Water Body Extraction Using a Sentinel-1 Scene and Artificial Neural Networks: Case Study – Carpina-PE Dam

Detalhes bibliográficos
Autor(a) principal: Silva Júnior, Juarez Antonio da
Data de Publicação: 2023
Outros Autores: Silva Junior, Ubiratan Joaquim Da
Tipo de documento: Artigo
Idioma: por
eng
Título da fonte: Sociedade & natureza (Online)
Texto Completo: https://seer.ufu.br/index.php/sociedadenatureza/article/view/70654
Resumo: Surface water is the most important resource and environmental factor for maintaining human survival and ecosystem stability, therefore accurate and timely information on surface water is urgently needed. In this study, an image classification approach using Artificial Neural Networks was proposed for mapping the surface water extent of the Carpina-PE Dam using radar image from the Sentinel-1 satellite, as well as its polarizations (VH and VV) and the generated water indices (SDWI and SWI). All datasets presented limitations in detecting small water bodies, such as narrow rivers, and overestimation in pasture areas, generating commission errors ranging from 16.5% to 28.9% and omission errors ranging from 1.47% and 3.5%, with emphasis on VH and VV polarizations. The overall classification accuracy ranged from 96% to 98% and R² values reached close to 1, where the best performance was seen for SDWI and SWI. The comparative experiments indicated that unitary radar polarizations with water spectral indices were useful for improving the accuracy of extracting water bodies in places with clouds, without significant variations, in addition to providing detailed information, with potential for continuous monitoring.
id UFU-6_572144dc1c3782ccaffdbfa9c4b2dcc2
oai_identifier_str oai:ojs.www.seer.ufu.br:article/70654
network_acronym_str UFU-6
network_name_str Sociedade & natureza (Online)
repository_id_str
spelling Water Body Extraction Using a Sentinel-1 Scene and Artificial Neural Networks: Case Study – Carpina-PE DamExtração de Corpo Hídrico Usando uma Cena Sentinel-1 e Redes Neurais Artificiais: Estudo de Caso – Barragem de Carpina-PEAprendizagem ProfundaSensoriamento RemotoRadar de Abertura SintéticaRecursos HídricosDeep LearningRemote SensingSynthetic Aperture RadarWater resourcesSurface water is the most important resource and environmental factor for maintaining human survival and ecosystem stability, therefore accurate and timely information on surface water is urgently needed. In this study, an image classification approach using Artificial Neural Networks was proposed for mapping the surface water extent of the Carpina-PE Dam using radar image from the Sentinel-1 satellite, as well as its polarizations (VH and VV) and the generated water indices (SDWI and SWI). All datasets presented limitations in detecting small water bodies, such as narrow rivers, and overestimation in pasture areas, generating commission errors ranging from 16.5% to 28.9% and omission errors ranging from 1.47% and 3.5%, with emphasis on VH and VV polarizations. The overall classification accuracy ranged from 96% to 98% and R² values reached close to 1, where the best performance was seen for SDWI and SWI. The comparative experiments indicated that unitary radar polarizations with water spectral indices were useful for improving the accuracy of extracting water bodies in places with clouds, without significant variations, in addition to providing detailed information, with potential for continuous monitoring.A água de superfície é o recurso e fator ambiental mais importante para manter a sobrevivência humana e a estabilidade dos ecossistemas, portanto, informações precisas e oportunas sobre águas superficiais são urgentemente necessárias. Neste estudo foi proposto uma abordagem de classificação de imagens por Redes Neurais Artificiais para o mapeamento da extensão da água de superfície da Barragem de Carpina-PE usando dados (SAR) do satélite Sentinel-1, bem como suas polarizações (VH e VV) e os índices polarimétricos de água gerados (SDWI e SWI). Todos os conjuntos de dados apresentaram limitações na detecção de pequenos corpos hídricos, como rios estreitos, e superestimação em áreas de pastagem, gerando erros de comissão variando de 16,5 % a 28,9% e erros de omissão variando entre 1,47% e 3,5%, com destaque para as polarizações VH e VV. A precisão geral da classificação variou de 96% a 98% e valores de R² chegaram próximo de 1, onde o melhor desempenho foi visto para o SDWI e o SWI. Os experimentos comparativos indicaram que, as polarizações unitárias de radar com índices polarimétricos de água, foram úteis para melhorar a precisão da extração de corpos hídricos em locais com muitas  nuvens, sem variações significativas, além de fornecer informações detalhadas, com potencial de monitoramento contínuo.Universidade Federal de Uberlândia2023-12-08info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfapplication/pdfhttps://seer.ufu.br/index.php/sociedadenatureza/article/view/7065410.14393/SN-v36-2024-70654Sociedade & Natureza; Vol. 36 No. 1 (2024): Sociedade & NaturezaSociedade & Natureza; v. 36 n. 1 (2024): Sociedade & Natureza1982-45130103-1570reponame:Sociedade & natureza (Online)instname:Universidade Federal de Uberlândia (UFU)instacron:UFUporenghttps://seer.ufu.br/index.php/sociedadenatureza/article/view/70654/37277https://seer.ufu.br/index.php/sociedadenatureza/article/view/70654/37278Copyright (c) 2023 Juarez Antonio da Silva Júnior, Ubiratan Joaquim Da Silva Juniorhttps://creativecommons.org/licenses/by/4.0info:eu-repo/semantics/openAccessSilva Júnior, Juarez Antonio daSilva Junior, Ubiratan Joaquim Da2024-05-13T15:01:07Zoai:ojs.www.seer.ufu.br:article/70654Revistahttp://www.sociedadenatureza.ig.ufu.br/PUBhttps://seer.ufu.br/index.php/sociedadenatureza/oai||sociedade.natureza.ufu@gmail.com|| lucianamelo@ufu.br1982-45130103-1570opendoar:2024-05-13T15:01:07Sociedade & natureza (Online) - Universidade Federal de Uberlândia (UFU)false
dc.title.none.fl_str_mv Water Body Extraction Using a Sentinel-1 Scene and Artificial Neural Networks: Case Study – Carpina-PE Dam
Extração de Corpo Hídrico Usando uma Cena Sentinel-1 e Redes Neurais Artificiais: Estudo de Caso – Barragem de Carpina-PE
title Water Body Extraction Using a Sentinel-1 Scene and Artificial Neural Networks: Case Study – Carpina-PE Dam
spellingShingle Water Body Extraction Using a Sentinel-1 Scene and Artificial Neural Networks: Case Study – Carpina-PE Dam
Silva Júnior, Juarez Antonio da
Aprendizagem Profunda
Sensoriamento Remoto
Radar de Abertura Sintética
Recursos Hídricos
Deep Learning
Remote Sensing
Synthetic Aperture Radar
Water resources
title_short Water Body Extraction Using a Sentinel-1 Scene and Artificial Neural Networks: Case Study – Carpina-PE Dam
title_full Water Body Extraction Using a Sentinel-1 Scene and Artificial Neural Networks: Case Study – Carpina-PE Dam
title_fullStr Water Body Extraction Using a Sentinel-1 Scene and Artificial Neural Networks: Case Study – Carpina-PE Dam
title_full_unstemmed Water Body Extraction Using a Sentinel-1 Scene and Artificial Neural Networks: Case Study – Carpina-PE Dam
title_sort Water Body Extraction Using a Sentinel-1 Scene and Artificial Neural Networks: Case Study – Carpina-PE Dam
author Silva Júnior, Juarez Antonio da
author_facet Silva Júnior, Juarez Antonio da
Silva Junior, Ubiratan Joaquim Da
author_role author
author2 Silva Junior, Ubiratan Joaquim Da
author2_role author
dc.contributor.author.fl_str_mv Silva Júnior, Juarez Antonio da
Silva Junior, Ubiratan Joaquim Da
dc.subject.por.fl_str_mv Aprendizagem Profunda
Sensoriamento Remoto
Radar de Abertura Sintética
Recursos Hídricos
Deep Learning
Remote Sensing
Synthetic Aperture Radar
Water resources
topic Aprendizagem Profunda
Sensoriamento Remoto
Radar de Abertura Sintética
Recursos Hídricos
Deep Learning
Remote Sensing
Synthetic Aperture Radar
Water resources
description Surface water is the most important resource and environmental factor for maintaining human survival and ecosystem stability, therefore accurate and timely information on surface water is urgently needed. In this study, an image classification approach using Artificial Neural Networks was proposed for mapping the surface water extent of the Carpina-PE Dam using radar image from the Sentinel-1 satellite, as well as its polarizations (VH and VV) and the generated water indices (SDWI and SWI). All datasets presented limitations in detecting small water bodies, such as narrow rivers, and overestimation in pasture areas, generating commission errors ranging from 16.5% to 28.9% and omission errors ranging from 1.47% and 3.5%, with emphasis on VH and VV polarizations. The overall classification accuracy ranged from 96% to 98% and R² values reached close to 1, where the best performance was seen for SDWI and SWI. The comparative experiments indicated that unitary radar polarizations with water spectral indices were useful for improving the accuracy of extracting water bodies in places with clouds, without significant variations, in addition to providing detailed information, with potential for continuous monitoring.
publishDate 2023
dc.date.none.fl_str_mv 2023-12-08
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://seer.ufu.br/index.php/sociedadenatureza/article/view/70654
10.14393/SN-v36-2024-70654
url https://seer.ufu.br/index.php/sociedadenatureza/article/view/70654
identifier_str_mv 10.14393/SN-v36-2024-70654
dc.language.iso.fl_str_mv por
eng
language por
eng
dc.relation.none.fl_str_mv https://seer.ufu.br/index.php/sociedadenatureza/article/view/70654/37277
https://seer.ufu.br/index.php/sociedadenatureza/article/view/70654/37278
dc.rights.driver.fl_str_mv Copyright (c) 2023 Juarez Antonio da Silva Júnior, Ubiratan Joaquim Da Silva Junior
https://creativecommons.org/licenses/by/4.0
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Copyright (c) 2023 Juarez Antonio da Silva Júnior, Ubiratan Joaquim Da Silva Junior
https://creativecommons.org/licenses/by/4.0
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Universidade Federal de Uberlândia
publisher.none.fl_str_mv Universidade Federal de Uberlândia
dc.source.none.fl_str_mv Sociedade & Natureza; Vol. 36 No. 1 (2024): Sociedade & Natureza
Sociedade & Natureza; v. 36 n. 1 (2024): Sociedade & Natureza
1982-4513
0103-1570
reponame:Sociedade & natureza (Online)
instname:Universidade Federal de Uberlândia (UFU)
instacron:UFU
instname_str Universidade Federal de Uberlândia (UFU)
instacron_str UFU
institution UFU
reponame_str Sociedade & natureza (Online)
collection Sociedade & natureza (Online)
repository.name.fl_str_mv Sociedade & natureza (Online) - Universidade Federal de Uberlândia (UFU)
repository.mail.fl_str_mv ||sociedade.natureza.ufu@gmail.com|| lucianamelo@ufu.br
_version_ 1799943977480224768