Use of SAR images for classification of brazilian forest formations
Autor(a) principal: | |
---|---|
Data de Publicação: | 2021 |
Outros Autores: | |
Tipo de documento: | Artigo |
Idioma: | por |
Título da fonte: | Ciência Florestal (Online) |
Texto Completo: | https://periodicos.ufsm.br/cienciaflorestal/article/view/37586 |
Resumo: | Brazil has a large territorial area with a large cover of vegetation and several forest typologies with different physiognomies. It is necessary to map the forest areas in the country in order to know the spatial distribution and the dynamics of each forest formation. An efficient and reliable way to obtain this information is using remote sensing techniques, and radar – SAR - imaging can be applied, which in turn has been the focus of many researchers. Thus, the objective of the present study is to gather scientific productions related to the use of radar images applied to the mapping of different forests in Brazil, analyzing the most recent approaches and classification techniques. There was a significant application of SAR images in forests of the Amazon biome, mainly for the detection of deforestation. The images of the ALOS/PALSAR L-band radar system were the most used in the mapping of forest typologies, associated to several classifier algorithms, such as: Iterated Conditional Modes, Maximum Likelihood and random forest. The data types worked in the classifications varied according to the polarimetric capacity of each image, with emphasis on the greater use of backscattering coefficients and attributes extracted from matrix decompositions. It was also observed that most studies related SAR data to those obtained by optical sensors. Therefore, the present study made it possible to gather several applications of classification techniques for the discrimination of forest formations in Brazil using microwave imaging, indicating the potentiality of the various classifiers with SAR images, and showing that radar systems are an important technology that is being used for mapping forests in the country. |
id |
UFSM-6_1548a1c9d111ee1a6899439ee5eb8a4f |
---|---|
oai_identifier_str |
oai:ojs.pkp.sfu.ca:article/37586 |
network_acronym_str |
UFSM-6 |
network_name_str |
Ciência Florestal (Online) |
repository_id_str |
|
spelling |
Use of SAR images for classification of brazilian forest formationsUtilização de imagens SAR na classificação de formações florestais brasileirasRemote sensing of vegetationSynthetic aperture radarClassification algorithmSensoriamento remotoVegetaçãoRadar de abertura sintéticaAlgoritmo classificadorBrazil has a large territorial area with a large cover of vegetation and several forest typologies with different physiognomies. It is necessary to map the forest areas in the country in order to know the spatial distribution and the dynamics of each forest formation. An efficient and reliable way to obtain this information is using remote sensing techniques, and radar – SAR - imaging can be applied, which in turn has been the focus of many researchers. Thus, the objective of the present study is to gather scientific productions related to the use of radar images applied to the mapping of different forests in Brazil, analyzing the most recent approaches and classification techniques. There was a significant application of SAR images in forests of the Amazon biome, mainly for the detection of deforestation. The images of the ALOS/PALSAR L-band radar system were the most used in the mapping of forest typologies, associated to several classifier algorithms, such as: Iterated Conditional Modes, Maximum Likelihood and random forest. The data types worked in the classifications varied according to the polarimetric capacity of each image, with emphasis on the greater use of backscattering coefficients and attributes extracted from matrix decompositions. It was also observed that most studies related SAR data to those obtained by optical sensors. Therefore, the present study made it possible to gather several applications of classification techniques for the discrimination of forest formations in Brazil using microwave imaging, indicating the potentiality of the various classifiers with SAR images, and showing that radar systems are an important technology that is being used for mapping forests in the country.O Brasil tem uma vasta área territorial com várias tipologias florestais compostas por diferentes fisionomias. É necessário o mapeamento das áreas de florestas no país, com o intuito de se conhecer sua distribuição espacial, bem como de avaliar sua dinâmica de expansão ou redução. Uma forma eficiente e confiável de se obter tais informações se dá por meio de técnicas de sensoriamento remoto, podendo ser aplicado o imageamento por radar (micro-ondas), que por sua vez tem sido o foco de muitos pesquisadores. Sendo assim, o objetivo do presente estudo é reunir as produções científicas relacionadas à utilização de imagens de radar aplicadas ao mapeamento das diferentes florestas no Brasil, analisando as mais recentes abordagens e técnicas de classificação. Notou-se uma significativa aplicação de imagens SAR em florestas do bioma Amazônia, principalmente para a detecção do desmatamento. As imagens do sistema do radar de banda L do ALOS/PALSAR foram as mais utilizadas nos mapeamentos das tipologias florestais, associadas a vários algoritmos classificadores, tais como: Iterated Conditional Modes, Máxima Verossimilhança e random forest. Os tipos de dados trabalhados nas classificações variaram de acordo com a capacidade polarimétrica de cada imagem, com destaque à maior utilização dos coeficientes de retroespalhamento e atributos extraídos das decomposições de suas matrizes. Observou-se ainda que a maioria dos trabalhos relacionaram os dados SAR com os obtidos por sensores ópticos. Portanto, o presente estudo possibilitou reunir várias aplicações de técnicas de classificação para a discriminação de diferentes formações florestais no Brasil utilizando o imageamento por micro-ondas, indicando a potencialidade dos vários classificadores nos dados SAR, mostrando que os sistemas de radar são uma importante tecnologia utilizada para o mapeamento de florestas no país.Universidade Federal de Santa Maria2021-09-06info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdftext/htmlhttps://periodicos.ufsm.br/cienciaflorestal/article/view/3758610.5902/1980509837586Ciência Florestal; Vol. 31 No. 3 (2021); 1547-1568Ciência Florestal; v. 31 n. 3 (2021); 1547-15681980-50980103-9954reponame:Ciência Florestal (Online)instname:Universidade Federal de Santa Maria (UFSM)instacron:UFSMporhttps://periodicos.ufsm.br/cienciaflorestal/article/view/37586/pdfhttps://periodicos.ufsm.br/cienciaflorestal/article/view/37586/htmlCopyright (c) 2021 Ciência Florestalinfo:eu-repo/semantics/openAccessJesus, Janisson Batista deKuplich, Tatiana Mora2021-09-06T21:13:38Zoai:ojs.pkp.sfu.ca:article/37586Revistahttp://www.ufsm.br/cienciaflorestal/ONGhttps://old.scielo.br/oai/scielo-oai.php||cienciaflorestal@ufsm.br|| cienciaflorestal@gmail.com|| cf@smail.ufsm.br1980-50980103-9954opendoar:2021-09-06T21:13:38Ciência Florestal (Online) - Universidade Federal de Santa Maria (UFSM)false |
dc.title.none.fl_str_mv |
Use of SAR images for classification of brazilian forest formations Utilização de imagens SAR na classificação de formações florestais brasileiras |
title |
Use of SAR images for classification of brazilian forest formations |
spellingShingle |
Use of SAR images for classification of brazilian forest formations Jesus, Janisson Batista de Remote sensing of vegetation Synthetic aperture radar Classification algorithm Sensoriamento remoto Vegetação Radar de abertura sintética Algoritmo classificador |
title_short |
Use of SAR images for classification of brazilian forest formations |
title_full |
Use of SAR images for classification of brazilian forest formations |
title_fullStr |
Use of SAR images for classification of brazilian forest formations |
title_full_unstemmed |
Use of SAR images for classification of brazilian forest formations |
title_sort |
Use of SAR images for classification of brazilian forest formations |
author |
Jesus, Janisson Batista de |
author_facet |
Jesus, Janisson Batista de Kuplich, Tatiana Mora |
author_role |
author |
author2 |
Kuplich, Tatiana Mora |
author2_role |
author |
dc.contributor.author.fl_str_mv |
Jesus, Janisson Batista de Kuplich, Tatiana Mora |
dc.subject.por.fl_str_mv |
Remote sensing of vegetation Synthetic aperture radar Classification algorithm Sensoriamento remoto Vegetação Radar de abertura sintética Algoritmo classificador |
topic |
Remote sensing of vegetation Synthetic aperture radar Classification algorithm Sensoriamento remoto Vegetação Radar de abertura sintética Algoritmo classificador |
description |
Brazil has a large territorial area with a large cover of vegetation and several forest typologies with different physiognomies. It is necessary to map the forest areas in the country in order to know the spatial distribution and the dynamics of each forest formation. An efficient and reliable way to obtain this information is using remote sensing techniques, and radar – SAR - imaging can be applied, which in turn has been the focus of many researchers. Thus, the objective of the present study is to gather scientific productions related to the use of radar images applied to the mapping of different forests in Brazil, analyzing the most recent approaches and classification techniques. There was a significant application of SAR images in forests of the Amazon biome, mainly for the detection of deforestation. The images of the ALOS/PALSAR L-band radar system were the most used in the mapping of forest typologies, associated to several classifier algorithms, such as: Iterated Conditional Modes, Maximum Likelihood and random forest. The data types worked in the classifications varied according to the polarimetric capacity of each image, with emphasis on the greater use of backscattering coefficients and attributes extracted from matrix decompositions. It was also observed that most studies related SAR data to those obtained by optical sensors. Therefore, the present study made it possible to gather several applications of classification techniques for the discrimination of forest formations in Brazil using microwave imaging, indicating the potentiality of the various classifiers with SAR images, and showing that radar systems are an important technology that is being used for mapping forests in the country. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-09-06 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://periodicos.ufsm.br/cienciaflorestal/article/view/37586 10.5902/1980509837586 |
url |
https://periodicos.ufsm.br/cienciaflorestal/article/view/37586 |
identifier_str_mv |
10.5902/1980509837586 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.none.fl_str_mv |
https://periodicos.ufsm.br/cienciaflorestal/article/view/37586/pdf https://periodicos.ufsm.br/cienciaflorestal/article/view/37586/html |
dc.rights.driver.fl_str_mv |
Copyright (c) 2021 Ciência Florestal info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Copyright (c) 2021 Ciência Florestal |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf text/html |
dc.publisher.none.fl_str_mv |
Universidade Federal de Santa Maria |
publisher.none.fl_str_mv |
Universidade Federal de Santa Maria |
dc.source.none.fl_str_mv |
Ciência Florestal; Vol. 31 No. 3 (2021); 1547-1568 Ciência Florestal; v. 31 n. 3 (2021); 1547-1568 1980-5098 0103-9954 reponame:Ciência Florestal (Online) instname:Universidade Federal de Santa Maria (UFSM) instacron:UFSM |
instname_str |
Universidade Federal de Santa Maria (UFSM) |
instacron_str |
UFSM |
institution |
UFSM |
reponame_str |
Ciência Florestal (Online) |
collection |
Ciência Florestal (Online) |
repository.name.fl_str_mv |
Ciência Florestal (Online) - Universidade Federal de Santa Maria (UFSM) |
repository.mail.fl_str_mv |
||cienciaflorestal@ufsm.br|| cienciaflorestal@gmail.com|| cf@smail.ufsm.br |
_version_ |
1799944134710001664 |