Suscetibilidade a escorregamentos na bacia hidrográfica do médio/alto Rio Taquari-Antas, RS: utilização de técnicas de machine learning
Autor(a) principal: | |
---|---|
Data de Publicação: | 2024 |
Tipo de documento: | Tese |
Idioma: | por |
Título da fonte: | Manancial - Repositório Digital da UFSM |
dARK ID: | ark:/26339/001300000vf5m |
Texto Completo: | http://repositorio.ufsm.br/handle/1/31862 |
Resumo: | Planar slides are a landslide type that can cause natural disasters with economic impacts and loss of lives. The increase in these events is associated with population growth and unplanned urbanization. In Brazil, slides resulted in 3,758 deaths between 1988 and 2022. Mapping planar slide susceptibility is vital for prevention and mitigation of these disasters, and machine learning techniques, such as the Maximum Entropy Model (MAXENT), have enabled the analysis and manipulation of large volumes of data, producing fast and highly accurate results, becoming a valuable tool to minimize damage in slide-prone areas. This study aimed to map slide susceptibility in the hydrographic basin of the medium/high Taquari/Antas River (SMARTA) using MAXENT. The work was divided into five stages: i) literature review, ii) organization of the cartographic database, iii) identification of scars, iv) identification of conditioning factors, and v) mapping slide susceptibility. To identify planar slide scars between 2000 and 2022, two methods were used: the first involved research in newspapers with defined criteria and systematic data collection, and the second used the visual interpretation of satellite images available in the Google Earth Pro software. Subsequently, the analysis of slide conditioning factors in SMARTA was carried out using the following information plans: i) slope; ii) distance to first-order rivers; iii) distance to highways and secondary roads; iv) distance to structural lineaments, and v) curvature of the hillslopes. To map slide susceptibility, the MAXENT machine learning model was used. Input data consisted of points with slide scars identified visually in Google Earth Pro. The results showed that MAXENT had a global accuracy above 0.94, and frequency ratio indicated a higher occurrence of scars in areas of high and very high susceptibility. Analysis of newspaper and image data revealed 119 scars and one death between 2010 and 2022, and slope was the main conditioning factor for slides in SMARTA. Approximately 1.3% of the SMARTA area was classified as very high susceptibility, mainly in valleys and slopes. The municipality of Caxias do Sul had the largest area classified as very high susceptibility, followed by the municipalities of Bento Gonçalves, Veranópolis, Flores da Cunha, and Campestre da Serra. Finally, the high potential of the MAXENT model for planar slide susceptibility mapping is emphasized. |
id |
UFSM_31a9ca4b27616668e16d10f2fe16f086 |
---|---|
oai_identifier_str |
oai:repositorio.ufsm.br:1/31862 |
network_acronym_str |
UFSM |
network_name_str |
Manancial - Repositório Digital da UFSM |
repository_id_str |
|
spelling |
Suscetibilidade a escorregamentos na bacia hidrográfica do médio/alto Rio Taquari-Antas, RS: utilização de técnicas de machine learningSusceptibility to landslides in the middle/high Taquari-Antas River basin, RS: use of machine learning techniquesDesastres naturaisEscorregamentosMachine learningNatural disastersSlidesCNPQ::CIENCIAS HUMANAS::GEOGRAFIAPlanar slides are a landslide type that can cause natural disasters with economic impacts and loss of lives. The increase in these events is associated with population growth and unplanned urbanization. In Brazil, slides resulted in 3,758 deaths between 1988 and 2022. Mapping planar slide susceptibility is vital for prevention and mitigation of these disasters, and machine learning techniques, such as the Maximum Entropy Model (MAXENT), have enabled the analysis and manipulation of large volumes of data, producing fast and highly accurate results, becoming a valuable tool to minimize damage in slide-prone areas. This study aimed to map slide susceptibility in the hydrographic basin of the medium/high Taquari/Antas River (SMARTA) using MAXENT. The work was divided into five stages: i) literature review, ii) organization of the cartographic database, iii) identification of scars, iv) identification of conditioning factors, and v) mapping slide susceptibility. To identify planar slide scars between 2000 and 2022, two methods were used: the first involved research in newspapers with defined criteria and systematic data collection, and the second used the visual interpretation of satellite images available in the Google Earth Pro software. Subsequently, the analysis of slide conditioning factors in SMARTA was carried out using the following information plans: i) slope; ii) distance to first-order rivers; iii) distance to highways and secondary roads; iv) distance to structural lineaments, and v) curvature of the hillslopes. To map slide susceptibility, the MAXENT machine learning model was used. Input data consisted of points with slide scars identified visually in Google Earth Pro. The results showed that MAXENT had a global accuracy above 0.94, and frequency ratio indicated a higher occurrence of scars in areas of high and very high susceptibility. Analysis of newspaper and image data revealed 119 scars and one death between 2010 and 2022, and slope was the main conditioning factor for slides in SMARTA. Approximately 1.3% of the SMARTA area was classified as very high susceptibility, mainly in valleys and slopes. The municipality of Caxias do Sul had the largest area classified as very high susceptibility, followed by the municipalities of Bento Gonçalves, Veranópolis, Flores da Cunha, and Campestre da Serra. Finally, the high potential of the MAXENT model for planar slide susceptibility mapping is emphasized.Escorregamentos planares são um tipo de movimento de massa que pode causar desastres naturais com impactos econômicos e perdas de vidas. O aumento desses eventos está associado ao crescimento populacional e à urbanização desordenada. No Brasil, escorregamentos resultaram em 3.758 mortes entre 1988 e 2022. O mapeamento da suscetibilidade a escorregamentos planares é vital para prevenção e mitigação destes desastres, e as técnicas de machine learning, como o Modelo de Máxima Entropia (MAXENT), por exemplo, tem possibilitado a análise e manipulação de grandes volumes de dados, produzindo resultados rápidos e com altos níveis de acurácia, tornando-se ferramenta valiosa para minimizar danos em áreas propensas a escorregamentos. Este estudo buscou mapear a suscetibilidade a escorregamentos na bacia do médio/alto Rio Taquari/Antas (SMARTA) usando o MAXENT. Para isto, dividiu-se o trabalho em cinco etapas: i) pesquisa bibliográfica, ii) organização da base cartográfica, iii) identificação de cicatrizes, iv) identificação dos fatores condicionantes, e v) mapeamento da suscetibilidade a escorregamentos. Para identificar as cicatrizes de escorregamentos planares entre o período de 2000 e 2022, usou-se dois métodos: o primeiro envolveu a pesquisa em jornais com critérios definidos e coleta sistemática de dados e o segundo, utilizou a interpretação visual de imagens de satélite disponíveis no software Google Earth Pro. Posteriormente, realizou-se a análise dos fatores condicionantes a escorregamentos na SMARTA usando os seguintes planos de informação: i) declividade; ii) distância para rios de primeira ordem; iii) distância para rodovias e estradas vicinais; iv) distância para lineamentos estruturais e v) forma das encostas. Para mapear a suscetibilidade a escorregamentos, utilizou-se o modelo de machine learning MAXENT. Os dados de entrada foram pontos com cicatrizes de escorregamentos, identificados visualmente no Google Earth Pro. Os resultados mostraram que o MAXENT apresentou acurácia global superior a 0,94 e a razão de frequência indicou maior ocorrência de cicatrizes em áreas de alta e muito alta suscetibilidade. Análise dos dados de jornais e imagens revelou 119 cicatrizes e, uma morte entre 2010 e 2022 e a declividade foi a principal condicionante a escorregamentos na SMARTA. Aproximadamente 1,3% da área da SMARTA foi classificada como de muito alta suscetibilidade, principalmente nos vales e encostas. O município de Caxias do Sul apresentou a maior área classificada como de muito alta suscetibilidade, seguido dos municípios de Bento Gonçalves, Veranópolis, Flores da Cunha e Campestre da Serra. Por fim, destaca-se o alto potencial do modelo MAXENT para o mapeamento da suscetibilidade a escorregamentos.Universidade Federal de Santa MariaBrasilGeografiaUFSMPrograma de Pós-Graduação em GeografiaCentro de Ciências Naturais e ExatasRobaina, Luís Eduardo de Souzahttp://lattes.cnpq.br/6075564636607843Trentin, RomárioNummer, Andrea ValliBateira, Carlos Valdir de MenezesCristo, Sandro Sidnei Vargas deSampaio, Francisco Monte Alverne de Sales2024-04-29T12:41:37Z2024-04-29T12:41:37Z2024-02-16info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttp://repositorio.ufsm.br/handle/1/31862ark:/26339/001300000vf5mporAttribution-NonCommercial-NoDerivatives 4.0 Internationalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessreponame:Manancial - Repositório Digital da UFSMinstname:Universidade Federal de Santa Maria (UFSM)instacron:UFSM2024-04-29T12:41:37Zoai:repositorio.ufsm.br:1/31862Biblioteca Digital de Teses e Dissertaçõeshttps://repositorio.ufsm.br/ONGhttps://repositorio.ufsm.br/oai/requestatendimento.sib@ufsm.br||tedebc@gmail.comopendoar:2024-04-29T12:41:37Manancial - Repositório Digital da UFSM - Universidade Federal de Santa Maria (UFSM)false |
dc.title.none.fl_str_mv |
Suscetibilidade a escorregamentos na bacia hidrográfica do médio/alto Rio Taquari-Antas, RS: utilização de técnicas de machine learning Susceptibility to landslides in the middle/high Taquari-Antas River basin, RS: use of machine learning techniques |
title |
Suscetibilidade a escorregamentos na bacia hidrográfica do médio/alto Rio Taquari-Antas, RS: utilização de técnicas de machine learning |
spellingShingle |
Suscetibilidade a escorregamentos na bacia hidrográfica do médio/alto Rio Taquari-Antas, RS: utilização de técnicas de machine learning Sampaio, Francisco Monte Alverne de Sales Desastres naturais Escorregamentos Machine learning Natural disasters Slides CNPQ::CIENCIAS HUMANAS::GEOGRAFIA |
title_short |
Suscetibilidade a escorregamentos na bacia hidrográfica do médio/alto Rio Taquari-Antas, RS: utilização de técnicas de machine learning |
title_full |
Suscetibilidade a escorregamentos na bacia hidrográfica do médio/alto Rio Taquari-Antas, RS: utilização de técnicas de machine learning |
title_fullStr |
Suscetibilidade a escorregamentos na bacia hidrográfica do médio/alto Rio Taquari-Antas, RS: utilização de técnicas de machine learning |
title_full_unstemmed |
Suscetibilidade a escorregamentos na bacia hidrográfica do médio/alto Rio Taquari-Antas, RS: utilização de técnicas de machine learning |
title_sort |
Suscetibilidade a escorregamentos na bacia hidrográfica do médio/alto Rio Taquari-Antas, RS: utilização de técnicas de machine learning |
author |
Sampaio, Francisco Monte Alverne de Sales |
author_facet |
Sampaio, Francisco Monte Alverne de Sales |
author_role |
author |
dc.contributor.none.fl_str_mv |
Robaina, Luís Eduardo de Souza http://lattes.cnpq.br/6075564636607843 Trentin, Romário Nummer, Andrea Valli Bateira, Carlos Valdir de Menezes Cristo, Sandro Sidnei Vargas de |
dc.contributor.author.fl_str_mv |
Sampaio, Francisco Monte Alverne de Sales |
dc.subject.por.fl_str_mv |
Desastres naturais Escorregamentos Machine learning Natural disasters Slides CNPQ::CIENCIAS HUMANAS::GEOGRAFIA |
topic |
Desastres naturais Escorregamentos Machine learning Natural disasters Slides CNPQ::CIENCIAS HUMANAS::GEOGRAFIA |
description |
Planar slides are a landslide type that can cause natural disasters with economic impacts and loss of lives. The increase in these events is associated with population growth and unplanned urbanization. In Brazil, slides resulted in 3,758 deaths between 1988 and 2022. Mapping planar slide susceptibility is vital for prevention and mitigation of these disasters, and machine learning techniques, such as the Maximum Entropy Model (MAXENT), have enabled the analysis and manipulation of large volumes of data, producing fast and highly accurate results, becoming a valuable tool to minimize damage in slide-prone areas. This study aimed to map slide susceptibility in the hydrographic basin of the medium/high Taquari/Antas River (SMARTA) using MAXENT. The work was divided into five stages: i) literature review, ii) organization of the cartographic database, iii) identification of scars, iv) identification of conditioning factors, and v) mapping slide susceptibility. To identify planar slide scars between 2000 and 2022, two methods were used: the first involved research in newspapers with defined criteria and systematic data collection, and the second used the visual interpretation of satellite images available in the Google Earth Pro software. Subsequently, the analysis of slide conditioning factors in SMARTA was carried out using the following information plans: i) slope; ii) distance to first-order rivers; iii) distance to highways and secondary roads; iv) distance to structural lineaments, and v) curvature of the hillslopes. To map slide susceptibility, the MAXENT machine learning model was used. Input data consisted of points with slide scars identified visually in Google Earth Pro. The results showed that MAXENT had a global accuracy above 0.94, and frequency ratio indicated a higher occurrence of scars in areas of high and very high susceptibility. Analysis of newspaper and image data revealed 119 scars and one death between 2010 and 2022, and slope was the main conditioning factor for slides in SMARTA. Approximately 1.3% of the SMARTA area was classified as very high susceptibility, mainly in valleys and slopes. The municipality of Caxias do Sul had the largest area classified as very high susceptibility, followed by the municipalities of Bento Gonçalves, Veranópolis, Flores da Cunha, and Campestre da Serra. Finally, the high potential of the MAXENT model for planar slide susceptibility mapping is emphasized. |
publishDate |
2024 |
dc.date.none.fl_str_mv |
2024-04-29T12:41:37Z 2024-04-29T12:41:37Z 2024-02-16 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
format |
doctoralThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://repositorio.ufsm.br/handle/1/31862 |
dc.identifier.dark.fl_str_mv |
ark:/26339/001300000vf5m |
url |
http://repositorio.ufsm.br/handle/1/31862 |
identifier_str_mv |
ark:/26339/001300000vf5m |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.rights.driver.fl_str_mv |
Attribution-NonCommercial-NoDerivatives 4.0 International http://creativecommons.org/licenses/by-nc-nd/4.0/ info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Attribution-NonCommercial-NoDerivatives 4.0 International http://creativecommons.org/licenses/by-nc-nd/4.0/ |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidade Federal de Santa Maria Brasil Geografia UFSM Programa de Pós-Graduação em Geografia Centro de Ciências Naturais e Exatas |
publisher.none.fl_str_mv |
Universidade Federal de Santa Maria Brasil Geografia UFSM Programa de Pós-Graduação em Geografia Centro de Ciências Naturais e Exatas |
dc.source.none.fl_str_mv |
reponame:Manancial - Repositório Digital da UFSM instname:Universidade Federal de Santa Maria (UFSM) instacron:UFSM |
instname_str |
Universidade Federal de Santa Maria (UFSM) |
instacron_str |
UFSM |
institution |
UFSM |
reponame_str |
Manancial - Repositório Digital da UFSM |
collection |
Manancial - Repositório Digital da UFSM |
repository.name.fl_str_mv |
Manancial - Repositório Digital da UFSM - Universidade Federal de Santa Maria (UFSM) |
repository.mail.fl_str_mv |
atendimento.sib@ufsm.br||tedebc@gmail.com |
_version_ |
1815172401667768320 |