Bis(alquilaril, aril)piridina-2,6-dicarboxiamidas: estrutura molecular, supramolecular e polimorfismo

Detalhes bibliográficos
Autor(a) principal: Rosa, Jéssica Maria Luis
Data de Publicação: 2020
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Repositório Institucional Manancial UFSM
Texto Completo: http://repositorio.ufsm.br/handle/1/23003
Resumo: This work presents the study of intermolecular interactions and the molecular association process of bis (alkylaryl, aryl) pyridine-2,6-dicarboxamides, where the alkylaryl substitutes are (1) 2,2-diphenylethyl, (2) phenylethyl and (3) benzyl, and the aryl substitutes are (4) 4-fluorophenyl, (5) 4-chlorophenyl and (6) 4-bromophenyl, as well as the compound bis(2-2,diphenylethyl)isophthalamide (7). The supramolecular cluster, consisting of a central molecule and the molecules that make up the first sphere of molecular coordination, was used as a study demarcation. The pyridine-2,6-dicarboxamides 1-6 adopted a curved conformation, with the N-H groups facing inwards, while compound 7 presented a linear conformation. Bis(2,2-diphenylethyl)pyridine-2,6-dicarboxamide (1) crystallized as three conformational polymorphs. X-ray diffraction data showed that compound 2 is also a hydrate. The molecular overlays of the central part (CH – CH2 – NH – C (O) –2 – py – 6 – C (O) –NH – CH2 – CH) between the polymorphs of compound 1 indicated a greater molecular similarity between 1II and 1III. Calculations of the molecular stabilization energy carried out for polymorphs 1I-III indicated that polymorph 1II has a conformation of almost 22 Kcal mol-1 less stable than polymorph 1I, while polymorph 1III is 6 Kcal mol-1 less stable than polymorph 1I. Analyzing supramolecular stabilization energy data for the polymorphs, the highest total stabilization energy value was presented for compound 1II. Regarding the polymorphs, a crystalline packaging efficiency of 0.864 was observed for compound 1I and 0.874 for compound 1II. Compound 1III has the lowest packaging efficiency (0.811). According to the crystallization mechanisms proposed for compounds 1I-II and 3-6, there is a preference for stacking through amides, which form hydrogen bonds. Compounds 1III and 7 form blocks with preferential growth in two directions. Compound 2 forms dimers in the first crystallization stage, presenting the sum of the normalized energy contributions and contact area (NCG%) equal to 19 in this stage. Compound 7 stands out for presenting NCG% = 78 in the first stage. For compounds 1I-III and 3-6, the first crystallization stage has NCG% around 50. The alkylaryl and aryl substitutes are relevant at the end of the crystallization process, where the geometric parameter usually dominates. The ¹H NMR experiments in solution with concentration variation performed for compounds 1 and 7 detected intermolecular interactions N-H ∙∙∙ O = C and C-H ∙∙∙ π, which can be correlated with the respective crystallization mechanisms. From the analysis of the topological and energetic data, the formation of hydrates 1I-III and 2 was attributed to the presence of the amide groups together with the pyridinic nitrogen, interacting with the solvent molecule through hydrogen bonds. The occurrence of polymorphs for compound 1 was attributed to the possibility of different conformations for the molecule, enabling the formation of different intermolecular interactions. For compounds 1I-III and 2, it was observed that the water is positioned in the cavity formed by the other molecules and, therefore, they should not be evaluated in isolation.
id UFSM-20_be10c653aa984664b2c7b5842c5f484d
oai_identifier_str oai:repositorio.ufsm.br:1/23003
network_acronym_str UFSM-20
network_name_str Repositório Institucional Manancial UFSM
repository_id_str 3913
spelling 2021-11-26T12:49:50Z2021-11-26T12:49:50Z2020-03-02http://repositorio.ufsm.br/handle/1/23003This work presents the study of intermolecular interactions and the molecular association process of bis (alkylaryl, aryl) pyridine-2,6-dicarboxamides, where the alkylaryl substitutes are (1) 2,2-diphenylethyl, (2) phenylethyl and (3) benzyl, and the aryl substitutes are (4) 4-fluorophenyl, (5) 4-chlorophenyl and (6) 4-bromophenyl, as well as the compound bis(2-2,diphenylethyl)isophthalamide (7). The supramolecular cluster, consisting of a central molecule and the molecules that make up the first sphere of molecular coordination, was used as a study demarcation. The pyridine-2,6-dicarboxamides 1-6 adopted a curved conformation, with the N-H groups facing inwards, while compound 7 presented a linear conformation. Bis(2,2-diphenylethyl)pyridine-2,6-dicarboxamide (1) crystallized as three conformational polymorphs. X-ray diffraction data showed that compound 2 is also a hydrate. The molecular overlays of the central part (CH – CH2 – NH – C (O) –2 – py – 6 – C (O) –NH – CH2 – CH) between the polymorphs of compound 1 indicated a greater molecular similarity between 1II and 1III. Calculations of the molecular stabilization energy carried out for polymorphs 1I-III indicated that polymorph 1II has a conformation of almost 22 Kcal mol-1 less stable than polymorph 1I, while polymorph 1III is 6 Kcal mol-1 less stable than polymorph 1I. Analyzing supramolecular stabilization energy data for the polymorphs, the highest total stabilization energy value was presented for compound 1II. Regarding the polymorphs, a crystalline packaging efficiency of 0.864 was observed for compound 1I and 0.874 for compound 1II. Compound 1III has the lowest packaging efficiency (0.811). According to the crystallization mechanisms proposed for compounds 1I-II and 3-6, there is a preference for stacking through amides, which form hydrogen bonds. Compounds 1III and 7 form blocks with preferential growth in two directions. Compound 2 forms dimers in the first crystallization stage, presenting the sum of the normalized energy contributions and contact area (NCG%) equal to 19 in this stage. Compound 7 stands out for presenting NCG% = 78 in the first stage. For compounds 1I-III and 3-6, the first crystallization stage has NCG% around 50. The alkylaryl and aryl substitutes are relevant at the end of the crystallization process, where the geometric parameter usually dominates. The ¹H NMR experiments in solution with concentration variation performed for compounds 1 and 7 detected intermolecular interactions N-H ∙∙∙ O = C and C-H ∙∙∙ π, which can be correlated with the respective crystallization mechanisms. From the analysis of the topological and energetic data, the formation of hydrates 1I-III and 2 was attributed to the presence of the amide groups together with the pyridinic nitrogen, interacting with the solvent molecule through hydrogen bonds. The occurrence of polymorphs for compound 1 was attributed to the possibility of different conformations for the molecule, enabling the formation of different intermolecular interactions. For compounds 1I-III and 2, it was observed that the water is positioned in the cavity formed by the other molecules and, therefore, they should not be evaluated in isolation.Este trabalho apresenta o estudo das interações intermoleculares e o processo de associação molecular das bis(alquilaril, aril)piridina-2,6-dicarboxamidas, onde os substituíntes alquilaril são (1) 2,2-difeniletil, (2) feniletil e (3) benzil, e os substituíntes aril são (4) 4-fluorofenil, (5) 4-clorofenil e (6) 4-bromofenil, assim como o composto bis(2-2,difeniletil)isoftalamida (7). O cluster supramolecular, constituído por uma molécula central e as moléculas que compõem a primeira esfera de coordenação molecular, foi utilizado como demarcação de estudo. As piridina-2,6-dicarboxamidas 1-6 adotaram uma conformação curva, com os grupos NH voltados para a parte interna, enquanto que o composto (7) apresentou uma conformação linear. A bis(2,2-difeniletil)piridina-2,6-dicarboxamida (1) cristalizou na forma de três polimorfos conformacionais. Dados de difração de raios X mostraram que o composto 2 também é um hidrato. As sobreposições moleculares da parte central (CH–CH2–NH–C(O)–2–py–6–C(O)–NH–CH2–CH) entre os polimorfos do composto 1 indicaram maior semelhança molecular entre 1II e 1III. Cálculos da energia de estabilização molecular realizados para os polimorfos 1I-III indicaram que o polimorfo 1II tem uma conformação de quase 22 Kcal mol-1 menos estável que o polimorfo 1I, enquanto o polimorfo 1III é 6 Kcal mol-1 menos estável que o polimorfo 1I. Analisando dados de energia de estabilização supramolecular para os polimorfos, o composto 1II apresentou o maior valor total de energia de estabilização. Em relação aos polimorfos, foi observada uma eficiência do empacotamento cristalino de 0,864 para o composto 1I e 0,874 para o composto 1II. O composto 1III tem a menor eficiência de empacotamento (0,811). De acordo com os mecanismos de cristalização propostos para os compostos 1I-II e 3-6, há uma preferência pelo empilhamento através das amidas, que formam ligações de hidrogênio. Os compostos 1III e 7 formam blocos com crescimento preferencial em duas direções. O composto 2 forma dímeros no primeiro estágio de cristalização, apresentando a soma das contribuições de energia e área de contato normalizadas (NCG%) igual a 19 neste estágio. O composto 7 se destaca por apresentar NCG% = 78 no primeiro estágio. Para os compostos 1I-III e 3-6, o primeiro estágio de cristalização possui NCG% em torno de 50. Os substituíntes alquilaril e aril são relevantes ao final do processo de cristalização, onde o parâmetro geométrico geralmente domina. Os experimentos de RMN de ¹H em solução com variação de concentração realizados para os compostos 1 e 7 detectaram interações intermoleculares N-H∙∙∙O=C e C-H∙∙∙π, podendo ser correlacionadas com os respectivos mecanismos de cristalização. A partir da análise dos dados topológicos e energéticos, a formação dos hidratos 1I-III e 2 foi atribuída à presença dos grupos amida juntamente com o nitrogênio piridínico, interagindo com a molécula do solvente através de ligações de hidrogênio. A ocorrência dos polimorfos para o composto 1 foi atribuída à possibilidade de diferentes conformações para a molécula, possibilitanto a formação de diferentes interações intermoleculares. Para os compostos 1I-III e 2, foi observado que a água está localizada na cavidade formada pelas outras moléculas e, portanto, estas não devem ser avaliadas isoladamente.Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPESConselho Nacional de Pesquisa e Desenvolvimento Científico e Tecnológico - CNPqporUniversidade Federal de Santa MariaCentro de Ciências Naturais e ExatasPrograma de Pós-Graduação em QuímicaUFSMBrasilQuímicaAttribution-NonCommercial-NoDerivatives 4.0 Internationalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessEngenharia de cristaisCluster supramolecularPolimorfosHidratosCristalizaçãoCrystal engineeringSupramolecular clusterPolymorphsHydratesCrystallizationCNPQ::CIENCIAS EXATAS E DA TERRA::QUIMICABis(alquilaril, aril)piridina-2,6-dicarboxiamidas: estrutura molecular, supramolecular e polimorfismoBis(alkylaryl, aryl)pyridine-2,6-dicarboxyamides: molecular, supramolecular structure and polymorphisminfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisMartins, Marcos Antonio Pintohttp://lattes.cnpq.br/6457412713967642Hörner, ManfredoFiss, Gabriela Fehnhttp://lattes.cnpq.br/7576749712683442Rosa, Jéssica Maria Luis100600000000600600600600600c28419d9-6027-4f9c-acd2-76e8067a85d17b659cb1-da15-48cd-abf4-bb4fd9931f1734252cc3-b6c0-4876-9bb6-6020475d2214dea8c68c-cf04-46ff-bbf0-a9d1fe9003b8reponame:Repositório Institucional Manancial UFSMinstname:Universidade Federal de Santa Maria (UFSM)instacron:UFSMORIGINALDIS_PPGQUIMICA_2020_ROSA_JESSICA.pdfDIS_PPGQUIMICA_2020_ROSA_JESSICA.pdfDissertaçãoapplication/pdf7195710http://repositorio.ufsm.br/bitstream/1/23003/1/DIS_PPGQUIMICA_2020_ROSA_JESSICA.pdf63fa50edaf72a323c63aa4d7038fd09dMD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805http://repositorio.ufsm.br/bitstream/1/23003/2/license_rdf4460e5956bc1d1639be9ae6146a50347MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-81956http://repositorio.ufsm.br/bitstream/1/23003/3/license.txt2f0571ecee68693bd5cd3f17c1e075dfMD53TEXTDIS_PPGQUIMICA_2020_ROSA_JESSICA.pdf.txtDIS_PPGQUIMICA_2020_ROSA_JESSICA.pdf.txtExtracted texttext/plain143624http://repositorio.ufsm.br/bitstream/1/23003/4/DIS_PPGQUIMICA_2020_ROSA_JESSICA.pdf.txtca68c6833c79032f2f690683d102953aMD54THUMBNAILDIS_PPGQUIMICA_2020_ROSA_JESSICA.pdf.jpgDIS_PPGQUIMICA_2020_ROSA_JESSICA.pdf.jpgIM Thumbnailimage/jpeg4360http://repositorio.ufsm.br/bitstream/1/23003/5/DIS_PPGQUIMICA_2020_ROSA_JESSICA.pdf.jpg56b21961d189149831e71225027b13b6MD551/230032021-11-27 03:03:19.818oai:repositorio.ufsm.br:1/23003TElDRU7Dh0EgREUgRElTVFJJQlVJw4fDg08gTsODTy1FWENMVVNJVkEKCkNvbSBhIGFwcmVzZW50YcOnw6NvIGRlc3RhIGxpY2Vuw6dhLCB2b2PDqiAobyBhdXRvciAoZXMpIG91IG8gdGl0dWxhciBkb3MgZGlyZWl0b3MgZGUgYXV0b3IpIGNvbmNlZGUgw6AgVW5pdmVyc2lkYWRlCkZlZGVyYWwgZGUgU2FudGEgTWFyaWEgKFVGU00pIG8gZGlyZWl0byBuw6NvLWV4Y2x1c2l2byBkZSByZXByb2R1emlyLCAgdHJhZHV6aXIgKGNvbmZvcm1lIGRlZmluaWRvIGFiYWl4byksIGUvb3UKZGlzdHJpYnVpciBhIHN1YSB0ZXNlIG91IGRpc3NlcnRhw6fDo28gKGluY2x1aW5kbyBvIHJlc3VtbykgcG9yIHRvZG8gbyBtdW5kbyBubyBmb3JtYXRvIGltcHJlc3NvIGUgZWxldHLDtG5pY28gZQplbSBxdWFscXVlciBtZWlvLCBpbmNsdWluZG8gb3MgZm9ybWF0b3Mgw6F1ZGlvIG91IHbDrWRlby4KClZvY8OqIGNvbmNvcmRhIHF1ZSBhIFVGU00gcG9kZSwgc2VtIGFsdGVyYXIgbyBjb250ZcO6ZG8sIHRyYW5zcG9yIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbwpwYXJhIHF1YWxxdWVyIG1laW8gb3UgZm9ybWF0byBwYXJhIGZpbnMgZGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIHRhbWLDqW0gY29uY29yZGEgcXVlIGEgVUZTTSBwb2RlIG1hbnRlciBtYWlzIGRlIHVtYSBjw7NwaWEgYSBzdWEgdGVzZSBvdQpkaXNzZXJ0YcOnw6NvIHBhcmEgZmlucyBkZSBzZWd1cmFuw6dhLCBiYWNrLXVwIGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIGRlY2xhcmEgcXVlIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyDDqSBvcmlnaW5hbCBlIHF1ZSB2b2PDqiB0ZW0gbyBwb2RlciBkZSBjb25jZWRlciBvcyBkaXJlaXRvcyBjb250aWRvcwpuZXN0YSBsaWNlbsOnYS4gVm9jw6ogdGFtYsOpbSBkZWNsYXJhIHF1ZSBvIGRlcMOzc2l0byBkYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIG7Do28sIHF1ZSBzZWphIGRlIHNldQpjb25oZWNpbWVudG8sIGluZnJpbmdlIGRpcmVpdG9zIGF1dG9yYWlzIGRlIG5pbmd1w6ltLgoKQ2FzbyBhIHN1YSB0ZXNlIG91IGRpc3NlcnRhw6fDo28gY29udGVuaGEgbWF0ZXJpYWwgcXVlIHZvY8OqIG7Do28gcG9zc3VpIGEgdGl0dWxhcmlkYWRlIGRvcyBkaXJlaXRvcyBhdXRvcmFpcywgdm9jw6oKZGVjbGFyYSBxdWUgb2J0ZXZlIGEgcGVybWlzc8OjbyBpcnJlc3RyaXRhIGRvIGRldGVudG9yIGRvcyBkaXJlaXRvcyBhdXRvcmFpcyBwYXJhIGNvbmNlZGVyIMOgIFVGU00Kb3MgZGlyZWl0b3MgYXByZXNlbnRhZG9zIG5lc3RhIGxpY2Vuw6dhLCBlIHF1ZSBlc3NlIG1hdGVyaWFsIGRlIHByb3ByaWVkYWRlIGRlIHRlcmNlaXJvcyBlc3TDoSBjbGFyYW1lbnRlCmlkZW50aWZpY2FkbyBlIHJlY29uaGVjaWRvIG5vIHRleHRvIG91IG5vIGNvbnRlw7pkbyBkYSB0ZXNlIG91IGRpc3NlcnRhw6fDo28gb3JhIGRlcG9zaXRhZGEuCgpDQVNPIEEgVEVTRSBPVSBESVNTRVJUQcOHw4NPIE9SQSBERVBPU0lUQURBIFRFTkhBIFNJRE8gUkVTVUxUQURPIERFIFVNIFBBVFJPQ8ONTklPIE9VCkFQT0lPIERFIFVNQSBBR8OKTkNJQSBERSBGT01FTlRPIE9VIE9VVFJPIE9SR0FOSVNNTyBRVUUgTsODTyBTRUpBIEEgVUZTTQosIFZPQ8OKIERFQ0xBUkEgUVVFIFJFU1BFSVRPVSBUT0RPUyBFIFFVQUlTUVVFUiBESVJFSVRPUyBERSBSRVZJU8ODTyBDT01PClRBTULDiU0gQVMgREVNQUlTIE9CUklHQcOHw5VFUyBFWElHSURBUyBQT1IgQ09OVFJBVE8gT1UgQUNPUkRPLgoKQSBVRlNNIHNlIGNvbXByb21ldGUgYSBpZGVudGlmaWNhciBjbGFyYW1lbnRlIG8gc2V1IG5vbWUgKHMpIG91IG8ocykgbm9tZShzKSBkbyhzKQpkZXRlbnRvcihlcykgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIGRhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbywgZSBuw6NvIGZhcsOhIHF1YWxxdWVyIGFsdGVyYcOnw6NvLCBhbMOpbSBkYXF1ZWxhcwpjb25jZWRpZGFzIHBvciBlc3RhIGxpY2Vuw6dhLgoKRepositório Institucionalhttp://repositorio.ufsm.br/PUBhttp://repositorio.ufsm.br/oai/requestouvidoria@ufsm.bropendoar:39132021-11-27T06:03:19Repositório Institucional Manancial UFSM - Universidade Federal de Santa Maria (UFSM)false
dc.title.por.fl_str_mv Bis(alquilaril, aril)piridina-2,6-dicarboxiamidas: estrutura molecular, supramolecular e polimorfismo
dc.title.alternative.eng.fl_str_mv Bis(alkylaryl, aryl)pyridine-2,6-dicarboxyamides: molecular, supramolecular structure and polymorphism
title Bis(alquilaril, aril)piridina-2,6-dicarboxiamidas: estrutura molecular, supramolecular e polimorfismo
spellingShingle Bis(alquilaril, aril)piridina-2,6-dicarboxiamidas: estrutura molecular, supramolecular e polimorfismo
Rosa, Jéssica Maria Luis
Engenharia de cristais
Cluster supramolecular
Polimorfos
Hidratos
Cristalização
Crystal engineering
Supramolecular cluster
Polymorphs
Hydrates
Crystallization
CNPQ::CIENCIAS EXATAS E DA TERRA::QUIMICA
title_short Bis(alquilaril, aril)piridina-2,6-dicarboxiamidas: estrutura molecular, supramolecular e polimorfismo
title_full Bis(alquilaril, aril)piridina-2,6-dicarboxiamidas: estrutura molecular, supramolecular e polimorfismo
title_fullStr Bis(alquilaril, aril)piridina-2,6-dicarboxiamidas: estrutura molecular, supramolecular e polimorfismo
title_full_unstemmed Bis(alquilaril, aril)piridina-2,6-dicarboxiamidas: estrutura molecular, supramolecular e polimorfismo
title_sort Bis(alquilaril, aril)piridina-2,6-dicarboxiamidas: estrutura molecular, supramolecular e polimorfismo
author Rosa, Jéssica Maria Luis
author_facet Rosa, Jéssica Maria Luis
author_role author
dc.contributor.advisor1.fl_str_mv Martins, Marcos Antonio Pinto
dc.contributor.advisor1Lattes.fl_str_mv http://lattes.cnpq.br/6457412713967642
dc.contributor.referee1.fl_str_mv Hörner, Manfredo
dc.contributor.referee2.fl_str_mv Fiss, Gabriela Fehn
dc.contributor.authorLattes.fl_str_mv http://lattes.cnpq.br/7576749712683442
dc.contributor.author.fl_str_mv Rosa, Jéssica Maria Luis
contributor_str_mv Martins, Marcos Antonio Pinto
Hörner, Manfredo
Fiss, Gabriela Fehn
dc.subject.por.fl_str_mv Engenharia de cristais
Cluster supramolecular
Polimorfos
Hidratos
Cristalização
topic Engenharia de cristais
Cluster supramolecular
Polimorfos
Hidratos
Cristalização
Crystal engineering
Supramolecular cluster
Polymorphs
Hydrates
Crystallization
CNPQ::CIENCIAS EXATAS E DA TERRA::QUIMICA
dc.subject.eng.fl_str_mv Crystal engineering
Supramolecular cluster
Polymorphs
Hydrates
Crystallization
dc.subject.cnpq.fl_str_mv CNPQ::CIENCIAS EXATAS E DA TERRA::QUIMICA
description This work presents the study of intermolecular interactions and the molecular association process of bis (alkylaryl, aryl) pyridine-2,6-dicarboxamides, where the alkylaryl substitutes are (1) 2,2-diphenylethyl, (2) phenylethyl and (3) benzyl, and the aryl substitutes are (4) 4-fluorophenyl, (5) 4-chlorophenyl and (6) 4-bromophenyl, as well as the compound bis(2-2,diphenylethyl)isophthalamide (7). The supramolecular cluster, consisting of a central molecule and the molecules that make up the first sphere of molecular coordination, was used as a study demarcation. The pyridine-2,6-dicarboxamides 1-6 adopted a curved conformation, with the N-H groups facing inwards, while compound 7 presented a linear conformation. Bis(2,2-diphenylethyl)pyridine-2,6-dicarboxamide (1) crystallized as three conformational polymorphs. X-ray diffraction data showed that compound 2 is also a hydrate. The molecular overlays of the central part (CH – CH2 – NH – C (O) –2 – py – 6 – C (O) –NH – CH2 – CH) between the polymorphs of compound 1 indicated a greater molecular similarity between 1II and 1III. Calculations of the molecular stabilization energy carried out for polymorphs 1I-III indicated that polymorph 1II has a conformation of almost 22 Kcal mol-1 less stable than polymorph 1I, while polymorph 1III is 6 Kcal mol-1 less stable than polymorph 1I. Analyzing supramolecular stabilization energy data for the polymorphs, the highest total stabilization energy value was presented for compound 1II. Regarding the polymorphs, a crystalline packaging efficiency of 0.864 was observed for compound 1I and 0.874 for compound 1II. Compound 1III has the lowest packaging efficiency (0.811). According to the crystallization mechanisms proposed for compounds 1I-II and 3-6, there is a preference for stacking through amides, which form hydrogen bonds. Compounds 1III and 7 form blocks with preferential growth in two directions. Compound 2 forms dimers in the first crystallization stage, presenting the sum of the normalized energy contributions and contact area (NCG%) equal to 19 in this stage. Compound 7 stands out for presenting NCG% = 78 in the first stage. For compounds 1I-III and 3-6, the first crystallization stage has NCG% around 50. The alkylaryl and aryl substitutes are relevant at the end of the crystallization process, where the geometric parameter usually dominates. The ¹H NMR experiments in solution with concentration variation performed for compounds 1 and 7 detected intermolecular interactions N-H ∙∙∙ O = C and C-H ∙∙∙ π, which can be correlated with the respective crystallization mechanisms. From the analysis of the topological and energetic data, the formation of hydrates 1I-III and 2 was attributed to the presence of the amide groups together with the pyridinic nitrogen, interacting with the solvent molecule through hydrogen bonds. The occurrence of polymorphs for compound 1 was attributed to the possibility of different conformations for the molecule, enabling the formation of different intermolecular interactions. For compounds 1I-III and 2, it was observed that the water is positioned in the cavity formed by the other molecules and, therefore, they should not be evaluated in isolation.
publishDate 2020
dc.date.issued.fl_str_mv 2020-03-02
dc.date.accessioned.fl_str_mv 2021-11-26T12:49:50Z
dc.date.available.fl_str_mv 2021-11-26T12:49:50Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://repositorio.ufsm.br/handle/1/23003
url http://repositorio.ufsm.br/handle/1/23003
dc.language.iso.fl_str_mv por
language por
dc.relation.cnpq.fl_str_mv 100600000000
dc.relation.confidence.fl_str_mv 600
600
600
600
600
dc.relation.authority.fl_str_mv c28419d9-6027-4f9c-acd2-76e8067a85d1
7b659cb1-da15-48cd-abf4-bb4fd9931f17
34252cc3-b6c0-4876-9bb6-6020475d2214
dea8c68c-cf04-46ff-bbf0-a9d1fe9003b8
dc.rights.driver.fl_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International
http://creativecommons.org/licenses/by-nc-nd/4.0/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International
http://creativecommons.org/licenses/by-nc-nd/4.0/
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Universidade Federal de Santa Maria
Centro de Ciências Naturais e Exatas
dc.publisher.program.fl_str_mv Programa de Pós-Graduação em Química
dc.publisher.initials.fl_str_mv UFSM
dc.publisher.country.fl_str_mv Brasil
dc.publisher.department.fl_str_mv Química
publisher.none.fl_str_mv Universidade Federal de Santa Maria
Centro de Ciências Naturais e Exatas
dc.source.none.fl_str_mv reponame:Repositório Institucional Manancial UFSM
instname:Universidade Federal de Santa Maria (UFSM)
instacron:UFSM
instname_str Universidade Federal de Santa Maria (UFSM)
instacron_str UFSM
institution UFSM
reponame_str Repositório Institucional Manancial UFSM
collection Repositório Institucional Manancial UFSM
bitstream.url.fl_str_mv http://repositorio.ufsm.br/bitstream/1/23003/1/DIS_PPGQUIMICA_2020_ROSA_JESSICA.pdf
http://repositorio.ufsm.br/bitstream/1/23003/2/license_rdf
http://repositorio.ufsm.br/bitstream/1/23003/3/license.txt
http://repositorio.ufsm.br/bitstream/1/23003/4/DIS_PPGQUIMICA_2020_ROSA_JESSICA.pdf.txt
http://repositorio.ufsm.br/bitstream/1/23003/5/DIS_PPGQUIMICA_2020_ROSA_JESSICA.pdf.jpg
bitstream.checksum.fl_str_mv 63fa50edaf72a323c63aa4d7038fd09d
4460e5956bc1d1639be9ae6146a50347
2f0571ecee68693bd5cd3f17c1e075df
ca68c6833c79032f2f690683d102953a
56b21961d189149831e71225027b13b6
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional Manancial UFSM - Universidade Federal de Santa Maria (UFSM)
repository.mail.fl_str_mv ouvidoria@ufsm.br
_version_ 1808854722507964416