Water Body Extraction Using a Sentinel-1 Scene and Artificial Neural Networks: Case Study – Carpina-PE Dam
Autor(a) principal: | |
---|---|
Data de Publicação: | 2023 |
Outros Autores: | |
Tipo de documento: | Artigo |
Idioma: | por eng |
Título da fonte: | Sociedade & natureza (Online) |
Texto Completo: | https://seer.ufu.br/index.php/sociedadenatureza/article/view/70654 |
Resumo: | Surface water is the most important resource and environmental factor for maintaining human survival and ecosystem stability, therefore accurate and timely information on surface water is urgently needed. In this study, an image classification approach using Artificial Neural Networks was proposed for mapping the surface water extent of the Carpina-PE Dam using radar image from the Sentinel-1 satellite, as well as its polarizations (VH and VV) and the generated water indices (SDWI and SWI). All datasets presented limitations in detecting small water bodies, such as narrow rivers, and overestimation in pasture areas, generating commission errors ranging from 16.5% to 28.9% and omission errors ranging from 1.47% and 3.5%, with emphasis on VH and VV polarizations. The overall classification accuracy ranged from 96% to 98% and R² values reached close to 1, where the best performance was seen for SDWI and SWI. The comparative experiments indicated that unitary radar polarizations with water spectral indices were useful for improving the accuracy of extracting water bodies in places with clouds, without significant variations, in addition to providing detailed information, with potential for continuous monitoring. |
id |
UFU-6_572144dc1c3782ccaffdbfa9c4b2dcc2 |
---|---|
oai_identifier_str |
oai:ojs.www.seer.ufu.br:article/70654 |
network_acronym_str |
UFU-6 |
network_name_str |
Sociedade & natureza (Online) |
repository_id_str |
|
spelling |
Water Body Extraction Using a Sentinel-1 Scene and Artificial Neural Networks: Case Study – Carpina-PE DamExtração de Corpo Hídrico Usando uma Cena Sentinel-1 e Redes Neurais Artificiais: Estudo de Caso – Barragem de Carpina-PEAprendizagem ProfundaSensoriamento RemotoRadar de Abertura SintéticaRecursos HídricosDeep LearningRemote SensingSynthetic Aperture RadarWater resourcesSurface water is the most important resource and environmental factor for maintaining human survival and ecosystem stability, therefore accurate and timely information on surface water is urgently needed. In this study, an image classification approach using Artificial Neural Networks was proposed for mapping the surface water extent of the Carpina-PE Dam using radar image from the Sentinel-1 satellite, as well as its polarizations (VH and VV) and the generated water indices (SDWI and SWI). All datasets presented limitations in detecting small water bodies, such as narrow rivers, and overestimation in pasture areas, generating commission errors ranging from 16.5% to 28.9% and omission errors ranging from 1.47% and 3.5%, with emphasis on VH and VV polarizations. The overall classification accuracy ranged from 96% to 98% and R² values reached close to 1, where the best performance was seen for SDWI and SWI. The comparative experiments indicated that unitary radar polarizations with water spectral indices were useful for improving the accuracy of extracting water bodies in places with clouds, without significant variations, in addition to providing detailed information, with potential for continuous monitoring.A água de superfície é o recurso e fator ambiental mais importante para manter a sobrevivência humana e a estabilidade dos ecossistemas, portanto, informações precisas e oportunas sobre águas superficiais são urgentemente necessárias. Neste estudo foi proposto uma abordagem de classificação de imagens por Redes Neurais Artificiais para o mapeamento da extensão da água de superfície da Barragem de Carpina-PE usando dados (SAR) do satélite Sentinel-1, bem como suas polarizações (VH e VV) e os índices polarimétricos de água gerados (SDWI e SWI). Todos os conjuntos de dados apresentaram limitações na detecção de pequenos corpos hídricos, como rios estreitos, e superestimação em áreas de pastagem, gerando erros de comissão variando de 16,5 % a 28,9% e erros de omissão variando entre 1,47% e 3,5%, com destaque para as polarizações VH e VV. A precisão geral da classificação variou de 96% a 98% e valores de R² chegaram próximo de 1, onde o melhor desempenho foi visto para o SDWI e o SWI. Os experimentos comparativos indicaram que, as polarizações unitárias de radar com índices polarimétricos de água, foram úteis para melhorar a precisão da extração de corpos hídricos em locais com muitas nuvens, sem variações significativas, além de fornecer informações detalhadas, com potencial de monitoramento contínuo.Universidade Federal de Uberlândia2023-12-08info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfapplication/pdfhttps://seer.ufu.br/index.php/sociedadenatureza/article/view/7065410.14393/SN-v36-2024-70654Sociedade & Natureza; Vol. 36 No. 1 (2024): Sociedade & NaturezaSociedade & Natureza; v. 36 n. 1 (2024): Sociedade & Natureza1982-45130103-1570reponame:Sociedade & natureza (Online)instname:Universidade Federal de Uberlândia (UFU)instacron:UFUporenghttps://seer.ufu.br/index.php/sociedadenatureza/article/view/70654/37277https://seer.ufu.br/index.php/sociedadenatureza/article/view/70654/37278Copyright (c) 2023 Juarez Antonio da Silva Júnior, Ubiratan Joaquim Da Silva Juniorhttps://creativecommons.org/licenses/by/4.0info:eu-repo/semantics/openAccessSilva Júnior, Juarez Antonio daSilva Junior, Ubiratan Joaquim Da2024-05-13T15:01:07Zoai:ojs.www.seer.ufu.br:article/70654Revistahttp://www.sociedadenatureza.ig.ufu.br/PUBhttps://seer.ufu.br/index.php/sociedadenatureza/oai||sociedade.natureza.ufu@gmail.com|| lucianamelo@ufu.br1982-45130103-1570opendoar:2024-05-13T15:01:07Sociedade & natureza (Online) - Universidade Federal de Uberlândia (UFU)false |
dc.title.none.fl_str_mv |
Water Body Extraction Using a Sentinel-1 Scene and Artificial Neural Networks: Case Study – Carpina-PE Dam Extração de Corpo Hídrico Usando uma Cena Sentinel-1 e Redes Neurais Artificiais: Estudo de Caso – Barragem de Carpina-PE |
title |
Water Body Extraction Using a Sentinel-1 Scene and Artificial Neural Networks: Case Study – Carpina-PE Dam |
spellingShingle |
Water Body Extraction Using a Sentinel-1 Scene and Artificial Neural Networks: Case Study – Carpina-PE Dam Silva Júnior, Juarez Antonio da Aprendizagem Profunda Sensoriamento Remoto Radar de Abertura Sintética Recursos Hídricos Deep Learning Remote Sensing Synthetic Aperture Radar Water resources |
title_short |
Water Body Extraction Using a Sentinel-1 Scene and Artificial Neural Networks: Case Study – Carpina-PE Dam |
title_full |
Water Body Extraction Using a Sentinel-1 Scene and Artificial Neural Networks: Case Study – Carpina-PE Dam |
title_fullStr |
Water Body Extraction Using a Sentinel-1 Scene and Artificial Neural Networks: Case Study – Carpina-PE Dam |
title_full_unstemmed |
Water Body Extraction Using a Sentinel-1 Scene and Artificial Neural Networks: Case Study – Carpina-PE Dam |
title_sort |
Water Body Extraction Using a Sentinel-1 Scene and Artificial Neural Networks: Case Study – Carpina-PE Dam |
author |
Silva Júnior, Juarez Antonio da |
author_facet |
Silva Júnior, Juarez Antonio da Silva Junior, Ubiratan Joaquim Da |
author_role |
author |
author2 |
Silva Junior, Ubiratan Joaquim Da |
author2_role |
author |
dc.contributor.author.fl_str_mv |
Silva Júnior, Juarez Antonio da Silva Junior, Ubiratan Joaquim Da |
dc.subject.por.fl_str_mv |
Aprendizagem Profunda Sensoriamento Remoto Radar de Abertura Sintética Recursos Hídricos Deep Learning Remote Sensing Synthetic Aperture Radar Water resources |
topic |
Aprendizagem Profunda Sensoriamento Remoto Radar de Abertura Sintética Recursos Hídricos Deep Learning Remote Sensing Synthetic Aperture Radar Water resources |
description |
Surface water is the most important resource and environmental factor for maintaining human survival and ecosystem stability, therefore accurate and timely information on surface water is urgently needed. In this study, an image classification approach using Artificial Neural Networks was proposed for mapping the surface water extent of the Carpina-PE Dam using radar image from the Sentinel-1 satellite, as well as its polarizations (VH and VV) and the generated water indices (SDWI and SWI). All datasets presented limitations in detecting small water bodies, such as narrow rivers, and overestimation in pasture areas, generating commission errors ranging from 16.5% to 28.9% and omission errors ranging from 1.47% and 3.5%, with emphasis on VH and VV polarizations. The overall classification accuracy ranged from 96% to 98% and R² values reached close to 1, where the best performance was seen for SDWI and SWI. The comparative experiments indicated that unitary radar polarizations with water spectral indices were useful for improving the accuracy of extracting water bodies in places with clouds, without significant variations, in addition to providing detailed information, with potential for continuous monitoring. |
publishDate |
2023 |
dc.date.none.fl_str_mv |
2023-12-08 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://seer.ufu.br/index.php/sociedadenatureza/article/view/70654 10.14393/SN-v36-2024-70654 |
url |
https://seer.ufu.br/index.php/sociedadenatureza/article/view/70654 |
identifier_str_mv |
10.14393/SN-v36-2024-70654 |
dc.language.iso.fl_str_mv |
por eng |
language |
por eng |
dc.relation.none.fl_str_mv |
https://seer.ufu.br/index.php/sociedadenatureza/article/view/70654/37277 https://seer.ufu.br/index.php/sociedadenatureza/article/view/70654/37278 |
dc.rights.driver.fl_str_mv |
Copyright (c) 2023 Juarez Antonio da Silva Júnior, Ubiratan Joaquim Da Silva Junior https://creativecommons.org/licenses/by/4.0 info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Copyright (c) 2023 Juarez Antonio da Silva Júnior, Ubiratan Joaquim Da Silva Junior https://creativecommons.org/licenses/by/4.0 |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Universidade Federal de Uberlândia |
publisher.none.fl_str_mv |
Universidade Federal de Uberlândia |
dc.source.none.fl_str_mv |
Sociedade & Natureza; Vol. 36 No. 1 (2024): Sociedade & Natureza Sociedade & Natureza; v. 36 n. 1 (2024): Sociedade & Natureza 1982-4513 0103-1570 reponame:Sociedade & natureza (Online) instname:Universidade Federal de Uberlândia (UFU) instacron:UFU |
instname_str |
Universidade Federal de Uberlândia (UFU) |
instacron_str |
UFU |
institution |
UFU |
reponame_str |
Sociedade & natureza (Online) |
collection |
Sociedade & natureza (Online) |
repository.name.fl_str_mv |
Sociedade & natureza (Online) - Universidade Federal de Uberlândia (UFU) |
repository.mail.fl_str_mv |
||sociedade.natureza.ufu@gmail.com|| lucianamelo@ufu.br |
_version_ |
1799943977480224768 |