Inteligência artificial para modelar o processo chuva vs. vazão natural afluente ao reservatório de Sobradinho
Autor(a) principal: | |
---|---|
Data de Publicação: | 2022 |
Tipo de documento: | Trabalho de conclusão de curso |
Idioma: | por |
Título da fonte: | Repositório Institucional da UFS |
Texto Completo: | https://ri.ufs.br/jspui/handle/riufs/18551 |
Resumo: | Brazil has a large amount of available water. However, part of the Northeast region suffers from a lack of this resource. The regularization of the flow regime of the São Francisco river with the construction of the Sobradinho reservoir contributed to the reduction of the abundant floods in the downstream region. This work presents the application of artificial neural networks (ANN) and the k-nearest neighbors algorithm (KNN) for modeling the rainfall-runoff process considering the natural flow to the Sobradinho reservoir. Precipitation data were collected from the HidroWeb portal and natural inflow data from the Câmara de Comercialização de Energia Elétrica (CCEE) portal. The set of data were divided into calibration (70%) and validation (30%), at random. Simulations were performed by using the Weka machine learning software, and four formulations were tested for monthly analysis. The goodness of fit of the results are shown by means of the Nash-Sutcliffe coefficient. The initial objective was to model the runoff-runoff process in Sobradinho in order to predict the total inflow of the next year based on the flows of past years. Several models were tested, with several configurations of attributes, however, the results were all unsatisfactory for the four formulations of the annual analysis with flows. For this reason, it was decided to use the monthly analysis, with rainfall and flow data. Thus, good and very good results were obtained for the four formulations, in both models investigated, ANN and KNN. In modeling, the formulation with rainfall-runoff attributes from three previous periods showed the best results for ANN and the formulation with only precipitation attributes showed the best results for KNN, with efficiency indices and classification of very good. |
id |
UFS-2_d6e529d5b02df55135bc339d664a3b0f |
---|---|
oai_identifier_str |
oai:ufs.br:riufs/18551 |
network_acronym_str |
UFS-2 |
network_name_str |
Repositório Institucional da UFS |
repository_id_str |
|
spelling |
Alexandre, José Pedro LimaCeleste, Alcigeimes Batista2023-10-20T11:59:55Z2023-10-20T11:59:55Z2022-10-31ALEXANDRE, José Pedro Lima. Inteligência artificial para modelar o processo chuva vs. vazão natural afluente ao reservatório de Sobradinho. São Cristóvão, 2023. Monografia (graduação em Engenharia Civil) – Departamento de Engenharia Civil, Centro de Ciências Exatas e Tecnologia, Universidade Federal de Sergipe, São Cristóvão, SE, 2023https://ri.ufs.br/jspui/handle/riufs/18551Brazil has a large amount of available water. However, part of the Northeast region suffers from a lack of this resource. The regularization of the flow regime of the São Francisco river with the construction of the Sobradinho reservoir contributed to the reduction of the abundant floods in the downstream region. This work presents the application of artificial neural networks (ANN) and the k-nearest neighbors algorithm (KNN) for modeling the rainfall-runoff process considering the natural flow to the Sobradinho reservoir. Precipitation data were collected from the HidroWeb portal and natural inflow data from the Câmara de Comercialização de Energia Elétrica (CCEE) portal. The set of data were divided into calibration (70%) and validation (30%), at random. Simulations were performed by using the Weka machine learning software, and four formulations were tested for monthly analysis. The goodness of fit of the results are shown by means of the Nash-Sutcliffe coefficient. The initial objective was to model the runoff-runoff process in Sobradinho in order to predict the total inflow of the next year based on the flows of past years. Several models were tested, with several configurations of attributes, however, the results were all unsatisfactory for the four formulations of the annual analysis with flows. For this reason, it was decided to use the monthly analysis, with rainfall and flow data. Thus, good and very good results were obtained for the four formulations, in both models investigated, ANN and KNN. In modeling, the formulation with rainfall-runoff attributes from three previous periods showed the best results for ANN and the formulation with only precipitation attributes showed the best results for KNN, with efficiency indices and classification of very good.O Brasil possui uma grande quantidade de água disponível. Porém, parte da região do Nordeste sofre com a falta do recurso. A regularização do regime de vazões do rio São Francisco com a construção do reservatório de Sobradinho contribuiu para a diminuição das abundantes cheias nas regiões a jusante. Este trabalho apresenta a aplicação de redes neurais artificiais (RNA) e do algoritmo dos k-vizinhos mais próximos (KNN) para modelagem do processo chuva vs. vazão natural afluente ao reservatório de Sobradinho. Os dados de precipitação foram coletados do portal HidroWeb e os dados de afluências naturais do portal da Câmara de Comercialização de Energia Elétrica (CCEE). Os conjuntos de dados foram divididos entre calibração e validação, em 70% e 30%, respectivamente, selecionados de maneira randômica. As simulações foram realizadas com o software de aprendizado de máquina Weka, e testadas quatro formulações para análise mensal. Por fim, os resultados são mostrados através da eficiência das simulações realizadas, verificadas por meio do coeficiente Nash-Sutcliffe. O objetivo inicial era modelar o processo vazão-vazão em Sobradinho de forma a prever a vazão total do próximo ano baseada nas vazões de anos passados. Foram feitas diversas modelagens, com várias configurações de atributos, porém, os resultados foram todos insatisfatórios para as quatro formulações da análise anual com vazões. Por essa razão, decidiu-se utilizar a análise mensal, com os dados de chuva e vazão. Assim, foram obtidos resultados bons e muito bons para as quatro formulações, em ambos os modelos trabalhados, RNA e KNN. Na modelagem, a formulação com atributos chuva vs. vazão de até três períodos anteriores apresentou os melhores resultados para a KNN e a formulação com apenas atributos de precipitação apresentou os melhores resultados para o RNA, com os índices de eficiência e classificação de muito bom.São Cristóvão, SEporEngenharia civilEnsino superior (UFS)Modelagem chuva-vazãoRepresa de Sobradinho, BARedes neurais artificiais (RNA)Reservatório (Sobradinho, BA)Rio São FranciscoVazões naturaisHidrologiaRainfall-runoff modelingArtificial neural networksNatural flowsENGENHARIAS::ENGENHARIA CIVIL::ENGENHARIA HIDRAULICA::HIDROLOGIAInteligência artificial para modelar o processo chuva vs. vazão natural afluente ao reservatório de Sobradinhoinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/bachelorThesisUniversidade Federal de Sergipe (UFS)DEC - Departamento de Engenharia Civil – São Cristóvão - Presencialreponame:Repositório Institucional da UFSinstname:Universidade Federal de Sergipe (UFS)instacron:UFSinfo:eu-repo/semantics/openAccessORIGINALJose_Pedro_Lima_Alexandre.pdfJose_Pedro_Lima_Alexandre.pdfapplication/pdf1970508https://ri.ufs.br/jspui/bitstream/riufs/18551/2/Jose_Pedro_Lima_Alexandre.pdf7eae722960fe245f7a3daea7b175773aMD52LICENSElicense.txtlicense.txttext/plain; charset=utf-81475https://ri.ufs.br/jspui/bitstream/riufs/18551/1/license.txt098cbbf65c2c15e1fb2e49c5d306a44cMD51riufs/185512023-10-20 09:00:00.862oai:ufs.br:riufs/18551TElDRU7Dh0EgREUgRElTVFJJQlVJw4fDg08gTsODTy1FWENMVVNJVkEKCkNvbSBhIGFwcmVzZW50YcOnw6NvIGRlc3RhIGxpY2Vuw6dhLCB2b2PDqiAobyBhdXRvcihlcykgb3UgbyB0aXR1bGFyIGRvcyBkaXJlaXRvcyBkZSBhdXRvcikgY29uY2VkZSDDoCBVbml2ZXJzaWRhZGUgRmVkZXJhbCBkZSBTZXJnaXBlIG8gZGlyZWl0byBuw6NvLWV4Y2x1c2l2byBkZSByZXByb2R1emlyIHNldSB0cmFiYWxobyBubyBmb3JtYXRvIGVsZXRyw7RuaWNvLCBpbmNsdWluZG8gb3MgZm9ybWF0b3Mgw6F1ZGlvIG91IHbDrWRlby4KClZvY8OqIGNvbmNvcmRhIHF1ZSBhIFVuaXZlcnNpZGFkZSBGZWRlcmFsIGRlIFNlcmdpcGUgcG9kZSwgc2VtIGFsdGVyYXIgbyBjb250ZcO6ZG8sIHRyYW5zcG9yIHNldSB0cmFiYWxobyBwYXJhIHF1YWxxdWVyIG1laW8gb3UgZm9ybWF0byBwYXJhIGZpbnMgZGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIHRhbWLDqW0gY29uY29yZGEgcXVlIGEgVW5pdmVyc2lkYWRlIEZlZGVyYWwgZGUgU2VyZ2lwZSBwb2RlIG1hbnRlciBtYWlzIGRlIHVtYSBjw7NwaWEgZGUgc2V1IHRyYWJhbGhvIHBhcmEgZmlucyBkZSBzZWd1cmFuw6dhLCBiYWNrLXVwIGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIGRlY2xhcmEgcXVlIHNldSB0cmFiYWxobyDDqSBvcmlnaW5hbCBlIHF1ZSB2b2PDqiB0ZW0gbyBwb2RlciBkZSBjb25jZWRlciBvcyBkaXJlaXRvcyBjb250aWRvcyBuZXN0YSBsaWNlbsOnYS4gVm9jw6ogdGFtYsOpbSBkZWNsYXJhIHF1ZSBvIGRlcMOzc2l0bywgcXVlIHNlamEgZGUgc2V1IGNvbmhlY2ltZW50bywgbsOjbyBpbmZyaW5nZSBkaXJlaXRvcyBhdXRvcmFpcyBkZSBuaW5ndcOpbS4KCkNhc28gbyB0cmFiYWxobyBjb250ZW5oYSBtYXRlcmlhbCBxdWUgdm9jw6ogbsOjbyBwb3NzdWkgYSB0aXR1bGFyaWRhZGUgZG9zIGRpcmVpdG9zIGF1dG9yYWlzLCB2b2PDqiBkZWNsYXJhIHF1ZSBvYnRldmUgYSBwZXJtaXNzw6NvIGlycmVzdHJpdGEgZG8gZGV0ZW50b3IgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIHBhcmEgY29uY2VkZXIgw6AgVW5pdmVyc2lkYWRlIEZlZGVyYWwgZGUgU2VyZ2lwZSBvcyBkaXJlaXRvcyBhcHJlc2VudGFkb3MgbmVzdGEgbGljZW7Dp2EsIGUgcXVlIGVzc2UgbWF0ZXJpYWwgZGUgcHJvcHJpZWRhZGUgZGUgdGVyY2Vpcm9zIGVzdMOhIGNsYXJhbWVudGUgaWRlbnRpZmljYWRvIGUgcmVjb25oZWNpZG8gbm8gdGV4dG8gb3Ugbm8gY29udGXDumRvLgoKQSBVbml2ZXJzaWRhZGUgRmVkZXJhbCBkZSBTZXJnaXBlIHNlIGNvbXByb21ldGUgYSBpZGVudGlmaWNhciBjbGFyYW1lbnRlIG8gc2V1IG5vbWUocykgb3UgbyhzKSBub21lKHMpIGRvKHMpIApkZXRlbnRvcihlcykgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIGRvIHRyYWJhbGhvLCBlIG7Do28gZmFyw6EgcXVhbHF1ZXIgYWx0ZXJhw6fDo28sIGFsw6ltIGRhcXVlbGFzIGNvbmNlZGlkYXMgcG9yIGVzdGEgbGljZW7Dp2EuIAo=Repositório InstitucionalPUBhttps://ri.ufs.br/oai/requestrepositorio@academico.ufs.bropendoar:2023-10-20T12:00Repositório Institucional da UFS - Universidade Federal de Sergipe (UFS)false |
dc.title.pt_BR.fl_str_mv |
Inteligência artificial para modelar o processo chuva vs. vazão natural afluente ao reservatório de Sobradinho |
title |
Inteligência artificial para modelar o processo chuva vs. vazão natural afluente ao reservatório de Sobradinho |
spellingShingle |
Inteligência artificial para modelar o processo chuva vs. vazão natural afluente ao reservatório de Sobradinho Alexandre, José Pedro Lima Engenharia civil Ensino superior (UFS) Modelagem chuva-vazão Represa de Sobradinho, BA Redes neurais artificiais (RNA) Reservatório (Sobradinho, BA) Rio São Francisco Vazões naturais Hidrologia Rainfall-runoff modeling Artificial neural networks Natural flows ENGENHARIAS::ENGENHARIA CIVIL::ENGENHARIA HIDRAULICA::HIDROLOGIA |
title_short |
Inteligência artificial para modelar o processo chuva vs. vazão natural afluente ao reservatório de Sobradinho |
title_full |
Inteligência artificial para modelar o processo chuva vs. vazão natural afluente ao reservatório de Sobradinho |
title_fullStr |
Inteligência artificial para modelar o processo chuva vs. vazão natural afluente ao reservatório de Sobradinho |
title_full_unstemmed |
Inteligência artificial para modelar o processo chuva vs. vazão natural afluente ao reservatório de Sobradinho |
title_sort |
Inteligência artificial para modelar o processo chuva vs. vazão natural afluente ao reservatório de Sobradinho |
author |
Alexandre, José Pedro Lima |
author_facet |
Alexandre, José Pedro Lima |
author_role |
author |
dc.contributor.author.fl_str_mv |
Alexandre, José Pedro Lima |
dc.contributor.advisor1.fl_str_mv |
Celeste, Alcigeimes Batista |
contributor_str_mv |
Celeste, Alcigeimes Batista |
dc.subject.por.fl_str_mv |
Engenharia civil Ensino superior (UFS) Modelagem chuva-vazão Represa de Sobradinho, BA Redes neurais artificiais (RNA) Reservatório (Sobradinho, BA) Rio São Francisco Vazões naturais Hidrologia |
topic |
Engenharia civil Ensino superior (UFS) Modelagem chuva-vazão Represa de Sobradinho, BA Redes neurais artificiais (RNA) Reservatório (Sobradinho, BA) Rio São Francisco Vazões naturais Hidrologia Rainfall-runoff modeling Artificial neural networks Natural flows ENGENHARIAS::ENGENHARIA CIVIL::ENGENHARIA HIDRAULICA::HIDROLOGIA |
dc.subject.eng.fl_str_mv |
Rainfall-runoff modeling Artificial neural networks Natural flows |
dc.subject.cnpq.fl_str_mv |
ENGENHARIAS::ENGENHARIA CIVIL::ENGENHARIA HIDRAULICA::HIDROLOGIA |
description |
Brazil has a large amount of available water. However, part of the Northeast region suffers from a lack of this resource. The regularization of the flow regime of the São Francisco river with the construction of the Sobradinho reservoir contributed to the reduction of the abundant floods in the downstream region. This work presents the application of artificial neural networks (ANN) and the k-nearest neighbors algorithm (KNN) for modeling the rainfall-runoff process considering the natural flow to the Sobradinho reservoir. Precipitation data were collected from the HidroWeb portal and natural inflow data from the Câmara de Comercialização de Energia Elétrica (CCEE) portal. The set of data were divided into calibration (70%) and validation (30%), at random. Simulations were performed by using the Weka machine learning software, and four formulations were tested for monthly analysis. The goodness of fit of the results are shown by means of the Nash-Sutcliffe coefficient. The initial objective was to model the runoff-runoff process in Sobradinho in order to predict the total inflow of the next year based on the flows of past years. Several models were tested, with several configurations of attributes, however, the results were all unsatisfactory for the four formulations of the annual analysis with flows. For this reason, it was decided to use the monthly analysis, with rainfall and flow data. Thus, good and very good results were obtained for the four formulations, in both models investigated, ANN and KNN. In modeling, the formulation with rainfall-runoff attributes from three previous periods showed the best results for ANN and the formulation with only precipitation attributes showed the best results for KNN, with efficiency indices and classification of very good. |
publishDate |
2022 |
dc.date.issued.fl_str_mv |
2022-10-31 |
dc.date.accessioned.fl_str_mv |
2023-10-20T11:59:55Z |
dc.date.available.fl_str_mv |
2023-10-20T11:59:55Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/bachelorThesis |
format |
bachelorThesis |
status_str |
publishedVersion |
dc.identifier.citation.fl_str_mv |
ALEXANDRE, José Pedro Lima. Inteligência artificial para modelar o processo chuva vs. vazão natural afluente ao reservatório de Sobradinho. São Cristóvão, 2023. Monografia (graduação em Engenharia Civil) – Departamento de Engenharia Civil, Centro de Ciências Exatas e Tecnologia, Universidade Federal de Sergipe, São Cristóvão, SE, 2023 |
dc.identifier.uri.fl_str_mv |
https://ri.ufs.br/jspui/handle/riufs/18551 |
identifier_str_mv |
ALEXANDRE, José Pedro Lima. Inteligência artificial para modelar o processo chuva vs. vazão natural afluente ao reservatório de Sobradinho. São Cristóvão, 2023. Monografia (graduação em Engenharia Civil) – Departamento de Engenharia Civil, Centro de Ciências Exatas e Tecnologia, Universidade Federal de Sergipe, São Cristóvão, SE, 2023 |
url |
https://ri.ufs.br/jspui/handle/riufs/18551 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.publisher.initials.fl_str_mv |
Universidade Federal de Sergipe (UFS) |
dc.publisher.department.fl_str_mv |
DEC - Departamento de Engenharia Civil – São Cristóvão - Presencial |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFS instname:Universidade Federal de Sergipe (UFS) instacron:UFS |
instname_str |
Universidade Federal de Sergipe (UFS) |
instacron_str |
UFS |
institution |
UFS |
reponame_str |
Repositório Institucional da UFS |
collection |
Repositório Institucional da UFS |
bitstream.url.fl_str_mv |
https://ri.ufs.br/jspui/bitstream/riufs/18551/2/Jose_Pedro_Lima_Alexandre.pdf https://ri.ufs.br/jspui/bitstream/riufs/18551/1/license.txt |
bitstream.checksum.fl_str_mv |
7eae722960fe245f7a3daea7b175773a 098cbbf65c2c15e1fb2e49c5d306a44c |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional da UFS - Universidade Federal de Sergipe (UFS) |
repository.mail.fl_str_mv |
repositorio@academico.ufs.br |
_version_ |
1802110835682705408 |