Suscetibilidade a escorregamentos na bacia hidrográfica do médio/alto Rio Taquari-Antas, RS: utilização de técnicas de machine learning

Detalhes bibliográficos
Autor(a) principal: Sampaio, Francisco Monte Alverne de Sales
Data de Publicação: 2024
Tipo de documento: Tese
Idioma: por
Título da fonte: Manancial - Repositório Digital da UFSM
dARK ID: ark:/26339/001300000vf5m
Texto Completo: http://repositorio.ufsm.br/handle/1/31862
Resumo: Planar slides are a landslide type that can cause natural disasters with economic impacts and loss of lives. The increase in these events is associated with population growth and unplanned urbanization. In Brazil, slides resulted in 3,758 deaths between 1988 and 2022. Mapping planar slide susceptibility is vital for prevention and mitigation of these disasters, and machine learning techniques, such as the Maximum Entropy Model (MAXENT), have enabled the analysis and manipulation of large volumes of data, producing fast and highly accurate results, becoming a valuable tool to minimize damage in slide-prone areas. This study aimed to map slide susceptibility in the hydrographic basin of the medium/high Taquari/Antas River (SMARTA) using MAXENT. The work was divided into five stages: i) literature review, ii) organization of the cartographic database, iii) identification of scars, iv) identification of conditioning factors, and v) mapping slide susceptibility. To identify planar slide scars between 2000 and 2022, two methods were used: the first involved research in newspapers with defined criteria and systematic data collection, and the second used the visual interpretation of satellite images available in the Google Earth Pro software. Subsequently, the analysis of slide conditioning factors in SMARTA was carried out using the following information plans: i) slope; ii) distance to first-order rivers; iii) distance to highways and secondary roads; iv) distance to structural lineaments, and v) curvature of the hillslopes. To map slide susceptibility, the MAXENT machine learning model was used. Input data consisted of points with slide scars identified visually in Google Earth Pro. The results showed that MAXENT had a global accuracy above 0.94, and frequency ratio indicated a higher occurrence of scars in areas of high and very high susceptibility. Analysis of newspaper and image data revealed 119 scars and one death between 2010 and 2022, and slope was the main conditioning factor for slides in SMARTA. Approximately 1.3% of the SMARTA area was classified as very high susceptibility, mainly in valleys and slopes. The municipality of Caxias do Sul had the largest area classified as very high susceptibility, followed by the municipalities of Bento Gonçalves, Veranópolis, Flores da Cunha, and Campestre da Serra. Finally, the high potential of the MAXENT model for planar slide susceptibility mapping is emphasized.
id UFSM_31a9ca4b27616668e16d10f2fe16f086
oai_identifier_str oai:repositorio.ufsm.br:1/31862
network_acronym_str UFSM
network_name_str Manancial - Repositório Digital da UFSM
repository_id_str
spelling Suscetibilidade a escorregamentos na bacia hidrográfica do médio/alto Rio Taquari-Antas, RS: utilização de técnicas de machine learningSusceptibility to landslides in the middle/high Taquari-Antas River basin, RS: use of machine learning techniquesDesastres naturaisEscorregamentosMachine learningNatural disastersSlidesCNPQ::CIENCIAS HUMANAS::GEOGRAFIAPlanar slides are a landslide type that can cause natural disasters with economic impacts and loss of lives. The increase in these events is associated with population growth and unplanned urbanization. In Brazil, slides resulted in 3,758 deaths between 1988 and 2022. Mapping planar slide susceptibility is vital for prevention and mitigation of these disasters, and machine learning techniques, such as the Maximum Entropy Model (MAXENT), have enabled the analysis and manipulation of large volumes of data, producing fast and highly accurate results, becoming a valuable tool to minimize damage in slide-prone areas. This study aimed to map slide susceptibility in the hydrographic basin of the medium/high Taquari/Antas River (SMARTA) using MAXENT. The work was divided into five stages: i) literature review, ii) organization of the cartographic database, iii) identification of scars, iv) identification of conditioning factors, and v) mapping slide susceptibility. To identify planar slide scars between 2000 and 2022, two methods were used: the first involved research in newspapers with defined criteria and systematic data collection, and the second used the visual interpretation of satellite images available in the Google Earth Pro software. Subsequently, the analysis of slide conditioning factors in SMARTA was carried out using the following information plans: i) slope; ii) distance to first-order rivers; iii) distance to highways and secondary roads; iv) distance to structural lineaments, and v) curvature of the hillslopes. To map slide susceptibility, the MAXENT machine learning model was used. Input data consisted of points with slide scars identified visually in Google Earth Pro. The results showed that MAXENT had a global accuracy above 0.94, and frequency ratio indicated a higher occurrence of scars in areas of high and very high susceptibility. Analysis of newspaper and image data revealed 119 scars and one death between 2010 and 2022, and slope was the main conditioning factor for slides in SMARTA. Approximately 1.3% of the SMARTA area was classified as very high susceptibility, mainly in valleys and slopes. The municipality of Caxias do Sul had the largest area classified as very high susceptibility, followed by the municipalities of Bento Gonçalves, Veranópolis, Flores da Cunha, and Campestre da Serra. Finally, the high potential of the MAXENT model for planar slide susceptibility mapping is emphasized.Escorregamentos planares são um tipo de movimento de massa que pode causar desastres naturais com impactos econômicos e perdas de vidas. O aumento desses eventos está associado ao crescimento populacional e à urbanização desordenada. No Brasil, escorregamentos resultaram em 3.758 mortes entre 1988 e 2022. O mapeamento da suscetibilidade a escorregamentos planares é vital para prevenção e mitigação destes desastres, e as técnicas de machine learning, como o Modelo de Máxima Entropia (MAXENT), por exemplo, tem possibilitado a análise e manipulação de grandes volumes de dados, produzindo resultados rápidos e com altos níveis de acurácia, tornando-se ferramenta valiosa para minimizar danos em áreas propensas a escorregamentos. Este estudo buscou mapear a suscetibilidade a escorregamentos na bacia do médio/alto Rio Taquari/Antas (SMARTA) usando o MAXENT. Para isto, dividiu-se o trabalho em cinco etapas: i) pesquisa bibliográfica, ii) organização da base cartográfica, iii) identificação de cicatrizes, iv) identificação dos fatores condicionantes, e v) mapeamento da suscetibilidade a escorregamentos. Para identificar as cicatrizes de escorregamentos planares entre o período de 2000 e 2022, usou-se dois métodos: o primeiro envolveu a pesquisa em jornais com critérios definidos e coleta sistemática de dados e o segundo, utilizou a interpretação visual de imagens de satélite disponíveis no software Google Earth Pro. Posteriormente, realizou-se a análise dos fatores condicionantes a escorregamentos na SMARTA usando os seguintes planos de informação: i) declividade; ii) distância para rios de primeira ordem; iii) distância para rodovias e estradas vicinais; iv) distância para lineamentos estruturais e v) forma das encostas. Para mapear a suscetibilidade a escorregamentos, utilizou-se o modelo de machine learning MAXENT. Os dados de entrada foram pontos com cicatrizes de escorregamentos, identificados visualmente no Google Earth Pro. Os resultados mostraram que o MAXENT apresentou acurácia global superior a 0,94 e a razão de frequência indicou maior ocorrência de cicatrizes em áreas de alta e muito alta suscetibilidade. Análise dos dados de jornais e imagens revelou 119 cicatrizes e, uma morte entre 2010 e 2022 e a declividade foi a principal condicionante a escorregamentos na SMARTA. Aproximadamente 1,3% da área da SMARTA foi classificada como de muito alta suscetibilidade, principalmente nos vales e encostas. O município de Caxias do Sul apresentou a maior área classificada como de muito alta suscetibilidade, seguido dos municípios de Bento Gonçalves, Veranópolis, Flores da Cunha e Campestre da Serra. Por fim, destaca-se o alto potencial do modelo MAXENT para o mapeamento da suscetibilidade a escorregamentos.Universidade Federal de Santa MariaBrasilGeografiaUFSMPrograma de Pós-Graduação em GeografiaCentro de Ciências Naturais e ExatasRobaina, Luís Eduardo de Souzahttp://lattes.cnpq.br/6075564636607843Trentin, RomárioNummer, Andrea ValliBateira, Carlos Valdir de MenezesCristo, Sandro Sidnei Vargas deSampaio, Francisco Monte Alverne de Sales2024-04-29T12:41:37Z2024-04-29T12:41:37Z2024-02-16info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttp://repositorio.ufsm.br/handle/1/31862ark:/26339/001300000vf5mporAttribution-NonCommercial-NoDerivatives 4.0 Internationalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessreponame:Manancial - Repositório Digital da UFSMinstname:Universidade Federal de Santa Maria (UFSM)instacron:UFSM2024-04-29T12:41:37Zoai:repositorio.ufsm.br:1/31862Biblioteca Digital de Teses e Dissertaçõeshttps://repositorio.ufsm.br/ONGhttps://repositorio.ufsm.br/oai/requestatendimento.sib@ufsm.br||tedebc@gmail.comopendoar:2024-04-29T12:41:37Manancial - Repositório Digital da UFSM - Universidade Federal de Santa Maria (UFSM)false
dc.title.none.fl_str_mv Suscetibilidade a escorregamentos na bacia hidrográfica do médio/alto Rio Taquari-Antas, RS: utilização de técnicas de machine learning
Susceptibility to landslides in the middle/high Taquari-Antas River basin, RS: use of machine learning techniques
title Suscetibilidade a escorregamentos na bacia hidrográfica do médio/alto Rio Taquari-Antas, RS: utilização de técnicas de machine learning
spellingShingle Suscetibilidade a escorregamentos na bacia hidrográfica do médio/alto Rio Taquari-Antas, RS: utilização de técnicas de machine learning
Sampaio, Francisco Monte Alverne de Sales
Desastres naturais
Escorregamentos
Machine learning
Natural disasters
Slides
CNPQ::CIENCIAS HUMANAS::GEOGRAFIA
title_short Suscetibilidade a escorregamentos na bacia hidrográfica do médio/alto Rio Taquari-Antas, RS: utilização de técnicas de machine learning
title_full Suscetibilidade a escorregamentos na bacia hidrográfica do médio/alto Rio Taquari-Antas, RS: utilização de técnicas de machine learning
title_fullStr Suscetibilidade a escorregamentos na bacia hidrográfica do médio/alto Rio Taquari-Antas, RS: utilização de técnicas de machine learning
title_full_unstemmed Suscetibilidade a escorregamentos na bacia hidrográfica do médio/alto Rio Taquari-Antas, RS: utilização de técnicas de machine learning
title_sort Suscetibilidade a escorregamentos na bacia hidrográfica do médio/alto Rio Taquari-Antas, RS: utilização de técnicas de machine learning
author Sampaio, Francisco Monte Alverne de Sales
author_facet Sampaio, Francisco Monte Alverne de Sales
author_role author
dc.contributor.none.fl_str_mv Robaina, Luís Eduardo de Souza
http://lattes.cnpq.br/6075564636607843
Trentin, Romário
Nummer, Andrea Valli
Bateira, Carlos Valdir de Menezes
Cristo, Sandro Sidnei Vargas de
dc.contributor.author.fl_str_mv Sampaio, Francisco Monte Alverne de Sales
dc.subject.por.fl_str_mv Desastres naturais
Escorregamentos
Machine learning
Natural disasters
Slides
CNPQ::CIENCIAS HUMANAS::GEOGRAFIA
topic Desastres naturais
Escorregamentos
Machine learning
Natural disasters
Slides
CNPQ::CIENCIAS HUMANAS::GEOGRAFIA
description Planar slides are a landslide type that can cause natural disasters with economic impacts and loss of lives. The increase in these events is associated with population growth and unplanned urbanization. In Brazil, slides resulted in 3,758 deaths between 1988 and 2022. Mapping planar slide susceptibility is vital for prevention and mitigation of these disasters, and machine learning techniques, such as the Maximum Entropy Model (MAXENT), have enabled the analysis and manipulation of large volumes of data, producing fast and highly accurate results, becoming a valuable tool to minimize damage in slide-prone areas. This study aimed to map slide susceptibility in the hydrographic basin of the medium/high Taquari/Antas River (SMARTA) using MAXENT. The work was divided into five stages: i) literature review, ii) organization of the cartographic database, iii) identification of scars, iv) identification of conditioning factors, and v) mapping slide susceptibility. To identify planar slide scars between 2000 and 2022, two methods were used: the first involved research in newspapers with defined criteria and systematic data collection, and the second used the visual interpretation of satellite images available in the Google Earth Pro software. Subsequently, the analysis of slide conditioning factors in SMARTA was carried out using the following information plans: i) slope; ii) distance to first-order rivers; iii) distance to highways and secondary roads; iv) distance to structural lineaments, and v) curvature of the hillslopes. To map slide susceptibility, the MAXENT machine learning model was used. Input data consisted of points with slide scars identified visually in Google Earth Pro. The results showed that MAXENT had a global accuracy above 0.94, and frequency ratio indicated a higher occurrence of scars in areas of high and very high susceptibility. Analysis of newspaper and image data revealed 119 scars and one death between 2010 and 2022, and slope was the main conditioning factor for slides in SMARTA. Approximately 1.3% of the SMARTA area was classified as very high susceptibility, mainly in valleys and slopes. The municipality of Caxias do Sul had the largest area classified as very high susceptibility, followed by the municipalities of Bento Gonçalves, Veranópolis, Flores da Cunha, and Campestre da Serra. Finally, the high potential of the MAXENT model for planar slide susceptibility mapping is emphasized.
publishDate 2024
dc.date.none.fl_str_mv 2024-04-29T12:41:37Z
2024-04-29T12:41:37Z
2024-02-16
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://repositorio.ufsm.br/handle/1/31862
dc.identifier.dark.fl_str_mv ark:/26339/001300000vf5m
url http://repositorio.ufsm.br/handle/1/31862
identifier_str_mv ark:/26339/001300000vf5m
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International
http://creativecommons.org/licenses/by-nc-nd/4.0/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International
http://creativecommons.org/licenses/by-nc-nd/4.0/
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal de Santa Maria
Brasil
Geografia
UFSM
Programa de Pós-Graduação em Geografia
Centro de Ciências Naturais e Exatas
publisher.none.fl_str_mv Universidade Federal de Santa Maria
Brasil
Geografia
UFSM
Programa de Pós-Graduação em Geografia
Centro de Ciências Naturais e Exatas
dc.source.none.fl_str_mv reponame:Manancial - Repositório Digital da UFSM
instname:Universidade Federal de Santa Maria (UFSM)
instacron:UFSM
instname_str Universidade Federal de Santa Maria (UFSM)
instacron_str UFSM
institution UFSM
reponame_str Manancial - Repositório Digital da UFSM
collection Manancial - Repositório Digital da UFSM
repository.name.fl_str_mv Manancial - Repositório Digital da UFSM - Universidade Federal de Santa Maria (UFSM)
repository.mail.fl_str_mv atendimento.sib@ufsm.br||tedebc@gmail.com
_version_ 1815172401667768320