Interação genótipo × ambiente e dimensionamento amostral para estatísticas de precisão em ensaios de soja

Detalhes bibliográficos
Autor(a) principal: Souza, Rafael Rodrigues de
Data de Publicação: 2021
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Manancial - Repositório Digital da UFSM
Texto Completo: http://repositorio.ufsm.br/handle/1/21659
Resumo: Soybean grain yield is a relevant characteristic that needs further understanding in highland and lowland scenarios, where there is a lack of comparative theoretical references, mainly regarding genotype × environment interaction. Another little approached aspect about these scenarios is the reliability of estimates of this variable, which initiates by the sampling process, normally performed empirically, causing an elevated bias when samplings are not representative. Therefore, the aims of this study were to verify the effects of genotype × environment interaction on soybean grain yield in highlands and lowlands of subtropical climate and to compare the adaptability and stability methodologies; to analyze the behavior of experimental precision statistics in front of the variations in the number of collected plants per experimental unit in highlands and lowlands; to define the optimal sample size per experimental unit for experimental precision statistics; and to propose predictive models for estimating the precision of experiments with soybean. Field trials were carried out during the 2017/2018 agricultural harvest in two locations of Rio Grande do Sul, on three sowing dates, totaling six experiments. In the first study, 2.70 m2 per plot were harvest and the grain yield of 20 genotypes was measured in both testing locations. With the collected data the significance of the interaction factor was verified and this factor was partitioned into simple and complex components. Next, linear bi-linear models were implemented, Additive Main Effect and Multiplicative Interaction (AMMI), Best Linear Unbiased Prediction (BLUP) and Genotype plus Genotype-Environment interaction (GGE), for verifying the stability of cultivars, with posterior comparison of methodologies through uncertainty statistics and Pearson’s correlation coefficient. In the second study, grain yield was assessed per plant, in 20 plants per plot, using 30 genotypes in the highland location and 20 genotypes in the lowland location, totaling 9,000 measured plants. Thirteen precision statistics were estimated and sample size per experimental unit was determined per statistic, simulating scenarios of 1, 2, ..., 1000 plants; consequently, predictive models for each statistic were parameterized, based on the number of collected plants. The results demonstrated greater grain yields in the highlands, where the second sowing date expressed the highest values. The complex component of interaction represented 82.11 %, which allowed inferring cases of genotype ranking alteration. Agreement between the GGE and BLUP methodologies was observed. The statistics were overestimated in smaller sample scenarios per experimental unit. With the increase of collected plants, exponentially proportional reductions of the confidence interval width of the calculated statistics were verified. This allowed proposing experimental precision prediction models, via confidence interval width and sample size per experimental unit. The sampling of 18 plants per experimental unit was enough for estimating experimental precision statistics. With the performed studies, a greater understanding of the highland and lowland edaphic scenarios on factors that aid cultivars recommendation and experimental planning became possible.
id UFSM-20_156bf031ca3515dc4f2519cbef3e9b22
oai_identifier_str oai:repositorio.ufsm.br:1/21659
network_acronym_str UFSM-20
network_name_str Manancial - Repositório Digital da UFSM
repository_id_str 3913
spelling 2021-07-30T21:25:00Z2021-07-30T21:25:00Z2021-02-26http://repositorio.ufsm.br/handle/1/21659Soybean grain yield is a relevant characteristic that needs further understanding in highland and lowland scenarios, where there is a lack of comparative theoretical references, mainly regarding genotype × environment interaction. Another little approached aspect about these scenarios is the reliability of estimates of this variable, which initiates by the sampling process, normally performed empirically, causing an elevated bias when samplings are not representative. Therefore, the aims of this study were to verify the effects of genotype × environment interaction on soybean grain yield in highlands and lowlands of subtropical climate and to compare the adaptability and stability methodologies; to analyze the behavior of experimental precision statistics in front of the variations in the number of collected plants per experimental unit in highlands and lowlands; to define the optimal sample size per experimental unit for experimental precision statistics; and to propose predictive models for estimating the precision of experiments with soybean. Field trials were carried out during the 2017/2018 agricultural harvest in two locations of Rio Grande do Sul, on three sowing dates, totaling six experiments. In the first study, 2.70 m2 per plot were harvest and the grain yield of 20 genotypes was measured in both testing locations. With the collected data the significance of the interaction factor was verified and this factor was partitioned into simple and complex components. Next, linear bi-linear models were implemented, Additive Main Effect and Multiplicative Interaction (AMMI), Best Linear Unbiased Prediction (BLUP) and Genotype plus Genotype-Environment interaction (GGE), for verifying the stability of cultivars, with posterior comparison of methodologies through uncertainty statistics and Pearson’s correlation coefficient. In the second study, grain yield was assessed per plant, in 20 plants per plot, using 30 genotypes in the highland location and 20 genotypes in the lowland location, totaling 9,000 measured plants. Thirteen precision statistics were estimated and sample size per experimental unit was determined per statistic, simulating scenarios of 1, 2, ..., 1000 plants; consequently, predictive models for each statistic were parameterized, based on the number of collected plants. The results demonstrated greater grain yields in the highlands, where the second sowing date expressed the highest values. The complex component of interaction represented 82.11 %, which allowed inferring cases of genotype ranking alteration. Agreement between the GGE and BLUP methodologies was observed. The statistics were overestimated in smaller sample scenarios per experimental unit. With the increase of collected plants, exponentially proportional reductions of the confidence interval width of the calculated statistics were verified. This allowed proposing experimental precision prediction models, via confidence interval width and sample size per experimental unit. The sampling of 18 plants per experimental unit was enough for estimating experimental precision statistics. With the performed studies, a greater understanding of the highland and lowland edaphic scenarios on factors that aid cultivars recommendation and experimental planning became possible.A produtividade de grãos de soja é uma relevante característica que necessita de prévia compreensão em cenários de terras altas e baixas, em que referenciais teóricos comparativos são escassos, principalmente relacionados à interação genótipo × ambiente. Outro aspecto pouco abrangido nestes cenários é a confiabilidade de estimativas desta característica, que se inicia pelo processo de amostragem, normalmente realizado empiricamente, podendo ocasionar um viés elevado se as amostragens não forem representativas. Neste sentido, este estudo tem como objetivos verificar os efeitos da interação genótipo × ambiente na produtividade de grãos de soja em áreas de terras altas e baixas de clima subtropical e comparar metodologias de adaptabilidade e estabilidade; analisar o comportamento de estatísticas de precisão experimental frente às variações no número de plantas coletadas por unidade experimental em terras altas e baixas; definir o tamanho amostral ótimo por unidade experimental para estatísticas de precisão experimental; e propor modelos preditivos para estimar a precisão de experimentos com soja. Foram conduzidos ensaios de campo durante a safra agrícola de 2017/2018, em dois locais no Rio Grande do Sul e três épocas de semeadura, totalizando seis experimentos. No primeiro estudo, uma área de 2,70 m2 por parcela foi colhida e a produtividade de grãos foi mensurada em 20 genótipos em ambos os locais teste. Com os dados coletados, foi verificada a significância do fator interação e realizado o particionamento deste fator em componente simples e complexo. A seguir, foram implementados modelos lineares, bilineares, Additive Main Effect and Multiplicative Interaction (AMMI), Best Linear Unbiased Prediction (BLUP) e Genotype plus Genotype-Environment interaction (GGE), para a verificação da estabilidade de cultivares com posterior comparação de metodologias por meio de estatísticas de incerteza e coeficiente de correlação de Pearson. No segundo estudo, a produtividade de grãos foi avaliada por planta, em 20 plantas por parcela, utilizando 30 genótipos no local de terras altas e 20 genótipos no local de terras baixas, totalizando 9000 plantas mensuradas. Foram estimadas treze estatísticas e determinado o tamanho de amostra por unidade experimental por estatística, simulando cenários de 1, 2, ..., 1000 plantas; consequentemente, parametrizaram-se modelos preditivos para cada estatística, com base no número de plantas coletadas. Os resultados demonstraram maiores produtividades de grãos em terras altas, onde a segunda época de semeadura expressou os maiores valores. O componente complexo da interação representou 82,11 %, permitindo inferir casos de alteração de ranqueamentos de genótipos. Concordâncias entre as metodologias GGE e BLUP foram observadas. As estatísticas foram superestimadas em cenários amostrais menores por unidade experimental. Com o aumento de plantas coletadas foi possível verificar reduções exponencialmente proporcionais da amplitude do intervalo de confiança das estatísticas calculadas. Assim, possibilitando a proposição de modelos de previsão da precisão experimental, via amplitude de intervalos de confiança e tamanho amostral por unidade experimental. A amostragem de 18 plantas por unidade experimental foi suficiente para a estimativa das estatísticas de precisão experimental. Com os estudos realizados, maiores compreensões dos cenários edáficos de terras altas e baixas foram possíveis, sobre fatores que auxiliam na recomendação de cultivares e no planejamento experimental.Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPESporUniversidade Federal de Santa MariaUFSM Frederico WestphalenPrograma de Pós-Graduação em Agronomia - Agricultura e AmbienteUFSMBrasilAgronomiaAttribution-NonCommercial-NoDerivatives 4.0 Internationalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessAMMIBLUPGGEModelagemPlanejamento experimentalTerras altasTerras baixasExperimental planningHighlandsLowlandsModellingCNPQ::CIENCIAS AGRARIAS::AGRONOMIAInteração genótipo × ambiente e dimensionamento amostral para estatísticas de precisão em ensaios de sojaGenotype × environment interaction and sample dimensioning for precision statistics in soybean trialsinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisToebe, Marcoshttp://lattes.cnpq.br/1350890583236601Marchioro, Volmir SérgioBenin, Giovanihttp://lattes.cnpq.br/6443498376270135Souza, Rafael Rodrigues de500100000009600600600600600741f0f07-4a42-4e54-aa60-c6900815374ad115d5b3-cad4-45f8-8e24-06b562742fb7251fabc9-faa9-43b8-aaa0-c892fe0b66c47a9217ac-4282-4df9-9b94-0676fb19f8fareponame:Manancial - Repositório Digital da UFSMinstname:Universidade Federal de Santa Maria (UFSM)instacron:UFSMORIGINALDIS_PPGAAA_2021_SOUZA_RAFAEL.pdfDIS_PPGAAA_2021_SOUZA_RAFAEL.pdfDissertação de Mestradoapplication/pdf13267321http://repositorio.ufsm.br/bitstream/1/21659/1/DIS_PPGAAA_2021_SOUZA_RAFAEL.pdf7170d65e17ae990ef25794db1d2df6b4MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805http://repositorio.ufsm.br/bitstream/1/21659/2/license_rdf4460e5956bc1d1639be9ae6146a50347MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-81956http://repositorio.ufsm.br/bitstream/1/21659/3/license.txt2f0571ecee68693bd5cd3f17c1e075dfMD53TEXTDIS_PPGAAA_2021_SOUZA_RAFAEL.pdf.txtDIS_PPGAAA_2021_SOUZA_RAFAEL.pdf.txtExtracted texttext/plain320642http://repositorio.ufsm.br/bitstream/1/21659/4/DIS_PPGAAA_2021_SOUZA_RAFAEL.pdf.txtacef62db0d9831120863cb6abf3b5147MD54THUMBNAILDIS_PPGAAA_2021_SOUZA_RAFAEL.pdf.jpgDIS_PPGAAA_2021_SOUZA_RAFAEL.pdf.jpgIM Thumbnailimage/jpeg4243http://repositorio.ufsm.br/bitstream/1/21659/5/DIS_PPGAAA_2021_SOUZA_RAFAEL.pdf.jpg27c99e4e07d323a330f6edbb23078a9fMD551/216592021-08-20 15:44:17.093oai:repositorio.ufsm.br:1/21659TElDRU7Dh0EgREUgRElTVFJJQlVJw4fDg08gTsODTy1FWENMVVNJVkEKCkNvbSBhIGFwcmVzZW50YcOnw6NvIGRlc3RhIGxpY2Vuw6dhLCB2b2PDqiAobyBhdXRvciAoZXMpIG91IG8gdGl0dWxhciBkb3MgZGlyZWl0b3MgZGUgYXV0b3IpIGNvbmNlZGUgw6AgVW5pdmVyc2lkYWRlCkZlZGVyYWwgZGUgU2FudGEgTWFyaWEgKFVGU00pIG8gZGlyZWl0byBuw6NvLWV4Y2x1c2l2byBkZSByZXByb2R1emlyLCAgdHJhZHV6aXIgKGNvbmZvcm1lIGRlZmluaWRvIGFiYWl4byksIGUvb3UKZGlzdHJpYnVpciBhIHN1YSB0ZXNlIG91IGRpc3NlcnRhw6fDo28gKGluY2x1aW5kbyBvIHJlc3VtbykgcG9yIHRvZG8gbyBtdW5kbyBubyBmb3JtYXRvIGltcHJlc3NvIGUgZWxldHLDtG5pY28gZQplbSBxdWFscXVlciBtZWlvLCBpbmNsdWluZG8gb3MgZm9ybWF0b3Mgw6F1ZGlvIG91IHbDrWRlby4KClZvY8OqIGNvbmNvcmRhIHF1ZSBhIFVGU00gcG9kZSwgc2VtIGFsdGVyYXIgbyBjb250ZcO6ZG8sIHRyYW5zcG9yIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbwpwYXJhIHF1YWxxdWVyIG1laW8gb3UgZm9ybWF0byBwYXJhIGZpbnMgZGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIHRhbWLDqW0gY29uY29yZGEgcXVlIGEgVUZTTSBwb2RlIG1hbnRlciBtYWlzIGRlIHVtYSBjw7NwaWEgYSBzdWEgdGVzZSBvdQpkaXNzZXJ0YcOnw6NvIHBhcmEgZmlucyBkZSBzZWd1cmFuw6dhLCBiYWNrLXVwIGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIGRlY2xhcmEgcXVlIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyDDqSBvcmlnaW5hbCBlIHF1ZSB2b2PDqiB0ZW0gbyBwb2RlciBkZSBjb25jZWRlciBvcyBkaXJlaXRvcyBjb250aWRvcwpuZXN0YSBsaWNlbsOnYS4gVm9jw6ogdGFtYsOpbSBkZWNsYXJhIHF1ZSBvIGRlcMOzc2l0byBkYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIG7Do28sIHF1ZSBzZWphIGRlIHNldQpjb25oZWNpbWVudG8sIGluZnJpbmdlIGRpcmVpdG9zIGF1dG9yYWlzIGRlIG5pbmd1w6ltLgoKQ2FzbyBhIHN1YSB0ZXNlIG91IGRpc3NlcnRhw6fDo28gY29udGVuaGEgbWF0ZXJpYWwgcXVlIHZvY8OqIG7Do28gcG9zc3VpIGEgdGl0dWxhcmlkYWRlIGRvcyBkaXJlaXRvcyBhdXRvcmFpcywgdm9jw6oKZGVjbGFyYSBxdWUgb2J0ZXZlIGEgcGVybWlzc8OjbyBpcnJlc3RyaXRhIGRvIGRldGVudG9yIGRvcyBkaXJlaXRvcyBhdXRvcmFpcyBwYXJhIGNvbmNlZGVyIMOgIFVGU00Kb3MgZGlyZWl0b3MgYXByZXNlbnRhZG9zIG5lc3RhIGxpY2Vuw6dhLCBlIHF1ZSBlc3NlIG1hdGVyaWFsIGRlIHByb3ByaWVkYWRlIGRlIHRlcmNlaXJvcyBlc3TDoSBjbGFyYW1lbnRlCmlkZW50aWZpY2FkbyBlIHJlY29uaGVjaWRvIG5vIHRleHRvIG91IG5vIGNvbnRlw7pkbyBkYSB0ZXNlIG91IGRpc3NlcnRhw6fDo28gb3JhIGRlcG9zaXRhZGEuCgpDQVNPIEEgVEVTRSBPVSBESVNTRVJUQcOHw4NPIE9SQSBERVBPU0lUQURBIFRFTkhBIFNJRE8gUkVTVUxUQURPIERFIFVNIFBBVFJPQ8ONTklPIE9VCkFQT0lPIERFIFVNQSBBR8OKTkNJQSBERSBGT01FTlRPIE9VIE9VVFJPIE9SR0FOSVNNTyBRVUUgTsODTyBTRUpBIEEgVUZTTQosIFZPQ8OKIERFQ0xBUkEgUVVFIFJFU1BFSVRPVSBUT0RPUyBFIFFVQUlTUVVFUiBESVJFSVRPUyBERSBSRVZJU8ODTyBDT01PClRBTULDiU0gQVMgREVNQUlTIE9CUklHQcOHw5VFUyBFWElHSURBUyBQT1IgQ09OVFJBVE8gT1UgQUNPUkRPLgoKQSBVRlNNIHNlIGNvbXByb21ldGUgYSBpZGVudGlmaWNhciBjbGFyYW1lbnRlIG8gc2V1IG5vbWUgKHMpIG91IG8ocykgbm9tZShzKSBkbyhzKQpkZXRlbnRvcihlcykgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIGRhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbywgZSBuw6NvIGZhcsOhIHF1YWxxdWVyIGFsdGVyYcOnw6NvLCBhbMOpbSBkYXF1ZWxhcwpjb25jZWRpZGFzIHBvciBlc3RhIGxpY2Vuw6dhLgoKRepositório Institucionalhttp://repositorio.ufsm.br/PUBhttp://repositorio.ufsm.br/oai/requestopendoar:39132021-08-20T18:44:17Manancial - Repositório Digital da UFSM - Universidade Federal de Santa Maria (UFSM)false
dc.title.por.fl_str_mv Interação genótipo × ambiente e dimensionamento amostral para estatísticas de precisão em ensaios de soja
dc.title.alternative.eng.fl_str_mv Genotype × environment interaction and sample dimensioning for precision statistics in soybean trials
title Interação genótipo × ambiente e dimensionamento amostral para estatísticas de precisão em ensaios de soja
spellingShingle Interação genótipo × ambiente e dimensionamento amostral para estatísticas de precisão em ensaios de soja
Souza, Rafael Rodrigues de
AMMI
BLUP
GGE
Modelagem
Planejamento experimental
Terras altas
Terras baixas
Experimental planning
Highlands
Lowlands
Modelling
CNPQ::CIENCIAS AGRARIAS::AGRONOMIA
title_short Interação genótipo × ambiente e dimensionamento amostral para estatísticas de precisão em ensaios de soja
title_full Interação genótipo × ambiente e dimensionamento amostral para estatísticas de precisão em ensaios de soja
title_fullStr Interação genótipo × ambiente e dimensionamento amostral para estatísticas de precisão em ensaios de soja
title_full_unstemmed Interação genótipo × ambiente e dimensionamento amostral para estatísticas de precisão em ensaios de soja
title_sort Interação genótipo × ambiente e dimensionamento amostral para estatísticas de precisão em ensaios de soja
author Souza, Rafael Rodrigues de
author_facet Souza, Rafael Rodrigues de
author_role author
dc.contributor.advisor1.fl_str_mv Toebe, Marcos
dc.contributor.advisor1Lattes.fl_str_mv http://lattes.cnpq.br/1350890583236601
dc.contributor.referee1.fl_str_mv Marchioro, Volmir Sérgio
dc.contributor.referee2.fl_str_mv Benin, Giovani
dc.contributor.authorLattes.fl_str_mv http://lattes.cnpq.br/6443498376270135
dc.contributor.author.fl_str_mv Souza, Rafael Rodrigues de
contributor_str_mv Toebe, Marcos
Marchioro, Volmir Sérgio
Benin, Giovani
dc.subject.por.fl_str_mv AMMI
BLUP
GGE
Modelagem
Planejamento experimental
Terras altas
Terras baixas
topic AMMI
BLUP
GGE
Modelagem
Planejamento experimental
Terras altas
Terras baixas
Experimental planning
Highlands
Lowlands
Modelling
CNPQ::CIENCIAS AGRARIAS::AGRONOMIA
dc.subject.eng.fl_str_mv Experimental planning
Highlands
Lowlands
Modelling
dc.subject.cnpq.fl_str_mv CNPQ::CIENCIAS AGRARIAS::AGRONOMIA
description Soybean grain yield is a relevant characteristic that needs further understanding in highland and lowland scenarios, where there is a lack of comparative theoretical references, mainly regarding genotype × environment interaction. Another little approached aspect about these scenarios is the reliability of estimates of this variable, which initiates by the sampling process, normally performed empirically, causing an elevated bias when samplings are not representative. Therefore, the aims of this study were to verify the effects of genotype × environment interaction on soybean grain yield in highlands and lowlands of subtropical climate and to compare the adaptability and stability methodologies; to analyze the behavior of experimental precision statistics in front of the variations in the number of collected plants per experimental unit in highlands and lowlands; to define the optimal sample size per experimental unit for experimental precision statistics; and to propose predictive models for estimating the precision of experiments with soybean. Field trials were carried out during the 2017/2018 agricultural harvest in two locations of Rio Grande do Sul, on three sowing dates, totaling six experiments. In the first study, 2.70 m2 per plot were harvest and the grain yield of 20 genotypes was measured in both testing locations. With the collected data the significance of the interaction factor was verified and this factor was partitioned into simple and complex components. Next, linear bi-linear models were implemented, Additive Main Effect and Multiplicative Interaction (AMMI), Best Linear Unbiased Prediction (BLUP) and Genotype plus Genotype-Environment interaction (GGE), for verifying the stability of cultivars, with posterior comparison of methodologies through uncertainty statistics and Pearson’s correlation coefficient. In the second study, grain yield was assessed per plant, in 20 plants per plot, using 30 genotypes in the highland location and 20 genotypes in the lowland location, totaling 9,000 measured plants. Thirteen precision statistics were estimated and sample size per experimental unit was determined per statistic, simulating scenarios of 1, 2, ..., 1000 plants; consequently, predictive models for each statistic were parameterized, based on the number of collected plants. The results demonstrated greater grain yields in the highlands, where the second sowing date expressed the highest values. The complex component of interaction represented 82.11 %, which allowed inferring cases of genotype ranking alteration. Agreement between the GGE and BLUP methodologies was observed. The statistics were overestimated in smaller sample scenarios per experimental unit. With the increase of collected plants, exponentially proportional reductions of the confidence interval width of the calculated statistics were verified. This allowed proposing experimental precision prediction models, via confidence interval width and sample size per experimental unit. The sampling of 18 plants per experimental unit was enough for estimating experimental precision statistics. With the performed studies, a greater understanding of the highland and lowland edaphic scenarios on factors that aid cultivars recommendation and experimental planning became possible.
publishDate 2021
dc.date.accessioned.fl_str_mv 2021-07-30T21:25:00Z
dc.date.available.fl_str_mv 2021-07-30T21:25:00Z
dc.date.issued.fl_str_mv 2021-02-26
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://repositorio.ufsm.br/handle/1/21659
url http://repositorio.ufsm.br/handle/1/21659
dc.language.iso.fl_str_mv por
language por
dc.relation.cnpq.fl_str_mv 500100000009
dc.relation.confidence.fl_str_mv 600
600
600
600
600
dc.relation.authority.fl_str_mv 741f0f07-4a42-4e54-aa60-c6900815374a
d115d5b3-cad4-45f8-8e24-06b562742fb7
251fabc9-faa9-43b8-aaa0-c892fe0b66c4
7a9217ac-4282-4df9-9b94-0676fb19f8fa
dc.rights.driver.fl_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International
http://creativecommons.org/licenses/by-nc-nd/4.0/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International
http://creativecommons.org/licenses/by-nc-nd/4.0/
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Universidade Federal de Santa Maria
UFSM Frederico Westphalen
dc.publisher.program.fl_str_mv Programa de Pós-Graduação em Agronomia - Agricultura e Ambiente
dc.publisher.initials.fl_str_mv UFSM
dc.publisher.country.fl_str_mv Brasil
dc.publisher.department.fl_str_mv Agronomia
publisher.none.fl_str_mv Universidade Federal de Santa Maria
UFSM Frederico Westphalen
dc.source.none.fl_str_mv reponame:Manancial - Repositório Digital da UFSM
instname:Universidade Federal de Santa Maria (UFSM)
instacron:UFSM
instname_str Universidade Federal de Santa Maria (UFSM)
instacron_str UFSM
institution UFSM
reponame_str Manancial - Repositório Digital da UFSM
collection Manancial - Repositório Digital da UFSM
bitstream.url.fl_str_mv http://repositorio.ufsm.br/bitstream/1/21659/1/DIS_PPGAAA_2021_SOUZA_RAFAEL.pdf
http://repositorio.ufsm.br/bitstream/1/21659/2/license_rdf
http://repositorio.ufsm.br/bitstream/1/21659/3/license.txt
http://repositorio.ufsm.br/bitstream/1/21659/4/DIS_PPGAAA_2021_SOUZA_RAFAEL.pdf.txt
http://repositorio.ufsm.br/bitstream/1/21659/5/DIS_PPGAAA_2021_SOUZA_RAFAEL.pdf.jpg
bitstream.checksum.fl_str_mv 7170d65e17ae990ef25794db1d2df6b4
4460e5956bc1d1639be9ae6146a50347
2f0571ecee68693bd5cd3f17c1e075df
acef62db0d9831120863cb6abf3b5147
27c99e4e07d323a330f6edbb23078a9f
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Manancial - Repositório Digital da UFSM - Universidade Federal de Santa Maria (UFSM)
repository.mail.fl_str_mv
_version_ 1801223775139659776