Estudo comparativo entre modelos em redes neurais e modelo bayesiano para consciência situacional
Autor(a) principal: | |
---|---|
Data de Publicação: | 2021 |
Tipo de documento: | Trabalho de conclusão de curso |
Idioma: | por |
Título da fonte: | Repositório Institucional da UFSC |
Texto Completo: | https://repositorio.ufsc.br/handle/123456789/228233 |
Resumo: | TCC(graduação) - Universidade Federal de Santa Catarina. Centro Tecnológico. Sistemas de Informação. |
id |
UFSC_0516cda6947ae051662f40fa106613c8 |
---|---|
oai_identifier_str |
oai:repositorio.ufsc.br:123456789/228233 |
network_acronym_str |
UFSC |
network_name_str |
Repositório Institucional da UFSC |
repository_id_str |
2373 |
spelling |
Estudo comparativo entre modelos em redes neurais e modelo bayesiano para consciência situacionalRedes Neurais ArtificiaisRede BayesianaConsciência SituacionalArtificial Neural NetworksSituational AwarenessTCC(graduação) - Universidade Federal de Santa Catarina. Centro Tecnológico. Sistemas de Informação.Rede neural artificial é um modelo de processamento computacional baseado no modelo de funcionamento do neurônio biológico, essas redes têm a capacidade de aprendizagem através de exemplos e de generalização desse aprendizado. Elas são formadas por conjuntos de neurônios interligados, onde cada elemento chamado neurônio é definido matematicamente como sendo um conjunto de entradas que são multiplicadas por pesos para cada entrada, estas são integradas através de um somador que tem seu resultado enviado para a função de ativação ou função de transferência. A interligação desses neurônios artificiais propicia uma rede com processamento paralelo e não linear. Essas redes têm diversas aplicações como: detecção e reconhecimento de padrões, robótica, análise de imagens, classificação de dados, processamento de sinais. O uso de dispositivos móveis por pedestres em vias públicas tem ocasionado um elevado número de acidentes. O motivo é que o dispositivo causa ao pedestre uma falta de consciência sobre o tráfego urbano ao seu redor. Em uma tentativa de reduzir a problemática exposta relacionada aos dispositivos móveis, foi proposto no projeto “Road Awareness” um modelo de consciência situacional com usuários usando smartphones em vias urbanas. Somando-se a este esforço o trabalho de TCC “Aplicação de Aprendizagem por Reforço para um Modelo Bayesiano de Consciência” programou e aplicou um algoritmo de aprendizagem por reforço na aprendizagem dos parâmetros do modelo em questão, a rede Bayesiana. Com o objetivo de contribuir com o projeto de consciência situacional, este trabalho apresenta um modelo proposto em redes neurais artificiais para avaliar se este método comparado ao de redes bayesiana poderá melhorar a consciência situacional.Artificial neural networks are a model of computational processing based on the model of biological neuron functioning. These networks can learn through examples and generalization of this learning. They are formed by sets of interconnected neurons, where each element called neuron is defined mathematically as having a set of inputs that are multiplied by weights for each input; these are integrated through an adder that has its result sent to the activation function or transfer function. The interconnection of these artificial neurons provides a network with parallel and non-linear processing. These networks have several applications such as: pattern detection and recognition, robotics, image analysis, data classification, signal processing. The use of mobile devices by pedestrians on public roads has caused a high number of accidents. The reason is that the device causes the pedestrian a lack of awareness about the urban traffic around them. In an attempt to reduce the exposure problematic related to mobile devices, a model of situational awareness with users using smartphones on urban roads was proposed in the "Road Awareness" project. In addition to this effort, the TCC study “Aplicação de Aprendizagem por Reforço para um Modelo Bayesiano de Consciência” programmed and applied a learning algorithm for reinforcement in learning the parameters of the model in question, the Bayesian network. In order to contribute to the situational awareness project this work will implement a proposed model in artificial neural networks to evaluate if this method compared to Bayesian Networks can improve the situational awareness.Florianópolis, SCSantos, Elder RizzonUniversidade Federal de Santa CatarinaSagaz, Marcio Manoel2021-09-28T00:40:53Z2021-09-28T00:40:53Z2021-09-09info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/bachelorThesis112 f.application/pdfhttps://repositorio.ufsc.br/handle/123456789/228233info:eu-repo/semantics/openAccessporreponame:Repositório Institucional da UFSCinstname:Universidade Federal de Santa Catarina (UFSC)instacron:UFSC2021-09-28T00:40:53Zoai:repositorio.ufsc.br:123456789/228233Repositório InstitucionalPUBhttp://150.162.242.35/oai/requestopendoar:23732021-09-28T00:40:53Repositório Institucional da UFSC - Universidade Federal de Santa Catarina (UFSC)false |
dc.title.none.fl_str_mv |
Estudo comparativo entre modelos em redes neurais e modelo bayesiano para consciência situacional |
title |
Estudo comparativo entre modelos em redes neurais e modelo bayesiano para consciência situacional |
spellingShingle |
Estudo comparativo entre modelos em redes neurais e modelo bayesiano para consciência situacional Sagaz, Marcio Manoel Redes Neurais Artificiais Rede Bayesiana Consciência Situacional Artificial Neural Networks Situational Awareness |
title_short |
Estudo comparativo entre modelos em redes neurais e modelo bayesiano para consciência situacional |
title_full |
Estudo comparativo entre modelos em redes neurais e modelo bayesiano para consciência situacional |
title_fullStr |
Estudo comparativo entre modelos em redes neurais e modelo bayesiano para consciência situacional |
title_full_unstemmed |
Estudo comparativo entre modelos em redes neurais e modelo bayesiano para consciência situacional |
title_sort |
Estudo comparativo entre modelos em redes neurais e modelo bayesiano para consciência situacional |
author |
Sagaz, Marcio Manoel |
author_facet |
Sagaz, Marcio Manoel |
author_role |
author |
dc.contributor.none.fl_str_mv |
Santos, Elder Rizzon Universidade Federal de Santa Catarina |
dc.contributor.author.fl_str_mv |
Sagaz, Marcio Manoel |
dc.subject.por.fl_str_mv |
Redes Neurais Artificiais Rede Bayesiana Consciência Situacional Artificial Neural Networks Situational Awareness |
topic |
Redes Neurais Artificiais Rede Bayesiana Consciência Situacional Artificial Neural Networks Situational Awareness |
description |
TCC(graduação) - Universidade Federal de Santa Catarina. Centro Tecnológico. Sistemas de Informação. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-09-28T00:40:53Z 2021-09-28T00:40:53Z 2021-09-09 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/bachelorThesis |
format |
bachelorThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://repositorio.ufsc.br/handle/123456789/228233 |
url |
https://repositorio.ufsc.br/handle/123456789/228233 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
112 f. application/pdf |
dc.publisher.none.fl_str_mv |
Florianópolis, SC |
publisher.none.fl_str_mv |
Florianópolis, SC |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFSC instname:Universidade Federal de Santa Catarina (UFSC) instacron:UFSC |
instname_str |
Universidade Federal de Santa Catarina (UFSC) |
instacron_str |
UFSC |
institution |
UFSC |
reponame_str |
Repositório Institucional da UFSC |
collection |
Repositório Institucional da UFSC |
repository.name.fl_str_mv |
Repositório Institucional da UFSC - Universidade Federal de Santa Catarina (UFSC) |
repository.mail.fl_str_mv |
|
_version_ |
1808652351148392448 |