Métodos de atmosfera controlada dinâmica × 1-MCP: metabolismo e qualidade de maçãs armazenadas

Detalhes bibliográficos
Autor(a) principal: Thewes, Fabio Rodrigo
Data de Publicação: 2019
Tipo de documento: Tese
Idioma: por
Título da fonte: Manancial - Repositório Digital da UFSM
Texto Completo: http://repositorio.ufsm.br/handle/1/21704
Resumo: Lowering the O2 partial pressures to extremely low levels (< 0.5 kPa) during controlled atmosphere (CA) storage is becoming more and more usually in commercial rooms. However, lowering to much the O2 partial pressure can induce the anaerobic metabolism, with acetaldehyde and ethanol production, compounds that can induce physiological disorders and off-flavours, if in too high concentrations. Thus, to decrease the O2 partial pressure in a save way, it is necessary monitor the lowest O2 limit (LOL) in real time over the storage period, in order to set the O2 partial pressure according to fruit metabolism. This storage system in known as dynamic controlled atmosphere (DCA). Nowadays, there are three DCA methods available commercially: based on ethanol (DCA – EtOH), chlorophyll fluorescence (DCA – CF) and respiratory quotient (DCA – RQ). In this sense, at the present study were developed 5 papers aiming at: [1] evaluate the effect of CA, DCA – CF, DCA – RQ with two low oxygen stresses a week and it’s interaction with 1-MCP on the overall quality, volatile profile and expression of enzymes involved on volatile compounds synthesis; [2] study the effect of DCA – RQ storage on the dynamics of anaerobic metabolism and the induction of sugar-alcohols, such as sorbitol and glycerol, and its relationship with the membrane permeability of apples; [3] develop, calibrate and apply a novel DCA method based on CO2 production of fruit (DCA – CD) to estimate the LOL, aiming at maintain overall quality, enzyme activity, sugars, acids metabolism and the volatile compounds profile under DCA – CD. Furthermore, compare the storage under DCA – CD with DCA – CF, DCA – RQ and 1-MCP treatment. The storage of apples under DCA – RQ 1.5 with two low oxygen stresses a week resulted in fruit with lower ethylene production, higher physical and chemical quality, especially higher esters emission. This is a result of higher level of AAT enzymes genes expression (MdAAT1), even when fruit were treated with 1-MCP, showing that the expression of MdAAT1 genes are not ethylene dependent in fruit stored under DCA – RQ 1.5. Apple stored under DCA – CF had lower volatile accumulation due to lower precursors concentration and expression of enzymes involved in esters (MdAAT1), because reduces the aerobic respiration to a minimum level without the induction of anaerobic metabolism. The storage of apples under DCA – RQ resulted in anaerobic metabolism, accumulating acetaldehyde, ethanol and inducing sorbitol accumulation, decreasing the membrane permeability even under low O2 stress condition. The LOL determination can be performed, in real time, over the storage period by the CO2 production only (DCA – CD). This method allows the O2 set point determination in a dynamic way for several apple cultivars, orchards, without and with 1-MCP treatment, harvest maturity and storage temperature. Apples storage under DCA – CD resulted in similar O2 set points and quality maintenance as compared to DCA – RQ and higher as compared to CA, CA + 1-MCP and DCA – CF, because reduced decay and physiological disorders, maintained higher firmness and healthy fruit amount. Fruit stored under DCA with extremely low oxygen had higher main ester concentration, such as butyl acetate, 2-methylbutyl acetate and hexyl acetate. CA and DCA had no effect on malate concentration, being its concentration more affected by storage time. The Krebs cycle minority acids are significantly affected by the DCA conditions, being its concentration reduced by the storage under low oxygen storage (DCA – RQ 1.5 and DCA – CD 1.3). In general terms, the best long-term apple storage conditions follow this order: DCA – CD = DCA – RQ > DCA – CF = CA + 1-MCP > CA.
id UFSM-20_d1d1dc850268bc7674c995dc7e2356bf
oai_identifier_str oai:repositorio.ufsm.br:1/21704
network_acronym_str UFSM-20
network_name_str Manancial - Repositório Digital da UFSM
repository_id_str 3913
spelling 2021-08-03T17:34:43Z2021-08-03T17:34:43Z2019-12-18http://repositorio.ufsm.br/handle/1/21704Lowering the O2 partial pressures to extremely low levels (< 0.5 kPa) during controlled atmosphere (CA) storage is becoming more and more usually in commercial rooms. However, lowering to much the O2 partial pressure can induce the anaerobic metabolism, with acetaldehyde and ethanol production, compounds that can induce physiological disorders and off-flavours, if in too high concentrations. Thus, to decrease the O2 partial pressure in a save way, it is necessary monitor the lowest O2 limit (LOL) in real time over the storage period, in order to set the O2 partial pressure according to fruit metabolism. This storage system in known as dynamic controlled atmosphere (DCA). Nowadays, there are three DCA methods available commercially: based on ethanol (DCA – EtOH), chlorophyll fluorescence (DCA – CF) and respiratory quotient (DCA – RQ). In this sense, at the present study were developed 5 papers aiming at: [1] evaluate the effect of CA, DCA – CF, DCA – RQ with two low oxygen stresses a week and it’s interaction with 1-MCP on the overall quality, volatile profile and expression of enzymes involved on volatile compounds synthesis; [2] study the effect of DCA – RQ storage on the dynamics of anaerobic metabolism and the induction of sugar-alcohols, such as sorbitol and glycerol, and its relationship with the membrane permeability of apples; [3] develop, calibrate and apply a novel DCA method based on CO2 production of fruit (DCA – CD) to estimate the LOL, aiming at maintain overall quality, enzyme activity, sugars, acids metabolism and the volatile compounds profile under DCA – CD. Furthermore, compare the storage under DCA – CD with DCA – CF, DCA – RQ and 1-MCP treatment. The storage of apples under DCA – RQ 1.5 with two low oxygen stresses a week resulted in fruit with lower ethylene production, higher physical and chemical quality, especially higher esters emission. This is a result of higher level of AAT enzymes genes expression (MdAAT1), even when fruit were treated with 1-MCP, showing that the expression of MdAAT1 genes are not ethylene dependent in fruit stored under DCA – RQ 1.5. Apple stored under DCA – CF had lower volatile accumulation due to lower precursors concentration and expression of enzymes involved in esters (MdAAT1), because reduces the aerobic respiration to a minimum level without the induction of anaerobic metabolism. The storage of apples under DCA – RQ resulted in anaerobic metabolism, accumulating acetaldehyde, ethanol and inducing sorbitol accumulation, decreasing the membrane permeability even under low O2 stress condition. The LOL determination can be performed, in real time, over the storage period by the CO2 production only (DCA – CD). This method allows the O2 set point determination in a dynamic way for several apple cultivars, orchards, without and with 1-MCP treatment, harvest maturity and storage temperature. Apples storage under DCA – CD resulted in similar O2 set points and quality maintenance as compared to DCA – RQ and higher as compared to CA, CA + 1-MCP and DCA – CF, because reduced decay and physiological disorders, maintained higher firmness and healthy fruit amount. Fruit stored under DCA with extremely low oxygen had higher main ester concentration, such as butyl acetate, 2-methylbutyl acetate and hexyl acetate. CA and DCA had no effect on malate concentration, being its concentration more affected by storage time. The Krebs cycle minority acids are significantly affected by the DCA conditions, being its concentration reduced by the storage under low oxygen storage (DCA – RQ 1.5 and DCA – CD 1.3). In general terms, the best long-term apple storage conditions follow this order: DCA – CD = DCA – RQ > DCA – CF = CA + 1-MCP > CA.A redução da pressão parcial de O2 a níveis extremamente baixos (< 0,5 kPa) durante armazenamento em atmosfera controlada (AC) está sendo cada vez mais empregado comercialmente. Contudo, pressões parciais de O2 excessivamente baixas podem induzir o metabolismo anaeróbico, com produção de acetaldeído e etanol, os quais em excesso podem causar distúrbios fisiológicos e off-flavours. Assim, para reduzir a pressão parcial de O2 de maneira segura durante o armazenamento, é necessário o monitoramento do limite mínimo de O2 (LMO) em tempo real para adequar a pressão parcial de O2 ao metabolismo das frutas. Esse sistema de armazenamento é conhecido como atmosfera controlada dinâmica (ACD). Atualmente, estão disponíveis comercialmente três métodos de ACD, baseados no etanol (ACD – EtOH), fluorescência de clorofilas (ACD – FC) e quociente respiratório (ACD – QR). Nesse sentido, no presente trabalho foram desenvolvidos 5 artigos científicos com os objetivos de: [1] avaliar o efeito do armazenamento em AC, ACD – FC, ACD – QR com dois estresses múltiplos de baixo O2 por semana e sua interação com 1-MCP sobre a qualidade, perfil volátil e expressão de enzimas relacionadas à síntese de compostos voláteis; [2] estudar o efeito do armazenamento em ACD – QR sobre a dinâmica do metabolismo anaeróbico e indução de açúcares-álcoois, como sorbitol e glicerol, e sua relação com a permeabilidade da membrana celular em maçãs e [3] desenvolver, calibrar e aplicar um novo método de ACD, baseado na produção de CO2 das frutas (ACD – DC), para estimar o LMO, visando manter a qualidade, avaliar a atividade de enzimas, metabolismo de açúcares e de ácidos e o perfil volátil de maçãs armazenadas em ACD – DC, além disso, comparar o armazenamento em ACD-DC com os métodos de ACD – FC, ACD – QR e aplicação de 1-MCP. O armazenamento de maçãs em ACD – QR 1,5 com dois estresses de baixo O2 por semana resulta em frutas com menor produção de etileno, maior qualidade físico-química, especialmente maior emissão de ésteres. Isso é resultado da maior expressão de genes codificadores da enzima AAT (MdAAT1), mesmo em frutas tratadas com 1-MCP, evidenciando que a expressão dos genes que codificam a enzima AAT (MdAAT1) não são dependentes de etileno quando as frutas são armazenadas em ACD – QR 1,5. Maçãs armazenadas ACD – FC tem menor acúmulo de voláteis em função da menor produção de precursores e expressão de enzimas importantes para a síntese destes compostos (MdAAT1), pois reduz a níveis mínimos o metabolismo aeróbico sem induzir o metabolismo anaeróbico. O armazenamento de maçãs em ACD – QR resulta na indução do metabolismo anaeróbico, acumulando acetaldeído e etanol, porém, também induz o acúmulo de sorbitol, reduzindo a permeabilidade de membrana mesmo em condições de estresse por baixo O2. A determinação do LMO pode ser realizada de maneira precisa e em tempo real durante todo o período de armazenamento apenas pela determinação da produção de CO2 (ACD – DC). O que permite a determinação do set point de O2 da câmara de maneira dinâmica para várias cultivares de maçãs, locais de cultivo, com ou sem aplicação de 1-MCP, estádio de maturação e temperatura de armazenamento. Maçãs armazenadas em ACD – DC resultam em set points de O2 e manutenção da qualidade similar àquelas armazenadas em ACD – QR e qualidade superior àquelas armazenadas em AC, AC + 1-MCP e ACD – FC, em função da redução da incidência de podridões e distúrbios fisiológicos, manutenção de maior firmeza de polpa e proporção de frutos sadios. Frutas armazenadas em ACD com concentrações extremamente baixas de O2 também apresentam maior concentração de ésteres importantes para o aroma de maçãs, como acetato de butila, acetato de 2-metilbutila e acetato de hexila. As condições de AC e ACD não apresentam efeito no acúmulo de malato, sendo a sua concentração mais afetada pelo tempo de armazenamento. Os ácidos minoritários do ciclo de Krebs são os mais influenciados pelo armazenamento em ACD, sendo a sua concentração reduzida quando as maçãs são armazenadas nas menores pressões parciais de O2 (ACD – QR 1,5 e ACD – DC 1,3). De uma maneira geral, as melhores condições de armazenamento de maçãs por longos períodos segue a seguinte ordem: ACD – DC = ACD – QR > ACD – FC = AC + 1-MCP > AC.Conselho Nacional de Pesquisa e Desenvolvimento Científico e Tecnológico - CNPqporUniversidade Federal de Santa MariaCentro de Ciências RuraisPrograma de Pós-Graduação em AgronomiaUFSMBrasilAgronomiaAttribution-NonCommercial-NoDerivatives 4.0 Internationalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessMalus domesticaNovo método de ACDDesordens fisiológicasFirmeza de polpaMetabolismo anaeróbicoExpressão gênicaMetabolismo de ácidosSorbitolNew DCA methodPhysiological disordersFlesh firmnessAnaerobic metabolismGene expressionAcids metabolismCNPQ::CIENCIAS AGRARIAS::AGRONOMIAMétodos de atmosfera controlada dinâmica × 1-MCP: metabolismo e qualidade de maçãs armazenadasDynamic controlled atmosphere methods × 1-MCP: metabolism and quality of stored applesinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisBrackmann, Aurihttp://lattes.cnpq.br/1305840929832646Neuwald , Daniel AlexandreWeber, AndersonBoth, VanderleiWagner, Rogerhttp://lattes.cnpq.br/4571783385748736Thewes, Fabio Rodrigo500100000009600600600600600600600138ff5d6-1221-4258-86cc-aca3d85828a3c0e77a04-fa82-493c-a3cd-7aa09c7189a0b7c8bca3-829a-4e1d-8d42-e35a63b7768bd526374c-6498-412b-afb6-d7258439d37410fc8551-cc2b-4338-a4eb-8f5aed98d1c217536234-2395-4244-a37f-fcbfdb645545reponame:Manancial - Repositório Digital da UFSMinstname:Universidade Federal de Santa Maria (UFSM)instacron:UFSMORIGINALTES_PPGAGRONOMIA_2019_THEWES_FABIO.pdfTES_PPGAGRONOMIA_2019_THEWES_FABIO.pdfTeseapplication/pdf3023628http://repositorio.ufsm.br/bitstream/1/21704/1/TES_PPGAGRONOMIA_2019_THEWES_FABIO.pdfc452cd0dbafe19193b698d255a9de0d7MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805http://repositorio.ufsm.br/bitstream/1/21704/2/license_rdf4460e5956bc1d1639be9ae6146a50347MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-81956http://repositorio.ufsm.br/bitstream/1/21704/3/license.txt2f0571ecee68693bd5cd3f17c1e075dfMD53TEXTTES_PPGAGRONOMIA_2019_THEWES_FABIO.pdf.txtTES_PPGAGRONOMIA_2019_THEWES_FABIO.pdf.txtExtracted texttext/plain511204http://repositorio.ufsm.br/bitstream/1/21704/4/TES_PPGAGRONOMIA_2019_THEWES_FABIO.pdf.txt2c7e5367a65de2eaa5055ed96e86a397MD54THUMBNAILTES_PPGAGRONOMIA_2019_THEWES_FABIO.pdf.jpgTES_PPGAGRONOMIA_2019_THEWES_FABIO.pdf.jpgIM Thumbnailimage/jpeg4368http://repositorio.ufsm.br/bitstream/1/21704/5/TES_PPGAGRONOMIA_2019_THEWES_FABIO.pdf.jpg89093d9ab57f887a564ade213633f0f4MD551/217042021-08-04 03:02:58.28oai:repositorio.ufsm.br:1/21704TElDRU7Dh0EgREUgRElTVFJJQlVJw4fDg08gTsODTy1FWENMVVNJVkEKCkNvbSBhIGFwcmVzZW50YcOnw6NvIGRlc3RhIGxpY2Vuw6dhLCB2b2PDqiAobyBhdXRvciAoZXMpIG91IG8gdGl0dWxhciBkb3MgZGlyZWl0b3MgZGUgYXV0b3IpIGNvbmNlZGUgw6AgVW5pdmVyc2lkYWRlCkZlZGVyYWwgZGUgU2FudGEgTWFyaWEgKFVGU00pIG8gZGlyZWl0byBuw6NvLWV4Y2x1c2l2byBkZSByZXByb2R1emlyLCAgdHJhZHV6aXIgKGNvbmZvcm1lIGRlZmluaWRvIGFiYWl4byksIGUvb3UKZGlzdHJpYnVpciBhIHN1YSB0ZXNlIG91IGRpc3NlcnRhw6fDo28gKGluY2x1aW5kbyBvIHJlc3VtbykgcG9yIHRvZG8gbyBtdW5kbyBubyBmb3JtYXRvIGltcHJlc3NvIGUgZWxldHLDtG5pY28gZQplbSBxdWFscXVlciBtZWlvLCBpbmNsdWluZG8gb3MgZm9ybWF0b3Mgw6F1ZGlvIG91IHbDrWRlby4KClZvY8OqIGNvbmNvcmRhIHF1ZSBhIFVGU00gcG9kZSwgc2VtIGFsdGVyYXIgbyBjb250ZcO6ZG8sIHRyYW5zcG9yIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbwpwYXJhIHF1YWxxdWVyIG1laW8gb3UgZm9ybWF0byBwYXJhIGZpbnMgZGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIHRhbWLDqW0gY29uY29yZGEgcXVlIGEgVUZTTSBwb2RlIG1hbnRlciBtYWlzIGRlIHVtYSBjw7NwaWEgYSBzdWEgdGVzZSBvdQpkaXNzZXJ0YcOnw6NvIHBhcmEgZmlucyBkZSBzZWd1cmFuw6dhLCBiYWNrLXVwIGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIGRlY2xhcmEgcXVlIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyDDqSBvcmlnaW5hbCBlIHF1ZSB2b2PDqiB0ZW0gbyBwb2RlciBkZSBjb25jZWRlciBvcyBkaXJlaXRvcyBjb250aWRvcwpuZXN0YSBsaWNlbsOnYS4gVm9jw6ogdGFtYsOpbSBkZWNsYXJhIHF1ZSBvIGRlcMOzc2l0byBkYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIG7Do28sIHF1ZSBzZWphIGRlIHNldQpjb25oZWNpbWVudG8sIGluZnJpbmdlIGRpcmVpdG9zIGF1dG9yYWlzIGRlIG5pbmd1w6ltLgoKQ2FzbyBhIHN1YSB0ZXNlIG91IGRpc3NlcnRhw6fDo28gY29udGVuaGEgbWF0ZXJpYWwgcXVlIHZvY8OqIG7Do28gcG9zc3VpIGEgdGl0dWxhcmlkYWRlIGRvcyBkaXJlaXRvcyBhdXRvcmFpcywgdm9jw6oKZGVjbGFyYSBxdWUgb2J0ZXZlIGEgcGVybWlzc8OjbyBpcnJlc3RyaXRhIGRvIGRldGVudG9yIGRvcyBkaXJlaXRvcyBhdXRvcmFpcyBwYXJhIGNvbmNlZGVyIMOgIFVGU00Kb3MgZGlyZWl0b3MgYXByZXNlbnRhZG9zIG5lc3RhIGxpY2Vuw6dhLCBlIHF1ZSBlc3NlIG1hdGVyaWFsIGRlIHByb3ByaWVkYWRlIGRlIHRlcmNlaXJvcyBlc3TDoSBjbGFyYW1lbnRlCmlkZW50aWZpY2FkbyBlIHJlY29uaGVjaWRvIG5vIHRleHRvIG91IG5vIGNvbnRlw7pkbyBkYSB0ZXNlIG91IGRpc3NlcnRhw6fDo28gb3JhIGRlcG9zaXRhZGEuCgpDQVNPIEEgVEVTRSBPVSBESVNTRVJUQcOHw4NPIE9SQSBERVBPU0lUQURBIFRFTkhBIFNJRE8gUkVTVUxUQURPIERFIFVNIFBBVFJPQ8ONTklPIE9VCkFQT0lPIERFIFVNQSBBR8OKTkNJQSBERSBGT01FTlRPIE9VIE9VVFJPIE9SR0FOSVNNTyBRVUUgTsODTyBTRUpBIEEgVUZTTQosIFZPQ8OKIERFQ0xBUkEgUVVFIFJFU1BFSVRPVSBUT0RPUyBFIFFVQUlTUVVFUiBESVJFSVRPUyBERSBSRVZJU8ODTyBDT01PClRBTULDiU0gQVMgREVNQUlTIE9CUklHQcOHw5VFUyBFWElHSURBUyBQT1IgQ09OVFJBVE8gT1UgQUNPUkRPLgoKQSBVRlNNIHNlIGNvbXByb21ldGUgYSBpZGVudGlmaWNhciBjbGFyYW1lbnRlIG8gc2V1IG5vbWUgKHMpIG91IG8ocykgbm9tZShzKSBkbyhzKQpkZXRlbnRvcihlcykgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIGRhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbywgZSBuw6NvIGZhcsOhIHF1YWxxdWVyIGFsdGVyYcOnw6NvLCBhbMOpbSBkYXF1ZWxhcwpjb25jZWRpZGFzIHBvciBlc3RhIGxpY2Vuw6dhLgoKRepositório Institucionalhttp://repositorio.ufsm.br/PUBhttp://repositorio.ufsm.br/oai/requestopendoar:39132021-08-04T06:02:58Manancial - Repositório Digital da UFSM - Universidade Federal de Santa Maria (UFSM)false
dc.title.por.fl_str_mv Métodos de atmosfera controlada dinâmica × 1-MCP: metabolismo e qualidade de maçãs armazenadas
dc.title.alternative.eng.fl_str_mv Dynamic controlled atmosphere methods × 1-MCP: metabolism and quality of stored apples
title Métodos de atmosfera controlada dinâmica × 1-MCP: metabolismo e qualidade de maçãs armazenadas
spellingShingle Métodos de atmosfera controlada dinâmica × 1-MCP: metabolismo e qualidade de maçãs armazenadas
Thewes, Fabio Rodrigo
Malus domestica
Novo método de ACD
Desordens fisiológicas
Firmeza de polpa
Metabolismo anaeróbico
Expressão gênica
Metabolismo de ácidos
Sorbitol
New DCA method
Physiological disorders
Flesh firmness
Anaerobic metabolism
Gene expression
Acids metabolism
CNPQ::CIENCIAS AGRARIAS::AGRONOMIA
title_short Métodos de atmosfera controlada dinâmica × 1-MCP: metabolismo e qualidade de maçãs armazenadas
title_full Métodos de atmosfera controlada dinâmica × 1-MCP: metabolismo e qualidade de maçãs armazenadas
title_fullStr Métodos de atmosfera controlada dinâmica × 1-MCP: metabolismo e qualidade de maçãs armazenadas
title_full_unstemmed Métodos de atmosfera controlada dinâmica × 1-MCP: metabolismo e qualidade de maçãs armazenadas
title_sort Métodos de atmosfera controlada dinâmica × 1-MCP: metabolismo e qualidade de maçãs armazenadas
author Thewes, Fabio Rodrigo
author_facet Thewes, Fabio Rodrigo
author_role author
dc.contributor.advisor1.fl_str_mv Brackmann, Auri
dc.contributor.advisor1Lattes.fl_str_mv http://lattes.cnpq.br/1305840929832646
dc.contributor.referee1.fl_str_mv Neuwald , Daniel Alexandre
dc.contributor.referee2.fl_str_mv Weber, Anderson
dc.contributor.referee3.fl_str_mv Both, Vanderlei
dc.contributor.referee4.fl_str_mv Wagner, Roger
dc.contributor.authorLattes.fl_str_mv http://lattes.cnpq.br/4571783385748736
dc.contributor.author.fl_str_mv Thewes, Fabio Rodrigo
contributor_str_mv Brackmann, Auri
Neuwald , Daniel Alexandre
Weber, Anderson
Both, Vanderlei
Wagner, Roger
dc.subject.por.fl_str_mv Malus domestica
Novo método de ACD
Desordens fisiológicas
Firmeza de polpa
Metabolismo anaeróbico
Expressão gênica
Metabolismo de ácidos
Sorbitol
topic Malus domestica
Novo método de ACD
Desordens fisiológicas
Firmeza de polpa
Metabolismo anaeróbico
Expressão gênica
Metabolismo de ácidos
Sorbitol
New DCA method
Physiological disorders
Flesh firmness
Anaerobic metabolism
Gene expression
Acids metabolism
CNPQ::CIENCIAS AGRARIAS::AGRONOMIA
dc.subject.eng.fl_str_mv New DCA method
Physiological disorders
Flesh firmness
Anaerobic metabolism
Gene expression
Acids metabolism
dc.subject.cnpq.fl_str_mv CNPQ::CIENCIAS AGRARIAS::AGRONOMIA
description Lowering the O2 partial pressures to extremely low levels (< 0.5 kPa) during controlled atmosphere (CA) storage is becoming more and more usually in commercial rooms. However, lowering to much the O2 partial pressure can induce the anaerobic metabolism, with acetaldehyde and ethanol production, compounds that can induce physiological disorders and off-flavours, if in too high concentrations. Thus, to decrease the O2 partial pressure in a save way, it is necessary monitor the lowest O2 limit (LOL) in real time over the storage period, in order to set the O2 partial pressure according to fruit metabolism. This storage system in known as dynamic controlled atmosphere (DCA). Nowadays, there are three DCA methods available commercially: based on ethanol (DCA – EtOH), chlorophyll fluorescence (DCA – CF) and respiratory quotient (DCA – RQ). In this sense, at the present study were developed 5 papers aiming at: [1] evaluate the effect of CA, DCA – CF, DCA – RQ with two low oxygen stresses a week and it’s interaction with 1-MCP on the overall quality, volatile profile and expression of enzymes involved on volatile compounds synthesis; [2] study the effect of DCA – RQ storage on the dynamics of anaerobic metabolism and the induction of sugar-alcohols, such as sorbitol and glycerol, and its relationship with the membrane permeability of apples; [3] develop, calibrate and apply a novel DCA method based on CO2 production of fruit (DCA – CD) to estimate the LOL, aiming at maintain overall quality, enzyme activity, sugars, acids metabolism and the volatile compounds profile under DCA – CD. Furthermore, compare the storage under DCA – CD with DCA – CF, DCA – RQ and 1-MCP treatment. The storage of apples under DCA – RQ 1.5 with two low oxygen stresses a week resulted in fruit with lower ethylene production, higher physical and chemical quality, especially higher esters emission. This is a result of higher level of AAT enzymes genes expression (MdAAT1), even when fruit were treated with 1-MCP, showing that the expression of MdAAT1 genes are not ethylene dependent in fruit stored under DCA – RQ 1.5. Apple stored under DCA – CF had lower volatile accumulation due to lower precursors concentration and expression of enzymes involved in esters (MdAAT1), because reduces the aerobic respiration to a minimum level without the induction of anaerobic metabolism. The storage of apples under DCA – RQ resulted in anaerobic metabolism, accumulating acetaldehyde, ethanol and inducing sorbitol accumulation, decreasing the membrane permeability even under low O2 stress condition. The LOL determination can be performed, in real time, over the storage period by the CO2 production only (DCA – CD). This method allows the O2 set point determination in a dynamic way for several apple cultivars, orchards, without and with 1-MCP treatment, harvest maturity and storage temperature. Apples storage under DCA – CD resulted in similar O2 set points and quality maintenance as compared to DCA – RQ and higher as compared to CA, CA + 1-MCP and DCA – CF, because reduced decay and physiological disorders, maintained higher firmness and healthy fruit amount. Fruit stored under DCA with extremely low oxygen had higher main ester concentration, such as butyl acetate, 2-methylbutyl acetate and hexyl acetate. CA and DCA had no effect on malate concentration, being its concentration more affected by storage time. The Krebs cycle minority acids are significantly affected by the DCA conditions, being its concentration reduced by the storage under low oxygen storage (DCA – RQ 1.5 and DCA – CD 1.3). In general terms, the best long-term apple storage conditions follow this order: DCA – CD = DCA – RQ > DCA – CF = CA + 1-MCP > CA.
publishDate 2019
dc.date.issued.fl_str_mv 2019-12-18
dc.date.accessioned.fl_str_mv 2021-08-03T17:34:43Z
dc.date.available.fl_str_mv 2021-08-03T17:34:43Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://repositorio.ufsm.br/handle/1/21704
url http://repositorio.ufsm.br/handle/1/21704
dc.language.iso.fl_str_mv por
language por
dc.relation.cnpq.fl_str_mv 500100000009
dc.relation.confidence.fl_str_mv 600
600
600
600
600
600
600
dc.relation.authority.fl_str_mv 138ff5d6-1221-4258-86cc-aca3d85828a3
c0e77a04-fa82-493c-a3cd-7aa09c7189a0
b7c8bca3-829a-4e1d-8d42-e35a63b7768b
d526374c-6498-412b-afb6-d7258439d374
10fc8551-cc2b-4338-a4eb-8f5aed98d1c2
17536234-2395-4244-a37f-fcbfdb645545
dc.rights.driver.fl_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International
http://creativecommons.org/licenses/by-nc-nd/4.0/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International
http://creativecommons.org/licenses/by-nc-nd/4.0/
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Universidade Federal de Santa Maria
Centro de Ciências Rurais
dc.publisher.program.fl_str_mv Programa de Pós-Graduação em Agronomia
dc.publisher.initials.fl_str_mv UFSM
dc.publisher.country.fl_str_mv Brasil
dc.publisher.department.fl_str_mv Agronomia
publisher.none.fl_str_mv Universidade Federal de Santa Maria
Centro de Ciências Rurais
dc.source.none.fl_str_mv reponame:Manancial - Repositório Digital da UFSM
instname:Universidade Federal de Santa Maria (UFSM)
instacron:UFSM
instname_str Universidade Federal de Santa Maria (UFSM)
instacron_str UFSM
institution UFSM
reponame_str Manancial - Repositório Digital da UFSM
collection Manancial - Repositório Digital da UFSM
bitstream.url.fl_str_mv http://repositorio.ufsm.br/bitstream/1/21704/1/TES_PPGAGRONOMIA_2019_THEWES_FABIO.pdf
http://repositorio.ufsm.br/bitstream/1/21704/2/license_rdf
http://repositorio.ufsm.br/bitstream/1/21704/3/license.txt
http://repositorio.ufsm.br/bitstream/1/21704/4/TES_PPGAGRONOMIA_2019_THEWES_FABIO.pdf.txt
http://repositorio.ufsm.br/bitstream/1/21704/5/TES_PPGAGRONOMIA_2019_THEWES_FABIO.pdf.jpg
bitstream.checksum.fl_str_mv c452cd0dbafe19193b698d255a9de0d7
4460e5956bc1d1639be9ae6146a50347
2f0571ecee68693bd5cd3f17c1e075df
2c7e5367a65de2eaa5055ed96e86a397
89093d9ab57f887a564ade213633f0f4
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Manancial - Repositório Digital da UFSM - Universidade Federal de Santa Maria (UFSM)
repository.mail.fl_str_mv
_version_ 1801223807582601216