Energy flows in lowland soybean production system in Brazil
Autor(a) principal: | |
---|---|
Data de Publicação: | 2016 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Ciência Rural |
Texto Completo: | http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0103-84782016000801395 |
Resumo: | ABSTRACT: Soybean is the main product of Brazilian agribusiness, both production and income. Considering the increase in food and energy demand and the search for more sustainable production systems, this study aimed to analyze inputs and energy use of a possible area of expansion of soybean production: a system under sub irrigation management located in a lowland area of Cerrado biome, northern region of Brazil. Its environmental performance was compared to other Brazilian locations among them traditionally soybean producers. The evaluation and comparison was made through material and energy flow tools in order to determine the inputs embodied per area, as well as energy demand, availability and efficiency in the analyzed production system. Energy demand (IE) and energy availability (OE) of the analyzed production system were 7.6 and 57.1 GJ ha-1, respectively. Energy balance (EB) was 49,5 GJ ha-1, energy return over investment (EROI) was 7.5 and embodied energy in grains (EE) was 2,2 MJ kg-1, respectively. Highest energy consumption was due to the use of fertilizers, fuel and herbicide. The system is energy efficient, since it provides more energy than demands, and efficient when compared to usual production systems in other regions, however it is highly dependent on non-renewable energy. |
id |
UFSM-2_5d7eb5959a1f3ad8fc71f1b6ac2b5a5b |
---|---|
oai_identifier_str |
oai:scielo:S0103-84782016000801395 |
network_acronym_str |
UFSM-2 |
network_name_str |
Ciência rural (Online) |
repository_id_str |
|
spelling |
Energy flows in lowland soybean production system in Brazil Glycine max (L.) Merrmaterial flowenergy balanceEROI.ABSTRACT: Soybean is the main product of Brazilian agribusiness, both production and income. Considering the increase in food and energy demand and the search for more sustainable production systems, this study aimed to analyze inputs and energy use of a possible area of expansion of soybean production: a system under sub irrigation management located in a lowland area of Cerrado biome, northern region of Brazil. Its environmental performance was compared to other Brazilian locations among them traditionally soybean producers. The evaluation and comparison was made through material and energy flow tools in order to determine the inputs embodied per area, as well as energy demand, availability and efficiency in the analyzed production system. Energy demand (IE) and energy availability (OE) of the analyzed production system were 7.6 and 57.1 GJ ha-1, respectively. Energy balance (EB) was 49,5 GJ ha-1, energy return over investment (EROI) was 7.5 and embodied energy in grains (EE) was 2,2 MJ kg-1, respectively. Highest energy consumption was due to the use of fertilizers, fuel and herbicide. The system is energy efficient, since it provides more energy than demands, and efficient when compared to usual production systems in other regions, however it is highly dependent on non-renewable energy.Universidade Federal de Santa Maria2016-08-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S0103-84782016000801395Ciência Rural v.46 n.8 2016reponame:Ciência Ruralinstname:Universidade Federal de Santa Maria (UFSM)instacron:UFSM10.1590/0103-8478cr20151298info:eu-repo/semantics/openAccessAndrea,Maria Carolina da SilvaRomanelli,Thiago LibórioMolin,José Pauloeng2016-06-20T00:00:00ZRevista |
dc.title.none.fl_str_mv |
Energy flows in lowland soybean production system in Brazil |
title |
Energy flows in lowland soybean production system in Brazil |
spellingShingle |
Energy flows in lowland soybean production system in Brazil Andrea,Maria Carolina da Silva Glycine max (L.) Merr material flow energy balance EROI. |
title_short |
Energy flows in lowland soybean production system in Brazil |
title_full |
Energy flows in lowland soybean production system in Brazil |
title_fullStr |
Energy flows in lowland soybean production system in Brazil |
title_full_unstemmed |
Energy flows in lowland soybean production system in Brazil |
title_sort |
Energy flows in lowland soybean production system in Brazil |
author |
Andrea,Maria Carolina da Silva |
author_facet |
Andrea,Maria Carolina da Silva Romanelli,Thiago Libório Molin,José Paulo |
author_role |
author |
author2 |
Romanelli,Thiago Libório Molin,José Paulo |
author2_role |
author author |
dc.contributor.author.fl_str_mv |
Andrea,Maria Carolina da Silva Romanelli,Thiago Libório Molin,José Paulo |
dc.subject.por.fl_str_mv |
Glycine max (L.) Merr material flow energy balance EROI. |
topic |
Glycine max (L.) Merr material flow energy balance EROI. |
description |
ABSTRACT: Soybean is the main product of Brazilian agribusiness, both production and income. Considering the increase in food and energy demand and the search for more sustainable production systems, this study aimed to analyze inputs and energy use of a possible area of expansion of soybean production: a system under sub irrigation management located in a lowland area of Cerrado biome, northern region of Brazil. Its environmental performance was compared to other Brazilian locations among them traditionally soybean producers. The evaluation and comparison was made through material and energy flow tools in order to determine the inputs embodied per area, as well as energy demand, availability and efficiency in the analyzed production system. Energy demand (IE) and energy availability (OE) of the analyzed production system were 7.6 and 57.1 GJ ha-1, respectively. Energy balance (EB) was 49,5 GJ ha-1, energy return over investment (EROI) was 7.5 and embodied energy in grains (EE) was 2,2 MJ kg-1, respectively. Highest energy consumption was due to the use of fertilizers, fuel and herbicide. The system is energy efficient, since it provides more energy than demands, and efficient when compared to usual production systems in other regions, however it is highly dependent on non-renewable energy. |
publishDate |
2016 |
dc.date.none.fl_str_mv |
2016-08-01 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0103-84782016000801395 |
url |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0103-84782016000801395 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
10.1590/0103-8478cr20151298 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
text/html |
dc.publisher.none.fl_str_mv |
Universidade Federal de Santa Maria |
publisher.none.fl_str_mv |
Universidade Federal de Santa Maria |
dc.source.none.fl_str_mv |
Ciência Rural v.46 n.8 2016 reponame:Ciência Rural instname:Universidade Federal de Santa Maria (UFSM) instacron:UFSM |
instname_str |
Universidade Federal de Santa Maria (UFSM) |
instacron_str |
UFSM |
institution |
UFSM |
reponame_str |
Ciência Rural |
collection |
Ciência Rural |
repository.name.fl_str_mv |
|
repository.mail.fl_str_mv |
|
_version_ |
1749140550445957120 |