Abordagens de machine learning aplicadas à manutenção preditiva industrial para a detecção de falhas

Detalhes bibliográficos
Autor(a) principal: Bromberger, Dani Antonini
Data de Publicação: 2024
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Manancial - Repositório Digital da UFSM
Texto Completo: http://repositorio.ufsm.br/handle/1/31838
Resumo: Artificial intelligence (AI) approaches in predictive maintenance (PdM) are reshaping how industries manage equipment maintenance. With AI techniques such as machine learning (ML) and real-time data analysis, it is possible to accurately and efficiently identify equip-ment failures. However, despite a favorable scenario, the implementation of AI in PdM faces challenges due to the absence of reliable historical equipment data, class imbalance in da-tasets, and the lack of interpretability in model decisions. For that reason, this research aims to develop AI approaches for equipment PdM to enhance the reliability of historical data, ad-dress class imbalance, and improve model interpretability. To contextualize the problem, a literature review was conducted, and 33 articles were selected and analyzed. The analysis re-vealed that leading methodologies utilize a dataset with information on equipment operating history. Following dataset preprocessing, AI algorithms are employed to identify patterns and anomalies in the data. A case study was conducted using a real-world water pump dataset to validate the effectiveness of the AI approaches. The dataset included sensor readings and the operational history of the water pump. After an initial analysis through Exploratory Data Analysis (EDA), data preprocessing techniques, such as forward fill propagation, normalizer, LabelEncoder, Principal Components Analysis (PCA), and linear correlation matrix, were applied to enhance data reliability. Subsequently, three ML algorithms — Random Forest (RF), Support Vector Machine (SVM), and k-nearest Neighbors (k-NN) — were adopted for model training, and validated using k-fold Cross-Validation. Five datasampling techniques—Random OverSampling, Borderline SMOTE, TomekLinks, NearMiss, and Cluster Cen-troids—were implemented to mitigate class imbalance. Furthermore, hyperparameter tuning via Grid Search was applied to refine the model's learning process. The models' decisions were made more interpretable by adopting SHAP values to identify key features influencing failure prediction probability. The results demonstrated that the Random Forest model with Cluster Centroids (RF_CC) yielded superior performance in terms of recall and AUC ROC. Additionally, features such as sensor_04, sensor_35, and sensor_33 were found to be most influential in model decision-making. In conclusion, the research successfully developed and evaluated AI approaches for PdM, showcasing the potential to enhance equipment reliability and optimize maintenance strategies.
id UFSM_096af6a0b639a6823c4d54cc8a66e307
oai_identifier_str oai:repositorio.ufsm.br:1/31838
network_acronym_str UFSM
network_name_str Manancial - Repositório Digital da UFSM
repository_id_str
spelling Abordagens de machine learning aplicadas à manutenção preditiva industrial para a detecção de falhasMachine learning approaches applied to industrial pre-dictive maintenance for failure detectionManutenção preditivaInteligência artificialMachine learningDatasamplingSHAP valuesPredictive maintenanceArtificial intelligenceCNPQ::ENGENHARIAS::ENGENHARIA DE PRODUCAOArtificial intelligence (AI) approaches in predictive maintenance (PdM) are reshaping how industries manage equipment maintenance. With AI techniques such as machine learning (ML) and real-time data analysis, it is possible to accurately and efficiently identify equip-ment failures. However, despite a favorable scenario, the implementation of AI in PdM faces challenges due to the absence of reliable historical equipment data, class imbalance in da-tasets, and the lack of interpretability in model decisions. For that reason, this research aims to develop AI approaches for equipment PdM to enhance the reliability of historical data, ad-dress class imbalance, and improve model interpretability. To contextualize the problem, a literature review was conducted, and 33 articles were selected and analyzed. The analysis re-vealed that leading methodologies utilize a dataset with information on equipment operating history. Following dataset preprocessing, AI algorithms are employed to identify patterns and anomalies in the data. A case study was conducted using a real-world water pump dataset to validate the effectiveness of the AI approaches. The dataset included sensor readings and the operational history of the water pump. After an initial analysis through Exploratory Data Analysis (EDA), data preprocessing techniques, such as forward fill propagation, normalizer, LabelEncoder, Principal Components Analysis (PCA), and linear correlation matrix, were applied to enhance data reliability. Subsequently, three ML algorithms — Random Forest (RF), Support Vector Machine (SVM), and k-nearest Neighbors (k-NN) — were adopted for model training, and validated using k-fold Cross-Validation. Five datasampling techniques—Random OverSampling, Borderline SMOTE, TomekLinks, NearMiss, and Cluster Cen-troids—were implemented to mitigate class imbalance. Furthermore, hyperparameter tuning via Grid Search was applied to refine the model's learning process. The models' decisions were made more interpretable by adopting SHAP values to identify key features influencing failure prediction probability. The results demonstrated that the Random Forest model with Cluster Centroids (RF_CC) yielded superior performance in terms of recall and AUC ROC. Additionally, features such as sensor_04, sensor_35, and sensor_33 were found to be most influential in model decision-making. In conclusion, the research successfully developed and evaluated AI approaches for PdM, showcasing the potential to enhance equipment reliability and optimize maintenance strategies.As abordagens de inteligência artificial (IA) na manutenção preditiva (PdM) estão mudando a forma como as indústrias gerenciam a manutenção dos equipamentos. Com técnicas de IA como machine learning (ML) e análise de dados em tempo real é possível identificar falhas nos equipamentos de forma precisa e eficiente. No entanto, apesar de um cenário favorável, a implementação da IA ao PdM é um desafio devido à ausência de dados históricos confiáveis dos equipamentos, o desbalanceamento de classe dos datasets e a falta de interpretabilidade das decisões dos modelos. Com isso, a presente pesquisa propõe desenvolver abordagens de IA para o PdM com a finalidade de tornar os dados históricos mais confiáveis, mitigar o desbalanceamento de classe e melhorar a interpretabilidade das decisões do modelo. Para contextualizar o problema, uma revisão de literatura foi desenvolvida e 33 artigos foram selecionados e analisados. Com a análise dos artigos foi verificado que as principais metodologias utilizam um dataset com informações do histórico de funcionamento dos equipamentos e, após o pré-processamento do dataset, algoritmos de IA são utilizados para verificar padrões nos dados. Após a revisão de literatura, para validar as abordagens de IA, um estudo de caso foi realizado utilizando um dataset com dados reais de uma bomba de água. O dataset continha as leituras de sensores e o histórico das condições operacionais da bomba de água. Após análise inicial por meio da Exploratory Data Analysis (EDA), os dados foram pré-processados adotando técnicas como forward fill propagation, normalizer, LabelEncoder, Principal Components Analysis (PCA) e matriz de correlação linear para tornar mais confiáveis. Na sequência, três algoritmos de ML - Random Forest (RF), Support Vector Machine (SVM) e k-Nearest Neighbors (k-NN) - foram adotados para o treinamento do modelo, sendo validado por k-fold Cross-Validation. Para mitigar o desbalanceamento de classe, cinco técnicas de datasampling - Random OverSampling, Borderline SMOTE, TomekLinks, NearMiss e Cluster Centroids - foram adotadas. Além do mais, ajustes de hiperparâmetros foram aplicados, por meio do Grid Search, para otimizar o processo de aprendizagem. Para tornar as decisões do modelo interpretáveis, foram adotados os SHAP values para identificar as principais features que influenciaram a probabilidade de prever as falhas. Assim, os resultados demonstraram que o modelo Random Forest com Cluster Centroids (RF_CC) apresentou melhores resultados de recall e AUC ROC. Além disso, as features que mais contribuíram para a tomada de decisão foram sensor_04, sensor_35 e sensor_33. Concluindo, a pesquisa desenvolveu e avaliou com sucesso abordagens de IA para PdM, demonstrando potencial para melhorar a confiabilidade dos equipamentos e otimizar estratégias de manutenção.Universidade Federal de Santa MariaBrasilEngenharia de ProduçãoUFSMPrograma de Pós-Graduação em Engenharia de ProduçãoCentro de TecnologiaNeuenfeldt Júnior, Alvaro Luizhttp://lattes.cnpq.br/9694701078826818Garcia, Vinícius JacquesGusmão, Ana Paula Henriques deBromberger, Dani Antonini2024-04-25T12:50:02Z2024-04-25T12:50:02Z2024-03-11info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://repositorio.ufsm.br/handle/1/31838porAttribution-NonCommercial-NoDerivatives 4.0 Internationalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessreponame:Manancial - Repositório Digital da UFSMinstname:Universidade Federal de Santa Maria (UFSM)instacron:UFSM2024-04-25T12:50:03Zoai:repositorio.ufsm.br:1/31838Biblioteca Digital de Teses e Dissertaçõeshttps://repositorio.ufsm.br/ONGhttps://repositorio.ufsm.br/oai/requestatendimento.sib@ufsm.br||tedebc@gmail.comopendoar:2024-04-25T12:50:03Manancial - Repositório Digital da UFSM - Universidade Federal de Santa Maria (UFSM)false
dc.title.none.fl_str_mv Abordagens de machine learning aplicadas à manutenção preditiva industrial para a detecção de falhas
Machine learning approaches applied to industrial pre-dictive maintenance for failure detection
title Abordagens de machine learning aplicadas à manutenção preditiva industrial para a detecção de falhas
spellingShingle Abordagens de machine learning aplicadas à manutenção preditiva industrial para a detecção de falhas
Bromberger, Dani Antonini
Manutenção preditiva
Inteligência artificial
Machine learning
Datasampling
SHAP values
Predictive maintenance
Artificial intelligence
CNPQ::ENGENHARIAS::ENGENHARIA DE PRODUCAO
title_short Abordagens de machine learning aplicadas à manutenção preditiva industrial para a detecção de falhas
title_full Abordagens de machine learning aplicadas à manutenção preditiva industrial para a detecção de falhas
title_fullStr Abordagens de machine learning aplicadas à manutenção preditiva industrial para a detecção de falhas
title_full_unstemmed Abordagens de machine learning aplicadas à manutenção preditiva industrial para a detecção de falhas
title_sort Abordagens de machine learning aplicadas à manutenção preditiva industrial para a detecção de falhas
author Bromberger, Dani Antonini
author_facet Bromberger, Dani Antonini
author_role author
dc.contributor.none.fl_str_mv Neuenfeldt Júnior, Alvaro Luiz
http://lattes.cnpq.br/9694701078826818
Garcia, Vinícius Jacques
Gusmão, Ana Paula Henriques de
dc.contributor.author.fl_str_mv Bromberger, Dani Antonini
dc.subject.por.fl_str_mv Manutenção preditiva
Inteligência artificial
Machine learning
Datasampling
SHAP values
Predictive maintenance
Artificial intelligence
CNPQ::ENGENHARIAS::ENGENHARIA DE PRODUCAO
topic Manutenção preditiva
Inteligência artificial
Machine learning
Datasampling
SHAP values
Predictive maintenance
Artificial intelligence
CNPQ::ENGENHARIAS::ENGENHARIA DE PRODUCAO
description Artificial intelligence (AI) approaches in predictive maintenance (PdM) are reshaping how industries manage equipment maintenance. With AI techniques such as machine learning (ML) and real-time data analysis, it is possible to accurately and efficiently identify equip-ment failures. However, despite a favorable scenario, the implementation of AI in PdM faces challenges due to the absence of reliable historical equipment data, class imbalance in da-tasets, and the lack of interpretability in model decisions. For that reason, this research aims to develop AI approaches for equipment PdM to enhance the reliability of historical data, ad-dress class imbalance, and improve model interpretability. To contextualize the problem, a literature review was conducted, and 33 articles were selected and analyzed. The analysis re-vealed that leading methodologies utilize a dataset with information on equipment operating history. Following dataset preprocessing, AI algorithms are employed to identify patterns and anomalies in the data. A case study was conducted using a real-world water pump dataset to validate the effectiveness of the AI approaches. The dataset included sensor readings and the operational history of the water pump. After an initial analysis through Exploratory Data Analysis (EDA), data preprocessing techniques, such as forward fill propagation, normalizer, LabelEncoder, Principal Components Analysis (PCA), and linear correlation matrix, were applied to enhance data reliability. Subsequently, three ML algorithms — Random Forest (RF), Support Vector Machine (SVM), and k-nearest Neighbors (k-NN) — were adopted for model training, and validated using k-fold Cross-Validation. Five datasampling techniques—Random OverSampling, Borderline SMOTE, TomekLinks, NearMiss, and Cluster Cen-troids—were implemented to mitigate class imbalance. Furthermore, hyperparameter tuning via Grid Search was applied to refine the model's learning process. The models' decisions were made more interpretable by adopting SHAP values to identify key features influencing failure prediction probability. The results demonstrated that the Random Forest model with Cluster Centroids (RF_CC) yielded superior performance in terms of recall and AUC ROC. Additionally, features such as sensor_04, sensor_35, and sensor_33 were found to be most influential in model decision-making. In conclusion, the research successfully developed and evaluated AI approaches for PdM, showcasing the potential to enhance equipment reliability and optimize maintenance strategies.
publishDate 2024
dc.date.none.fl_str_mv 2024-04-25T12:50:02Z
2024-04-25T12:50:02Z
2024-03-11
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://repositorio.ufsm.br/handle/1/31838
url http://repositorio.ufsm.br/handle/1/31838
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International
http://creativecommons.org/licenses/by-nc-nd/4.0/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International
http://creativecommons.org/licenses/by-nc-nd/4.0/
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal de Santa Maria
Brasil
Engenharia de Produção
UFSM
Programa de Pós-Graduação em Engenharia de Produção
Centro de Tecnologia
publisher.none.fl_str_mv Universidade Federal de Santa Maria
Brasil
Engenharia de Produção
UFSM
Programa de Pós-Graduação em Engenharia de Produção
Centro de Tecnologia
dc.source.none.fl_str_mv reponame:Manancial - Repositório Digital da UFSM
instname:Universidade Federal de Santa Maria (UFSM)
instacron:UFSM
instname_str Universidade Federal de Santa Maria (UFSM)
instacron_str UFSM
institution UFSM
reponame_str Manancial - Repositório Digital da UFSM
collection Manancial - Repositório Digital da UFSM
repository.name.fl_str_mv Manancial - Repositório Digital da UFSM - Universidade Federal de Santa Maria (UFSM)
repository.mail.fl_str_mv atendimento.sib@ufsm.br||tedebc@gmail.com
_version_ 1805922171681243136