byBkZSByZXByb2R1emlyIHNldSB0cmFiYWxobyBubyBmb3JtYXRvIGVsZXRyw7RuaWNvLCBpbmNsdWluZG8gb3MgZm9ybWF0b3Mgw6F1ZGlvIG91IHbDrWRlby4KClZvY8OqIGNvbmNvcmRhIHF1ZSBhIFVuaXZlcnNpZGFkZSBGZWRlcmFsIGRlIFNlcmdpcGUgcG9kZSwgc2VtIGFsdGVyYXIgbyBjb250ZcO6ZG8sIHRyYW5zcG9yIHNldSB0cmFiYWxobyBwYXJhIHF1YWxxdWVyIG1laW8gb3UgZm9ybWF0byBwYXJhIGZpbnMgZGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIHRhbWLDqW0gY29uY29yZGEgcXVlIGEgVW5pdmVyc2lkYWRlIEZlZGVyYWwgZGUgU2VyZ2lwZSBwb2RlIG1hbnRlciBtYWlzIGRlIHVtYSBjw7NwaWEgZGUgc2V1IHRyYWJhbGhvIHBhcmEgZmlucyBkZSBzZWd1cmFuw6dhLCBiYWNrLXVwIGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIGRlY2xhcmEgcXVlIHNldSB0cmFiYWxobyDDqSBvcmlnaW5hbCBlIHF1ZSB2b2PDqiB0ZW0gbyBwb2RlciBkZSBjb25jZWRlciBvcyBkaXJlaXRvcyBjb250aWRvcyBuZXN0YSBsaWNlbsOnYS4gVm9jw6ogdGFtYsOpbSBkZWNsYXJhIHF1ZSBvIGRlcMOzc2l0bywgcXVlIHNlamEgZGUgc2V1IGNvbmhlY2ltZW50bywgbsOjbyBpbmZyaW5nZSBkaXJlaXRvcyBhdXRvcmFpcyBkZSBuaW5ndcOpbS4KCkNhc28gbyB0cmFiYWxobyBjb250ZW5oYSBtYXRlcmlhbCBxdWUgdm9jw6ogbsOjbyBwb3NzdWkgYSB0aXR1bGFyaWRhZGUgZG9zIGRpcmVpdG9zIGF1dG9yYWlzLCB2b2PDqiBkZWNsYXJhIHF1ZSBvYnRldmUgYSBwZXJtaXNzw6NvIGlycmVzdHJpdGEgZG8gZGV0ZW50b3IgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIHBhcmEgY29uY2VkZXIgw6AgVW5pdmVyc2lkYWRlIEZlZGVyYWwgZGUgU2VyZ2lwZSBvcyBkaXJlaXRvcyBhcHJlc2VudGFkb3MgbmVzdGEgbGljZW7Dp2EsIGUgcXVlIGVzc2UgbWF0ZXJpYWwgZGUgcHJvcHJpZWRhZGUgZGUgdGVyY2Vpcm9zIGVzdMOhIGNsYXJhbWVudGUgaWRlbnRpZmljYWRvIGUgcmVjb25oZWNpZG8gbm8gdGV4dG8gb3Ugbm8gY29udGXDumRvLgoKQSBVbml2ZXJzaWRhZGUgRmVkZXJhbCBkZSBTZXJnaXBlIHNlIGNvbXByb21ldGUgYSBpZGVudGlmaWNhciBjbGFyYW1lbnRlIG8gc2V1IG5vbWUocykgb3UgbyhzKSBub21lKHMpIGRvKHMpIApkZXRlbnRvcihlcykgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIGRvIHRyYWJhbGhvLCBlIG7Do28gZmFyw6EgcXVhbHF1ZXIgYWx0ZXJhw6fDo28sIGFsw6ltIGRhcXVlbGFzIGNvbmNlZGlkYXMgcG9yIGVzdGEgbGljZW7Dp2EuIAo=Repositório InstitucionalPUBhttps://ri.ufs.br/oai/requestrepositorio@academico.ufs.bropendoar:2023-10-20T12:00Repositório Institucional da UFS - Universidade Federal de Sergipe (UFS)false
dc.title.pt_BR.fl_str_mv Inteligência artificial para modelar o processo chuva vs. vazão natural afluente ao reservatório de Sobradinho
title Inteligência artificial para modelar o processo chuva vs. vazão natural afluente ao reservatório de Sobradinho
spellingShingle Inteligência artificial para modelar o processo chuva vs. vazão natural afluente ao reservatório de Sobradinho
Alexandre, José Pedro Lima
Engenharia civil
Ensino superior (UFS)
Modelagem chuva-vazão
Represa de Sobradinho, BA
Redes neurais artificiais (RNA)
Reservatório (Sobradinho, BA)
Rio São Francisco
Vazões naturais
Hidrologia
Rainfall-runoff modeling
Artificial neural networks
Natural flows
ENGENHARIAS::ENGENHARIA CIVIL::ENGENHARIA HIDRAULICA::HIDROLOGIA
title_short Inteligência artificial para modelar o processo chuva vs. vazão natural afluente ao reservatório de Sobradinho
title_full Inteligência artificial para modelar o processo chuva vs. vazão natural afluente ao reservatório de Sobradinho
title_fullStr Inteligência artificial para modelar o processo chuva vs. vazão natural afluente ao reservatório de Sobradinho
title_full_unstemmed Inteligência artificial para modelar o processo chuva vs. vazão natural afluente ao reservatório de Sobradinho
title_sort Inteligência artificial para modelar o processo chuva vs. vazão natural afluente ao reservatório de Sobradinho
author Alexandre, José Pedro Lima
author_facet Alexandre, José Pedro Lima
author_role author
dc.contributor.author.fl_str_mv Alexandre, José Pedro Lima
dc.contributor.advisor1.fl_str_mv Celeste, Alcigeimes Batista
contributor_str_mv Celeste, Alcigeimes Batista
dc.subject.por.fl_str_mv Engenharia civil
Ensino superior (UFS)
Modelagem chuva-vazão
Represa de Sobradinho, BA
Redes neurais artificiais (RNA)
Reservatório (Sobradinho, BA)
Rio São Francisco
Vazões naturais
Hidrologia
topic Engenharia civil
Ensino superior (UFS)
Modelagem chuva-vazão
Represa de Sobradinho, BA
Redes neurais artificiais (RNA)
Reservatório (Sobradinho, BA)
Rio São Francisco
Vazões naturais
Hidrologia
Rainfall-runoff modeling
Artificial neural networks
Natural flows
ENGENHARIAS::ENGENHARIA CIVIL::ENGENHARIA HIDRAULICA::HIDROLOGIA
dc.subject.eng.fl_str_mv Rainfall-runoff modeling
Artificial neural networks
Natural flows
dc.subject.cnpq.fl_str_mv ENGENHARIAS::ENGENHARIA CIVIL::ENGENHARIA HIDRAULICA::HIDROLOGIA
description Brazil has a large amount of available water. However, part of the Northeast region suffers from a lack of this resource. The regularization of the flow regime of the São Francisco river with the construction of the Sobradinho reservoir contributed to the reduction of the abundant floods in the downstream region. This work presents the application of artificial neural networks (ANN) and the k-nearest neighbors algorithm (KNN) for modeling the rainfall-runoff process considering the natural flow to the Sobradinho reservoir. Precipitation data were collected from the HidroWeb portal and natural inflow data from the Câmara de Comercialização de Energia Elétrica (CCEE) portal. The set of data were divided into calibration (70%) and validation (30%), at random. Simulations were performed by using the Weka machine learning software, and four formulations were tested for monthly analysis. The goodness of fit of the results are shown by means of the Nash-Sutcliffe coefficient. The initial objective was to model the runoff-runoff process in Sobradinho in order to predict the total inflow of the next year based on the flows of past years. Several models were tested, with several configurations of attributes, however, the results were all unsatisfactory for the four formulations of the annual analysis with flows. For this reason, it was decided to use the monthly analysis, with rainfall and flow data. Thus, good and very good results were obtained for the four formulations, in both models investigated, ANN and KNN. In modeling, the formulation with rainfall-runoff attributes from three previous periods showed the best results for ANN and the formulation with only precipitation attributes showed the best results for KNN, with efficiency indices and classification of very good.
publishDate 2022
dc.date.issued.fl_str_mv 2022-10-31
dc.date.accessioned.fl_str_mv 2023-10-20T11:59:55Z
dc.date.available.fl_str_mv 2023-10-20T11:59:55Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/bachelorThesis
format bachelorThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv ALEXANDRE, José Pedro Lima. Inteligência artificial para modelar o processo chuva vs. vazão natural afluente ao reservatório de Sobradinho. São Cristóvão, 2023. Monografia (graduação em Engenharia Civil) – Departamento de Engenharia Civil, Centro de Ciências Exatas e Tecnologia, Universidade Federal de Sergipe, São Cristóvão, SE, 2023
dc.identifier.uri.fl_str_mv https://ri.ufs.br/jspui/handle/riufs/18551
identifier_str_mv ALEXANDRE, José Pedro Lima. Inteligência artificial para modelar o processo chuva vs. vazão natural afluente ao reservatório de Sobradinho. São Cristóvão, 2023. Monografia (graduação em Engenharia Civil) – Departamento de Engenharia Civil, Centro de Ciências Exatas e Tecnologia, Universidade Federal de Sergipe, São Cristóvão, SE, 2023
url https://ri.ufs.br/jspui/handle/riufs/18551
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.initials.fl_str_mv Universidade Federal de Sergipe (UFS)
dc.publisher.department.fl_str_mv DEC - Departamento de Engenharia Civil – São Cristóvão - Presencial
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFS
instname:Universidade Federal de Sergipe (UFS)
instacron:UFS
instname_str Universidade Federal de Sergipe (UFS)
instacron_str UFS
institution UFS
reponame_str Repositório Institucional da UFS
collection Repositório Institucional da UFS
bitstream.url.fl_str_mv https://ri.ufs.br/jspui/bitstream/riufs/18551/2/Jose_Pedro_Lima_Alexandre.pdf
https://ri.ufs.br/jspui/bitstream/riufs/18551/1/license.txt
bitstream.checksum.fl_str_mv 7eae722960fe245f7a3daea7b175773a
098cbbf65c2c15e1fb2e49c5d306a44c
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFS - Universidade Federal de Sergipe (UFS)
repository.mail.fl_str_mv repositorio@academico.ufs.br
_version_ 1802110835682705408