New sensitive real-time PCR targeting p28 gene for detection of Ehrlichia canis in blood samples from dogs
Autor(a) principal: | |
---|---|
Data de Publicação: | 2021 |
Outros Autores: | , , , , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Ciência Rural |
Texto Completo: | http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0103-84782021001200454 |
Resumo: | ABSTRACT: This study aims to describe a new detection method of a quantitative real-time polymerase chain reaction (qPCR) targeting the 28 kDa outer membrane protein gene (p28) as well as to compare this method with a conventional PCR (cPCR), which targets the same gene, in order to evaluate the performance of the technique designed in this study in detecting Ehrlichia canis (E. canis). Optimum oligonucleotides concentrations were reached, and the analytical sensitivity and specificity of the qPCR were performed. A total of 218 dogs’ whole blood samples were conventionally collected for this study. The DNA was extracted from each sample. Subsequently, the samples were tested by an established cPCR and the new qPCR to compare each technique’s performances. This new qPCR method for the molecular detection of E. canis presented a detection limit of ten copies of the fragment and was considered specific for E. canis according to analytical specificity analyses performed in vitro and in silico. The standard curve revealed 100% efficiency and a coefficient of determination (R2) equivalent to 99.8%. Among the samples examined by qPCR, 24.31% were considered positive, significantly greater than those detected by cPCR (15.13%). The qPCR technique reached a higher sensitivity than the cPCR when targeting the p28 gene in detecting E. canis. The qPCR standardized in this study is an efficient method for confirming canine monocytic ehrlichiosis (CME) diagnosis and might provide the parasitemia monitoring during the disease treatment. |
id |
UFSM-2_881593eef02c21f0a228bd48450e816c |
---|---|
oai_identifier_str |
oai:scielo:S0103-84782021001200454 |
network_acronym_str |
UFSM-2 |
network_name_str |
Ciência rural (Online) |
repository_id_str |
|
spelling |
New sensitive real-time PCR targeting p28 gene for detection of Ehrlichia canis in blood samples from dogscanine monocytic ehrlichiosismolecular detectiondiagnosishemoparasiteABSTRACT: This study aims to describe a new detection method of a quantitative real-time polymerase chain reaction (qPCR) targeting the 28 kDa outer membrane protein gene (p28) as well as to compare this method with a conventional PCR (cPCR), which targets the same gene, in order to evaluate the performance of the technique designed in this study in detecting Ehrlichia canis (E. canis). Optimum oligonucleotides concentrations were reached, and the analytical sensitivity and specificity of the qPCR were performed. A total of 218 dogs’ whole blood samples were conventionally collected for this study. The DNA was extracted from each sample. Subsequently, the samples were tested by an established cPCR and the new qPCR to compare each technique’s performances. This new qPCR method for the molecular detection of E. canis presented a detection limit of ten copies of the fragment and was considered specific for E. canis according to analytical specificity analyses performed in vitro and in silico. The standard curve revealed 100% efficiency and a coefficient of determination (R2) equivalent to 99.8%. Among the samples examined by qPCR, 24.31% were considered positive, significantly greater than those detected by cPCR (15.13%). The qPCR technique reached a higher sensitivity than the cPCR when targeting the p28 gene in detecting E. canis. The qPCR standardized in this study is an efficient method for confirming canine monocytic ehrlichiosis (CME) diagnosis and might provide the parasitemia monitoring during the disease treatment.Universidade Federal de Santa Maria2021-01-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S0103-84782021001200454Ciência Rural v.51 n.12 2021reponame:Ciência Ruralinstname:Universidade Federal de Santa Maria (UFSM)instacron:UFSM10.1590/0103-8478cr20200891info:eu-repo/semantics/openAccessPaulino,Patrícia GonzagaCamilo,Tays AraujoMota Junior,Miguel Angelo LeiteSenne,Nathália Alves deRamirez,Olga Lucia HerránCosta,Renata Lins daMassard,Carlos LuizSantos,Huarrisson Azevedoeng2021-07-22T00:00:00ZRevista |
dc.title.none.fl_str_mv |
New sensitive real-time PCR targeting p28 gene for detection of Ehrlichia canis in blood samples from dogs |
title |
New sensitive real-time PCR targeting p28 gene for detection of Ehrlichia canis in blood samples from dogs |
spellingShingle |
New sensitive real-time PCR targeting p28 gene for detection of Ehrlichia canis in blood samples from dogs Paulino,Patrícia Gonzaga canine monocytic ehrlichiosis molecular detection diagnosis hemoparasite |
title_short |
New sensitive real-time PCR targeting p28 gene for detection of Ehrlichia canis in blood samples from dogs |
title_full |
New sensitive real-time PCR targeting p28 gene for detection of Ehrlichia canis in blood samples from dogs |
title_fullStr |
New sensitive real-time PCR targeting p28 gene for detection of Ehrlichia canis in blood samples from dogs |
title_full_unstemmed |
New sensitive real-time PCR targeting p28 gene for detection of Ehrlichia canis in blood samples from dogs |
title_sort |
New sensitive real-time PCR targeting p28 gene for detection of Ehrlichia canis in blood samples from dogs |
author |
Paulino,Patrícia Gonzaga |
author_facet |
Paulino,Patrícia Gonzaga Camilo,Tays Araujo Mota Junior,Miguel Angelo Leite Senne,Nathália Alves de Ramirez,Olga Lucia Herrán Costa,Renata Lins da Massard,Carlos Luiz Santos,Huarrisson Azevedo |
author_role |
author |
author2 |
Camilo,Tays Araujo Mota Junior,Miguel Angelo Leite Senne,Nathália Alves de Ramirez,Olga Lucia Herrán Costa,Renata Lins da Massard,Carlos Luiz Santos,Huarrisson Azevedo |
author2_role |
author author author author author author author |
dc.contributor.author.fl_str_mv |
Paulino,Patrícia Gonzaga Camilo,Tays Araujo Mota Junior,Miguel Angelo Leite Senne,Nathália Alves de Ramirez,Olga Lucia Herrán Costa,Renata Lins da Massard,Carlos Luiz Santos,Huarrisson Azevedo |
dc.subject.por.fl_str_mv |
canine monocytic ehrlichiosis molecular detection diagnosis hemoparasite |
topic |
canine monocytic ehrlichiosis molecular detection diagnosis hemoparasite |
description |
ABSTRACT: This study aims to describe a new detection method of a quantitative real-time polymerase chain reaction (qPCR) targeting the 28 kDa outer membrane protein gene (p28) as well as to compare this method with a conventional PCR (cPCR), which targets the same gene, in order to evaluate the performance of the technique designed in this study in detecting Ehrlichia canis (E. canis). Optimum oligonucleotides concentrations were reached, and the analytical sensitivity and specificity of the qPCR were performed. A total of 218 dogs’ whole blood samples were conventionally collected for this study. The DNA was extracted from each sample. Subsequently, the samples were tested by an established cPCR and the new qPCR to compare each technique’s performances. This new qPCR method for the molecular detection of E. canis presented a detection limit of ten copies of the fragment and was considered specific for E. canis according to analytical specificity analyses performed in vitro and in silico. The standard curve revealed 100% efficiency and a coefficient of determination (R2) equivalent to 99.8%. Among the samples examined by qPCR, 24.31% were considered positive, significantly greater than those detected by cPCR (15.13%). The qPCR technique reached a higher sensitivity than the cPCR when targeting the p28 gene in detecting E. canis. The qPCR standardized in this study is an efficient method for confirming canine monocytic ehrlichiosis (CME) diagnosis and might provide the parasitemia monitoring during the disease treatment. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-01-01 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0103-84782021001200454 |
url |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0103-84782021001200454 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
10.1590/0103-8478cr20200891 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
text/html |
dc.publisher.none.fl_str_mv |
Universidade Federal de Santa Maria |
publisher.none.fl_str_mv |
Universidade Federal de Santa Maria |
dc.source.none.fl_str_mv |
Ciência Rural v.51 n.12 2021 reponame:Ciência Rural instname:Universidade Federal de Santa Maria (UFSM) instacron:UFSM |
instname_str |
Universidade Federal de Santa Maria (UFSM) |
instacron_str |
UFSM |
institution |
UFSM |
reponame_str |
Ciência Rural |
collection |
Ciência Rural |
repository.name.fl_str_mv |
|
repository.mail.fl_str_mv |
|
_version_ |
1749140556475269120 |