Vegetation indices in the nutritional diagnosis of hybrid stands of Eucalyptus urophylla S. T. Blake

Detalhes bibliográficos
Autor(a) principal: Ramos, Juliana Carvalho Barbosa
Data de Publicação: 2023
Outros Autores: Leite, Elton da Silva, Poelking, Everton Luís, Freitas, Luis Carlos de, Melo, Iago Nery, Martins, Ricardo Previdente, Costa, João Albany
Tipo de documento: Artigo
Idioma: por
Título da fonte: Ciência Florestal (Online)
Texto Completo: https://periodicos.ufsm.br/cienciaflorestal/article/view/65702
Resumo: Remote sensing through band ratio techniques for nutritional monitoring of clonal eucalyptus plantations is essential to guarantee health and productivity, reducing costs of forestry enterprises. The objective was to apply vegetation indices from high resolution satellite images in the nutritional diagnosis of macronutrients in plantations of clonal hybrids of Eucalyptus urophylla S. T. Blake. The study was carried out in 62 areas of six municipalities in the state of Bahia under cultivation of homogeneous eucalyptus plantations, aged between 1.3 and 1.8 years. The design was completely randomized with six treatments constituted by the rainfall regime (1000 to 1300 mm year-1 and 1300 to 1600 mm year-1) and soil types (class and texture). The nutritional diagnosis of nitrogen (N), phosphorus (P), potassium (K), calcium (Ca), magnesium (Mg) and sulfur (S) was performed from leaf analysis and determination of vegetation indices: normalized difference vegetation (NDVI), normalized difference water index (NDWI) and soil adjusted vegetation index (SAVI). The evaluated areas have high vigor (NDVI > 0.70) and the highest values were observed in the rainy regions (1300 to 1600 mm year-1) (mean of 0.78). The NDWI index presents the highest correlation for the average levels of Ca and Mg. The NDVI, NDWI and SAVI indexes present a strong correlation with each other (-0.97 to 1.00) and can help in mapping vigor and consequently in eucalyptus productivity.
id UFSM-6_ce81f748966d4884b1dc99d28ce99dfe
oai_identifier_str oai:ojs.pkp.sfu.ca:article/65702
network_acronym_str UFSM-6
network_name_str Ciência Florestal (Online)
repository_id_str
spelling Vegetation indices in the nutritional diagnosis of hybrid stands of Eucalyptus urophylla S. T. BlakeÍndices de vegetação na diagnose nutricional de povoamentos híbridos de Eucalyptus urophylla S. T. BlakeManejo florestalSensoriamento remotoMacronutrientesForest managementRemote sensingMacronutrientsRemote sensing through band ratio techniques for nutritional monitoring of clonal eucalyptus plantations is essential to guarantee health and productivity, reducing costs of forestry enterprises. The objective was to apply vegetation indices from high resolution satellite images in the nutritional diagnosis of macronutrients in plantations of clonal hybrids of Eucalyptus urophylla S. T. Blake. The study was carried out in 62 areas of six municipalities in the state of Bahia under cultivation of homogeneous eucalyptus plantations, aged between 1.3 and 1.8 years. The design was completely randomized with six treatments constituted by the rainfall regime (1000 to 1300 mm year-1 and 1300 to 1600 mm year-1) and soil types (class and texture). The nutritional diagnosis of nitrogen (N), phosphorus (P), potassium (K), calcium (Ca), magnesium (Mg) and sulfur (S) was performed from leaf analysis and determination of vegetation indices: normalized difference vegetation (NDVI), normalized difference water index (NDWI) and soil adjusted vegetation index (SAVI). The evaluated areas have high vigor (NDVI > 0.70) and the highest values were observed in the rainy regions (1300 to 1600 mm year-1) (mean of 0.78). The NDWI index presents the highest correlation for the average levels of Ca and Mg. The NDVI, NDWI and SAVI indexes present a strong correlation with each other (-0.97 to 1.00) and can help in mapping vigor and consequently in eucalyptus productivity.O sensoriamento remoto, por meio das técnicas de razão de bandas para o monitoramento nutricional de plantios clonais de eucalipto, é fundamental para garantir a sanidade, produtividade e reduzir custos de empreendimentos florestais. Objetivou-se aplicar índices de vegetação a partir de imagens de satélite de alta resolução na diagnose nutricional de macronutrientes em plantios de híbridos clonais de Eucalyptus urophylla S. T. Blake. O estudo foi realizado em 62 áreas de seis municípios do estado da Bahia sob cultivo de plantios homogêneos de eucalipto, com idades entre 1,3 e 1,8 anos. O delineamento foi inteiramente casualizado com seis tratamentos constituídos pelo regime pluviométrico (1000 a 1300 mm ano-1 e 1300 a 1600 mm ano-1) e tipos de solo (classe e textura). A diagnose nutricional de nitrogênio (N), fósforo (P), potássio (K), cálcio (Ca), magnésio (Mg) e enxofre (S) foi realizada a partir da análise foliar e da determinação dos índices de vegetação: índice de vegetação por diferença normalizada (NDVI), índice de diferença normalizada da água (NDWI) e índice de vegetação ajustado ao solo (SAVI). As áreas avaliadas possuem alto vigor (NDVI > 0,70) e os maiores valores foram observados nas regiões chuvosas (1300 a 1600 mm ano-1) (médio de 0,78). O índice NDWI apresenta maior correlação para os teores médios de Ca e Mg. Os índices NDVI, NDWI e SAVI apresentam forte correlação entre si (-0,97 a 1,00) e podem auxiliar no mapeamento do vigor e consequentemente na produtividade de eucalipto.Universidade Federal de Santa Maria2023-06-07info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://periodicos.ufsm.br/cienciaflorestal/article/view/6570210.5902/1980509865702Ciência Florestal; Vol. 33 No. 2 (2023): Publicação Contínua; e65702Ciência Florestal; v. 33 n. 2 (2023): Publicação Contínua; e657021980-50980103-9954reponame:Ciência Florestal (Online)instname:Universidade Federal de Santa Maria (UFSM)instacron:UFSMporhttps://periodicos.ufsm.br/cienciaflorestal/article/view/65702/60972Copyright (c) 2023 Ciência Florestalhttp://creativecommons.org/licenses/by-nc/4.0info:eu-repo/semantics/openAccessRamos, Juliana Carvalho BarbosaLeite, Elton da SilvaPoelking, Everton LuísFreitas, Luis Carlos deMelo, Iago NeryMartins, Ricardo PrevidenteCosta, João Albany2023-07-21T03:38:48Zoai:ojs.pkp.sfu.ca:article/65702Revistahttp://www.ufsm.br/cienciaflorestal/ONGhttps://old.scielo.br/oai/scielo-oai.php||cienciaflorestal@ufsm.br|| cienciaflorestal@gmail.com|| cf@smail.ufsm.br1980-50980103-9954opendoar:2023-07-21T03:38:48Ciência Florestal (Online) - Universidade Federal de Santa Maria (UFSM)false
dc.title.none.fl_str_mv Vegetation indices in the nutritional diagnosis of hybrid stands of Eucalyptus urophylla S. T. Blake
Índices de vegetação na diagnose nutricional de povoamentos híbridos de Eucalyptus urophylla S. T. Blake
title Vegetation indices in the nutritional diagnosis of hybrid stands of Eucalyptus urophylla S. T. Blake
spellingShingle Vegetation indices in the nutritional diagnosis of hybrid stands of Eucalyptus urophylla S. T. Blake
Ramos, Juliana Carvalho Barbosa
Manejo florestal
Sensoriamento remoto
Macronutrientes
Forest management
Remote sensing
Macronutrients
title_short Vegetation indices in the nutritional diagnosis of hybrid stands of Eucalyptus urophylla S. T. Blake
title_full Vegetation indices in the nutritional diagnosis of hybrid stands of Eucalyptus urophylla S. T. Blake
title_fullStr Vegetation indices in the nutritional diagnosis of hybrid stands of Eucalyptus urophylla S. T. Blake
title_full_unstemmed Vegetation indices in the nutritional diagnosis of hybrid stands of Eucalyptus urophylla S. T. Blake
title_sort Vegetation indices in the nutritional diagnosis of hybrid stands of Eucalyptus urophylla S. T. Blake
author Ramos, Juliana Carvalho Barbosa
author_facet Ramos, Juliana Carvalho Barbosa
Leite, Elton da Silva
Poelking, Everton Luís
Freitas, Luis Carlos de
Melo, Iago Nery
Martins, Ricardo Previdente
Costa, João Albany
author_role author
author2 Leite, Elton da Silva
Poelking, Everton Luís
Freitas, Luis Carlos de
Melo, Iago Nery
Martins, Ricardo Previdente
Costa, João Albany
author2_role author
author
author
author
author
author
dc.contributor.author.fl_str_mv Ramos, Juliana Carvalho Barbosa
Leite, Elton da Silva
Poelking, Everton Luís
Freitas, Luis Carlos de
Melo, Iago Nery
Martins, Ricardo Previdente
Costa, João Albany
dc.subject.por.fl_str_mv Manejo florestal
Sensoriamento remoto
Macronutrientes
Forest management
Remote sensing
Macronutrients
topic Manejo florestal
Sensoriamento remoto
Macronutrientes
Forest management
Remote sensing
Macronutrients
description Remote sensing through band ratio techniques for nutritional monitoring of clonal eucalyptus plantations is essential to guarantee health and productivity, reducing costs of forestry enterprises. The objective was to apply vegetation indices from high resolution satellite images in the nutritional diagnosis of macronutrients in plantations of clonal hybrids of Eucalyptus urophylla S. T. Blake. The study was carried out in 62 areas of six municipalities in the state of Bahia under cultivation of homogeneous eucalyptus plantations, aged between 1.3 and 1.8 years. The design was completely randomized with six treatments constituted by the rainfall regime (1000 to 1300 mm year-1 and 1300 to 1600 mm year-1) and soil types (class and texture). The nutritional diagnosis of nitrogen (N), phosphorus (P), potassium (K), calcium (Ca), magnesium (Mg) and sulfur (S) was performed from leaf analysis and determination of vegetation indices: normalized difference vegetation (NDVI), normalized difference water index (NDWI) and soil adjusted vegetation index (SAVI). The evaluated areas have high vigor (NDVI > 0.70) and the highest values were observed in the rainy regions (1300 to 1600 mm year-1) (mean of 0.78). The NDWI index presents the highest correlation for the average levels of Ca and Mg. The NDVI, NDWI and SAVI indexes present a strong correlation with each other (-0.97 to 1.00) and can help in mapping vigor and consequently in eucalyptus productivity.
publishDate 2023
dc.date.none.fl_str_mv 2023-06-07
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://periodicos.ufsm.br/cienciaflorestal/article/view/65702
10.5902/1980509865702
url https://periodicos.ufsm.br/cienciaflorestal/article/view/65702
identifier_str_mv 10.5902/1980509865702
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv https://periodicos.ufsm.br/cienciaflorestal/article/view/65702/60972
dc.rights.driver.fl_str_mv Copyright (c) 2023 Ciência Florestal
http://creativecommons.org/licenses/by-nc/4.0
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Copyright (c) 2023 Ciência Florestal
http://creativecommons.org/licenses/by-nc/4.0
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal de Santa Maria
publisher.none.fl_str_mv Universidade Federal de Santa Maria
dc.source.none.fl_str_mv Ciência Florestal; Vol. 33 No. 2 (2023): Publicação Contínua; e65702
Ciência Florestal; v. 33 n. 2 (2023): Publicação Contínua; e65702
1980-5098
0103-9954
reponame:Ciência Florestal (Online)
instname:Universidade Federal de Santa Maria (UFSM)
instacron:UFSM
instname_str Universidade Federal de Santa Maria (UFSM)
instacron_str UFSM
institution UFSM
reponame_str Ciência Florestal (Online)
collection Ciência Florestal (Online)
repository.name.fl_str_mv Ciência Florestal (Online) - Universidade Federal de Santa Maria (UFSM)
repository.mail.fl_str_mv ||cienciaflorestal@ufsm.br|| cienciaflorestal@gmail.com|| cf@smail.ufsm.br
_version_ 1799944135928446976