Interação genótipo × ambiente e dimensionamento amostral para estatísticas de precisão em ensaios de soja
Autor(a) principal: | |
---|---|
Data de Publicação: | 2021 |
Tipo de documento: | Dissertação |
Idioma: | por |
Título da fonte: | Manancial - Repositório Digital da UFSM |
dARK ID: | ark:/26339/001300000qsnz |
Texto Completo: | http://repositorio.ufsm.br/handle/1/21659 |
Resumo: | Soybean grain yield is a relevant characteristic that needs further understanding in highland and lowland scenarios, where there is a lack of comparative theoretical references, mainly regarding genotype × environment interaction. Another little approached aspect about these scenarios is the reliability of estimates of this variable, which initiates by the sampling process, normally performed empirically, causing an elevated bias when samplings are not representative. Therefore, the aims of this study were to verify the effects of genotype × environment interaction on soybean grain yield in highlands and lowlands of subtropical climate and to compare the adaptability and stability methodologies; to analyze the behavior of experimental precision statistics in front of the variations in the number of collected plants per experimental unit in highlands and lowlands; to define the optimal sample size per experimental unit for experimental precision statistics; and to propose predictive models for estimating the precision of experiments with soybean. Field trials were carried out during the 2017/2018 agricultural harvest in two locations of Rio Grande do Sul, on three sowing dates, totaling six experiments. In the first study, 2.70 m2 per plot were harvest and the grain yield of 20 genotypes was measured in both testing locations. With the collected data the significance of the interaction factor was verified and this factor was partitioned into simple and complex components. Next, linear bi-linear models were implemented, Additive Main Effect and Multiplicative Interaction (AMMI), Best Linear Unbiased Prediction (BLUP) and Genotype plus Genotype-Environment interaction (GGE), for verifying the stability of cultivars, with posterior comparison of methodologies through uncertainty statistics and Pearson’s correlation coefficient. In the second study, grain yield was assessed per plant, in 20 plants per plot, using 30 genotypes in the highland location and 20 genotypes in the lowland location, totaling 9,000 measured plants. Thirteen precision statistics were estimated and sample size per experimental unit was determined per statistic, simulating scenarios of 1, 2, ..., 1000 plants; consequently, predictive models for each statistic were parameterized, based on the number of collected plants. The results demonstrated greater grain yields in the highlands, where the second sowing date expressed the highest values. The complex component of interaction represented 82.11 %, which allowed inferring cases of genotype ranking alteration. Agreement between the GGE and BLUP methodologies was observed. The statistics were overestimated in smaller sample scenarios per experimental unit. With the increase of collected plants, exponentially proportional reductions of the confidence interval width of the calculated statistics were verified. This allowed proposing experimental precision prediction models, via confidence interval width and sample size per experimental unit. The sampling of 18 plants per experimental unit was enough for estimating experimental precision statistics. With the performed studies, a greater understanding of the highland and lowland edaphic scenarios on factors that aid cultivars recommendation and experimental planning became possible. |
id |
UFSM_156bf031ca3515dc4f2519cbef3e9b22 |
---|---|
oai_identifier_str |
oai:repositorio.ufsm.br:1/21659 |
network_acronym_str |
UFSM |
network_name_str |
Manancial - Repositório Digital da UFSM |
repository_id_str |
|
spelling |
Interação genótipo × ambiente e dimensionamento amostral para estatísticas de precisão em ensaios de sojaGenotype × environment interaction and sample dimensioning for precision statistics in soybean trialsAMMIBLUPGGEModelagemPlanejamento experimentalTerras altasTerras baixasExperimental planningHighlandsLowlandsModellingCNPQ::CIENCIAS AGRARIAS::AGRONOMIASoybean grain yield is a relevant characteristic that needs further understanding in highland and lowland scenarios, where there is a lack of comparative theoretical references, mainly regarding genotype × environment interaction. Another little approached aspect about these scenarios is the reliability of estimates of this variable, which initiates by the sampling process, normally performed empirically, causing an elevated bias when samplings are not representative. Therefore, the aims of this study were to verify the effects of genotype × environment interaction on soybean grain yield in highlands and lowlands of subtropical climate and to compare the adaptability and stability methodologies; to analyze the behavior of experimental precision statistics in front of the variations in the number of collected plants per experimental unit in highlands and lowlands; to define the optimal sample size per experimental unit for experimental precision statistics; and to propose predictive models for estimating the precision of experiments with soybean. Field trials were carried out during the 2017/2018 agricultural harvest in two locations of Rio Grande do Sul, on three sowing dates, totaling six experiments. In the first study, 2.70 m2 per plot were harvest and the grain yield of 20 genotypes was measured in both testing locations. With the collected data the significance of the interaction factor was verified and this factor was partitioned into simple and complex components. Next, linear bi-linear models were implemented, Additive Main Effect and Multiplicative Interaction (AMMI), Best Linear Unbiased Prediction (BLUP) and Genotype plus Genotype-Environment interaction (GGE), for verifying the stability of cultivars, with posterior comparison of methodologies through uncertainty statistics and Pearson’s correlation coefficient. In the second study, grain yield was assessed per plant, in 20 plants per plot, using 30 genotypes in the highland location and 20 genotypes in the lowland location, totaling 9,000 measured plants. Thirteen precision statistics were estimated and sample size per experimental unit was determined per statistic, simulating scenarios of 1, 2, ..., 1000 plants; consequently, predictive models for each statistic were parameterized, based on the number of collected plants. The results demonstrated greater grain yields in the highlands, where the second sowing date expressed the highest values. The complex component of interaction represented 82.11 %, which allowed inferring cases of genotype ranking alteration. Agreement between the GGE and BLUP methodologies was observed. The statistics were overestimated in smaller sample scenarios per experimental unit. With the increase of collected plants, exponentially proportional reductions of the confidence interval width of the calculated statistics were verified. This allowed proposing experimental precision prediction models, via confidence interval width and sample size per experimental unit. The sampling of 18 plants per experimental unit was enough for estimating experimental precision statistics. With the performed studies, a greater understanding of the highland and lowland edaphic scenarios on factors that aid cultivars recommendation and experimental planning became possible.Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPESA produtividade de grãos de soja é uma relevante característica que necessita de prévia compreensão em cenários de terras altas e baixas, em que referenciais teóricos comparativos são escassos, principalmente relacionados à interação genótipo × ambiente. Outro aspecto pouco abrangido nestes cenários é a confiabilidade de estimativas desta característica, que se inicia pelo processo de amostragem, normalmente realizado empiricamente, podendo ocasionar um viés elevado se as amostragens não forem representativas. Neste sentido, este estudo tem como objetivos verificar os efeitos da interação genótipo × ambiente na produtividade de grãos de soja em áreas de terras altas e baixas de clima subtropical e comparar metodologias de adaptabilidade e estabilidade; analisar o comportamento de estatísticas de precisão experimental frente às variações no número de plantas coletadas por unidade experimental em terras altas e baixas; definir o tamanho amostral ótimo por unidade experimental para estatísticas de precisão experimental; e propor modelos preditivos para estimar a precisão de experimentos com soja. Foram conduzidos ensaios de campo durante a safra agrícola de 2017/2018, em dois locais no Rio Grande do Sul e três épocas de semeadura, totalizando seis experimentos. No primeiro estudo, uma área de 2,70 m2 por parcela foi colhida e a produtividade de grãos foi mensurada em 20 genótipos em ambos os locais teste. Com os dados coletados, foi verificada a significância do fator interação e realizado o particionamento deste fator em componente simples e complexo. A seguir, foram implementados modelos lineares, bilineares, Additive Main Effect and Multiplicative Interaction (AMMI), Best Linear Unbiased Prediction (BLUP) e Genotype plus Genotype-Environment interaction (GGE), para a verificação da estabilidade de cultivares com posterior comparação de metodologias por meio de estatísticas de incerteza e coeficiente de correlação de Pearson. No segundo estudo, a produtividade de grãos foi avaliada por planta, em 20 plantas por parcela, utilizando 30 genótipos no local de terras altas e 20 genótipos no local de terras baixas, totalizando 9000 plantas mensuradas. Foram estimadas treze estatísticas e determinado o tamanho de amostra por unidade experimental por estatística, simulando cenários de 1, 2, ..., 1000 plantas; consequentemente, parametrizaram-se modelos preditivos para cada estatística, com base no número de plantas coletadas. Os resultados demonstraram maiores produtividades de grãos em terras altas, onde a segunda época de semeadura expressou os maiores valores. O componente complexo da interação representou 82,11 %, permitindo inferir casos de alteração de ranqueamentos de genótipos. Concordâncias entre as metodologias GGE e BLUP foram observadas. As estatísticas foram superestimadas em cenários amostrais menores por unidade experimental. Com o aumento de plantas coletadas foi possível verificar reduções exponencialmente proporcionais da amplitude do intervalo de confiança das estatísticas calculadas. Assim, possibilitando a proposição de modelos de previsão da precisão experimental, via amplitude de intervalos de confiança e tamanho amostral por unidade experimental. A amostragem de 18 plantas por unidade experimental foi suficiente para a estimativa das estatísticas de precisão experimental. Com os estudos realizados, maiores compreensões dos cenários edáficos de terras altas e baixas foram possíveis, sobre fatores que auxiliam na recomendação de cultivares e no planejamento experimental.Universidade Federal de Santa MariaBrasilAgronomiaUFSMPrograma de Pós-Graduação em Agronomia - Agricultura e AmbienteUFSM Frederico WestphalenToebe, Marcoshttp://lattes.cnpq.br/1350890583236601Marchioro, Volmir SérgioBenin, GiovaniSouza, Rafael Rodrigues de2021-07-30T21:25:00Z2021-07-30T21:25:00Z2021-02-26info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://repositorio.ufsm.br/handle/1/21659ark:/26339/001300000qsnzporAttribution-NonCommercial-NoDerivatives 4.0 Internationalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessreponame:Manancial - Repositório Digital da UFSMinstname:Universidade Federal de Santa Maria (UFSM)instacron:UFSM2021-08-20T18:44:17Zoai:repositorio.ufsm.br:1/21659Biblioteca Digital de Teses e Dissertaçõeshttps://repositorio.ufsm.br/ONGhttps://repositorio.ufsm.br/oai/requestatendimento.sib@ufsm.br||tedebc@gmail.comopendoar:2021-08-20T18:44:17Manancial - Repositório Digital da UFSM - Universidade Federal de Santa Maria (UFSM)false |
dc.title.none.fl_str_mv |
Interação genótipo × ambiente e dimensionamento amostral para estatísticas de precisão em ensaios de soja Genotype × environment interaction and sample dimensioning for precision statistics in soybean trials |
title |
Interação genótipo × ambiente e dimensionamento amostral para estatísticas de precisão em ensaios de soja |
spellingShingle |
Interação genótipo × ambiente e dimensionamento amostral para estatísticas de precisão em ensaios de soja Souza, Rafael Rodrigues de AMMI BLUP GGE Modelagem Planejamento experimental Terras altas Terras baixas Experimental planning Highlands Lowlands Modelling CNPQ::CIENCIAS AGRARIAS::AGRONOMIA |
title_short |
Interação genótipo × ambiente e dimensionamento amostral para estatísticas de precisão em ensaios de soja |
title_full |
Interação genótipo × ambiente e dimensionamento amostral para estatísticas de precisão em ensaios de soja |
title_fullStr |
Interação genótipo × ambiente e dimensionamento amostral para estatísticas de precisão em ensaios de soja |
title_full_unstemmed |
Interação genótipo × ambiente e dimensionamento amostral para estatísticas de precisão em ensaios de soja |
title_sort |
Interação genótipo × ambiente e dimensionamento amostral para estatísticas de precisão em ensaios de soja |
author |
Souza, Rafael Rodrigues de |
author_facet |
Souza, Rafael Rodrigues de |
author_role |
author |
dc.contributor.none.fl_str_mv |
Toebe, Marcos http://lattes.cnpq.br/1350890583236601 Marchioro, Volmir Sérgio Benin, Giovani |
dc.contributor.author.fl_str_mv |
Souza, Rafael Rodrigues de |
dc.subject.por.fl_str_mv |
AMMI BLUP GGE Modelagem Planejamento experimental Terras altas Terras baixas Experimental planning Highlands Lowlands Modelling CNPQ::CIENCIAS AGRARIAS::AGRONOMIA |
topic |
AMMI BLUP GGE Modelagem Planejamento experimental Terras altas Terras baixas Experimental planning Highlands Lowlands Modelling CNPQ::CIENCIAS AGRARIAS::AGRONOMIA |
description |
Soybean grain yield is a relevant characteristic that needs further understanding in highland and lowland scenarios, where there is a lack of comparative theoretical references, mainly regarding genotype × environment interaction. Another little approached aspect about these scenarios is the reliability of estimates of this variable, which initiates by the sampling process, normally performed empirically, causing an elevated bias when samplings are not representative. Therefore, the aims of this study were to verify the effects of genotype × environment interaction on soybean grain yield in highlands and lowlands of subtropical climate and to compare the adaptability and stability methodologies; to analyze the behavior of experimental precision statistics in front of the variations in the number of collected plants per experimental unit in highlands and lowlands; to define the optimal sample size per experimental unit for experimental precision statistics; and to propose predictive models for estimating the precision of experiments with soybean. Field trials were carried out during the 2017/2018 agricultural harvest in two locations of Rio Grande do Sul, on three sowing dates, totaling six experiments. In the first study, 2.70 m2 per plot were harvest and the grain yield of 20 genotypes was measured in both testing locations. With the collected data the significance of the interaction factor was verified and this factor was partitioned into simple and complex components. Next, linear bi-linear models were implemented, Additive Main Effect and Multiplicative Interaction (AMMI), Best Linear Unbiased Prediction (BLUP) and Genotype plus Genotype-Environment interaction (GGE), for verifying the stability of cultivars, with posterior comparison of methodologies through uncertainty statistics and Pearson’s correlation coefficient. In the second study, grain yield was assessed per plant, in 20 plants per plot, using 30 genotypes in the highland location and 20 genotypes in the lowland location, totaling 9,000 measured plants. Thirteen precision statistics were estimated and sample size per experimental unit was determined per statistic, simulating scenarios of 1, 2, ..., 1000 plants; consequently, predictive models for each statistic were parameterized, based on the number of collected plants. The results demonstrated greater grain yields in the highlands, where the second sowing date expressed the highest values. The complex component of interaction represented 82.11 %, which allowed inferring cases of genotype ranking alteration. Agreement between the GGE and BLUP methodologies was observed. The statistics were overestimated in smaller sample scenarios per experimental unit. With the increase of collected plants, exponentially proportional reductions of the confidence interval width of the calculated statistics were verified. This allowed proposing experimental precision prediction models, via confidence interval width and sample size per experimental unit. The sampling of 18 plants per experimental unit was enough for estimating experimental precision statistics. With the performed studies, a greater understanding of the highland and lowland edaphic scenarios on factors that aid cultivars recommendation and experimental planning became possible. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-07-30T21:25:00Z 2021-07-30T21:25:00Z 2021-02-26 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://repositorio.ufsm.br/handle/1/21659 |
dc.identifier.dark.fl_str_mv |
ark:/26339/001300000qsnz |
url |
http://repositorio.ufsm.br/handle/1/21659 |
identifier_str_mv |
ark:/26339/001300000qsnz |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.rights.driver.fl_str_mv |
Attribution-NonCommercial-NoDerivatives 4.0 International http://creativecommons.org/licenses/by-nc-nd/4.0/ info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Attribution-NonCommercial-NoDerivatives 4.0 International http://creativecommons.org/licenses/by-nc-nd/4.0/ |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidade Federal de Santa Maria Brasil Agronomia UFSM Programa de Pós-Graduação em Agronomia - Agricultura e Ambiente UFSM Frederico Westphalen |
publisher.none.fl_str_mv |
Universidade Federal de Santa Maria Brasil Agronomia UFSM Programa de Pós-Graduação em Agronomia - Agricultura e Ambiente UFSM Frederico Westphalen |
dc.source.none.fl_str_mv |
reponame:Manancial - Repositório Digital da UFSM instname:Universidade Federal de Santa Maria (UFSM) instacron:UFSM |
instname_str |
Universidade Federal de Santa Maria (UFSM) |
instacron_str |
UFSM |
institution |
UFSM |
reponame_str |
Manancial - Repositório Digital da UFSM |
collection |
Manancial - Repositório Digital da UFSM |
repository.name.fl_str_mv |
Manancial - Repositório Digital da UFSM - Universidade Federal de Santa Maria (UFSM) |
repository.mail.fl_str_mv |
atendimento.sib@ufsm.br||tedebc@gmail.com |
_version_ |
1815172380926935040 |