Matheurística dinâmica e pro-ativa integrada a inversores híbridos para o gerenciamento robusto de recursos energéticos distribuídos
Autor(a) principal: | |
---|---|
Data de Publicação: | 2020 |
Tipo de documento: | Tese |
Idioma: | por |
Título da fonte: | Manancial - Repositório Digital da UFSM |
dARK ID: | ark:/26339/001300000wc1h |
Texto Completo: | http://repositorio.ufsm.br/handle/1/22689 |
Resumo: | The growing adhesion of residential consumers to renewable sources of Distributed Generation (DG), through small generation systems, combined with the perspective of Energy Storage Systems (ESS) in integration with energy distribution systems electricity by means of hybrid inverters, makes it necessary to use methods that manage these energy resources. Battery Energy Storage System (BESS) and Photovoltaic generation systems are examples of Distributed Energy Resources (DER) that enable consumers to actively interact with current electricity systems. A Smart Home Energy Management (SHEM) integrates DER for efficient and economical operation in dynamic pricing scenarios for purchase and sale energy. In this thesis, a dynamic and proactive SHEM matheuristic approach is presented to address the problem of planning and operating in real time of a residential storage system with distributed photovoltaic generation. The integration of a hybrid inverter to the SHEM provides maximum comfort to the user because it does not require a demand control system, additionally allowing the reduction of energy purchase costs with meeting the load at the time when it allows the commercialization of energy surplus. To deal with the dynamic problem related to SHEM and the uncertainties regarding the load, renewable energy and purchase and sales energy tariffs, a Mixed Integer Linear Programming model was developed that encompasses a robust optimization responsive to uncertainties (Robust-MILP, also involving technical restrictions and criteria to increase the life cycle of the storage system. The dynamic aspect gives the system a real applicability from the permanent correction of the Robust-MILP solution with a heuristic that acts proactively in the planning, allowing a quick solution of each operation step and a structure based on rules to adjust the robust optimization considering the operation in real time and the information collected from the previous steps. The case studies presented demonstrates that the mathematical heuristic was able to offer benefits to the energy planning and operation in real time of the SHEM while presenting a computational complexity compatible with its use in real systems. |
id |
UFSM_0febbd9f545acaa9eaad28e5efd0b174 |
---|---|
oai_identifier_str |
oai:repositorio.ufsm.br:1/22689 |
network_acronym_str |
UFSM |
network_name_str |
Manancial - Repositório Digital da UFSM |
repository_id_str |
|
spelling |
Matheurística dinâmica e pro-ativa integrada a inversores híbridos para o gerenciamento robusto de recursos energéticos distribuídosDynamic and pro-active matheuristic integrated to hybrid inverters for robust management of distributed energy resourcesSHEMRecursos energéticos distribuídosInversor híbridoPLIMOtimização robustaOtimização robusta ajustávelDistributed energy resourcesHybrid inverterMILPRobust optimizationAdjustable robust optimizationCNPQ::ENGENHARIAS::ENGENHARIA ELETRICAThe growing adhesion of residential consumers to renewable sources of Distributed Generation (DG), through small generation systems, combined with the perspective of Energy Storage Systems (ESS) in integration with energy distribution systems electricity by means of hybrid inverters, makes it necessary to use methods that manage these energy resources. Battery Energy Storage System (BESS) and Photovoltaic generation systems are examples of Distributed Energy Resources (DER) that enable consumers to actively interact with current electricity systems. A Smart Home Energy Management (SHEM) integrates DER for efficient and economical operation in dynamic pricing scenarios for purchase and sale energy. In this thesis, a dynamic and proactive SHEM matheuristic approach is presented to address the problem of planning and operating in real time of a residential storage system with distributed photovoltaic generation. The integration of a hybrid inverter to the SHEM provides maximum comfort to the user because it does not require a demand control system, additionally allowing the reduction of energy purchase costs with meeting the load at the time when it allows the commercialization of energy surplus. To deal with the dynamic problem related to SHEM and the uncertainties regarding the load, renewable energy and purchase and sales energy tariffs, a Mixed Integer Linear Programming model was developed that encompasses a robust optimization responsive to uncertainties (Robust-MILP, also involving technical restrictions and criteria to increase the life cycle of the storage system. The dynamic aspect gives the system a real applicability from the permanent correction of the Robust-MILP solution with a heuristic that acts proactively in the planning, allowing a quick solution of each operation step and a structure based on rules to adjust the robust optimization considering the operation in real time and the information collected from the previous steps. The case studies presented demonstrates that the mathematical heuristic was able to offer benefits to the energy planning and operation in real time of the SHEM while presenting a computational complexity compatible with its use in real systems.A crescente adesão dos consumidores residenciais às fontes renováveis de Geração Distribuída (GD), através de sistemas de pequeno porte, aliada à perspectiva do uso de sistemas de armazenamento de energia, Energy Storage System (ESS), em integração aos sistemas de distribuição de energia elétrica por meio de inversores híbridos, faz com que se torne necessária a utilização de métodos que realizem o gerenciamento destes recursos energéticos. Sistemas de armazenamento a baterias, Battery Energy Storage System (BESS), e os sistemas de geração fotovoltaica são exemplos de Recursos Energéticos Distribuídos (RED) que possibilitam a interação de forma ativa dos consumidores nos atuais sistemas de energia elétrica. Um sistema de gerenciamento de energia elétrica residencial, Smart Home Energy Management (SHEM), integra os RED com vistas à operação eficiente e econômica em cenários de tarifação dinâmica para compra e venda de energia. Nesta tese, uma abordagem matheurística dinâmica e pró-ativa do SHEM é apresentada para tratar do problema de planejamento e operação em tempo real de um sistema de armazenamento residencial com geração distribuída fotovoltaica. A integração de um inversor híbrido ao SHEM confere o máximo conforto ao usuário porque prescinde um sistema de controle de demanda, permitindo adicionalmente a redução dos custos de compra de energia com o atendimento à carga ao tempo em que oportuniza a comercialização do excedente de energia. Para lidar com o problema dinâmico relacionado ao SHEM e com as incertezas quanto à carga, energia renovável e tarifas de compra e venda de energia, foi desenvolvido um modelo de Programação Linear Inteira Mista que engloba uma otimização robusta responsiva às incertezas (PLIM-Robusta), envolvendo também restrições técnicas e os critérios para aumentar o ciclo de vida do sistema de armazenamento. O aspecto dinâmico confere ao sistema uma aplicabilidade real a partir da correção permanente da solução PLIM-Robusta com uma heurística que atua proativamente no planejamento, permitindo uma solução rápida de cada etapa e uma estrutura baseada em regras para ajuste da otimização robusta considerando a operação em tempo real e as informações coletadas das etapas anteriores. Os estudos de caso apresentados demonstram que a heurística matemática foi capaz de oferecer benefícios ao planejamento energético e operação em tempo real do SHEM ao mesmo tempo que apresenta uma complexidade computacional compatível com a sua utilização em sistemas reais.Universidade Federal de Santa MariaBrasilEngenharia ElétricaUFSMPrograma de Pós-Graduação em Engenharia ElétricaCentro de TecnologiaCanha, Luciane Neveshttp://lattes.cnpq.br/6991878627141193Garcia, Vinicius JacquesMiranda, Vladimiro Henrique Barrosa Pinto dePereira, Paulo Ricardo da SilvaMilbradt, Rafael GresslerBarriquello, Carlos HenriqueAzevedo, Rodrigo Motta de2021-11-03T18:26:29Z2021-11-03T18:26:29Z2020-12-18info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttp://repositorio.ufsm.br/handle/1/22689ark:/26339/001300000wc1hporAttribution-NonCommercial-NoDerivatives 4.0 Internationalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessreponame:Manancial - Repositório Digital da UFSMinstname:Universidade Federal de Santa Maria (UFSM)instacron:UFSM2021-11-04T06:04:31Zoai:repositorio.ufsm.br:1/22689Biblioteca Digital de Teses e Dissertaçõeshttps://repositorio.ufsm.br/ONGhttps://repositorio.ufsm.br/oai/requestatendimento.sib@ufsm.br||tedebc@gmail.comopendoar:2021-11-04T06:04:31Manancial - Repositório Digital da UFSM - Universidade Federal de Santa Maria (UFSM)false |
dc.title.none.fl_str_mv |
Matheurística dinâmica e pro-ativa integrada a inversores híbridos para o gerenciamento robusto de recursos energéticos distribuídos Dynamic and pro-active matheuristic integrated to hybrid inverters for robust management of distributed energy resources |
title |
Matheurística dinâmica e pro-ativa integrada a inversores híbridos para o gerenciamento robusto de recursos energéticos distribuídos |
spellingShingle |
Matheurística dinâmica e pro-ativa integrada a inversores híbridos para o gerenciamento robusto de recursos energéticos distribuídos Azevedo, Rodrigo Motta de SHEM Recursos energéticos distribuídos Inversor híbrido PLIM Otimização robusta Otimização robusta ajustável Distributed energy resources Hybrid inverter MILP Robust optimization Adjustable robust optimization CNPQ::ENGENHARIAS::ENGENHARIA ELETRICA |
title_short |
Matheurística dinâmica e pro-ativa integrada a inversores híbridos para o gerenciamento robusto de recursos energéticos distribuídos |
title_full |
Matheurística dinâmica e pro-ativa integrada a inversores híbridos para o gerenciamento robusto de recursos energéticos distribuídos |
title_fullStr |
Matheurística dinâmica e pro-ativa integrada a inversores híbridos para o gerenciamento robusto de recursos energéticos distribuídos |
title_full_unstemmed |
Matheurística dinâmica e pro-ativa integrada a inversores híbridos para o gerenciamento robusto de recursos energéticos distribuídos |
title_sort |
Matheurística dinâmica e pro-ativa integrada a inversores híbridos para o gerenciamento robusto de recursos energéticos distribuídos |
author |
Azevedo, Rodrigo Motta de |
author_facet |
Azevedo, Rodrigo Motta de |
author_role |
author |
dc.contributor.none.fl_str_mv |
Canha, Luciane Neves http://lattes.cnpq.br/6991878627141193 Garcia, Vinicius Jacques Miranda, Vladimiro Henrique Barrosa Pinto de Pereira, Paulo Ricardo da Silva Milbradt, Rafael Gressler Barriquello, Carlos Henrique |
dc.contributor.author.fl_str_mv |
Azevedo, Rodrigo Motta de |
dc.subject.por.fl_str_mv |
SHEM Recursos energéticos distribuídos Inversor híbrido PLIM Otimização robusta Otimização robusta ajustável Distributed energy resources Hybrid inverter MILP Robust optimization Adjustable robust optimization CNPQ::ENGENHARIAS::ENGENHARIA ELETRICA |
topic |
SHEM Recursos energéticos distribuídos Inversor híbrido PLIM Otimização robusta Otimização robusta ajustável Distributed energy resources Hybrid inverter MILP Robust optimization Adjustable robust optimization CNPQ::ENGENHARIAS::ENGENHARIA ELETRICA |
description |
The growing adhesion of residential consumers to renewable sources of Distributed Generation (DG), through small generation systems, combined with the perspective of Energy Storage Systems (ESS) in integration with energy distribution systems electricity by means of hybrid inverters, makes it necessary to use methods that manage these energy resources. Battery Energy Storage System (BESS) and Photovoltaic generation systems are examples of Distributed Energy Resources (DER) that enable consumers to actively interact with current electricity systems. A Smart Home Energy Management (SHEM) integrates DER for efficient and economical operation in dynamic pricing scenarios for purchase and sale energy. In this thesis, a dynamic and proactive SHEM matheuristic approach is presented to address the problem of planning and operating in real time of a residential storage system with distributed photovoltaic generation. The integration of a hybrid inverter to the SHEM provides maximum comfort to the user because it does not require a demand control system, additionally allowing the reduction of energy purchase costs with meeting the load at the time when it allows the commercialization of energy surplus. To deal with the dynamic problem related to SHEM and the uncertainties regarding the load, renewable energy and purchase and sales energy tariffs, a Mixed Integer Linear Programming model was developed that encompasses a robust optimization responsive to uncertainties (Robust-MILP, also involving technical restrictions and criteria to increase the life cycle of the storage system. The dynamic aspect gives the system a real applicability from the permanent correction of the Robust-MILP solution with a heuristic that acts proactively in the planning, allowing a quick solution of each operation step and a structure based on rules to adjust the robust optimization considering the operation in real time and the information collected from the previous steps. The case studies presented demonstrates that the mathematical heuristic was able to offer benefits to the energy planning and operation in real time of the SHEM while presenting a computational complexity compatible with its use in real systems. |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020-12-18 2021-11-03T18:26:29Z 2021-11-03T18:26:29Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
format |
doctoralThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://repositorio.ufsm.br/handle/1/22689 |
dc.identifier.dark.fl_str_mv |
ark:/26339/001300000wc1h |
url |
http://repositorio.ufsm.br/handle/1/22689 |
identifier_str_mv |
ark:/26339/001300000wc1h |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.rights.driver.fl_str_mv |
Attribution-NonCommercial-NoDerivatives 4.0 International http://creativecommons.org/licenses/by-nc-nd/4.0/ info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Attribution-NonCommercial-NoDerivatives 4.0 International http://creativecommons.org/licenses/by-nc-nd/4.0/ |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidade Federal de Santa Maria Brasil Engenharia Elétrica UFSM Programa de Pós-Graduação em Engenharia Elétrica Centro de Tecnologia |
publisher.none.fl_str_mv |
Universidade Federal de Santa Maria Brasil Engenharia Elétrica UFSM Programa de Pós-Graduação em Engenharia Elétrica Centro de Tecnologia |
dc.source.none.fl_str_mv |
reponame:Manancial - Repositório Digital da UFSM instname:Universidade Federal de Santa Maria (UFSM) instacron:UFSM |
instname_str |
Universidade Federal de Santa Maria (UFSM) |
instacron_str |
UFSM |
institution |
UFSM |
reponame_str |
Manancial - Repositório Digital da UFSM |
collection |
Manancial - Repositório Digital da UFSM |
repository.name.fl_str_mv |
Manancial - Repositório Digital da UFSM - Universidade Federal de Santa Maria (UFSM) |
repository.mail.fl_str_mv |
atendimento.sib@ufsm.br||tedebc@gmail.com |
_version_ |
1815172406682058752 |