Planejamento experimental para mudas de couve-flor e plantas de alface: definição do tamanho amostral ótimo

Detalhes bibliográficos
Autor(a) principal: Bittencourt, Karina Chertok
Data de Publicação: 2023
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Manancial - Repositório Digital da UFSM
dARK ID: ark:/26339/001300000ggxs
Texto Completo: http://repositorio.ufsm.br/handle/1/32039
Resumo: Defining the sample size is an important step in the planning of experiments, as collecting a sufficiently representative sample is essential to obtain reliable results. However, the optimal sample size may vary depending on the species, evaluated characters, and the subsequently estimated statistics. In this sense, research on economically important vegetable crops, such as cauliflower and lettuce, has commonly used small sample sizes, given the scarcity of studies focusing on their sample dimensioning. Therefore, the present work aimed to optimize the experimental planning of experiments with cauliflower and lettuce crops through sample sizing for different statistics and characters. Thus, a greenhouse experiment with cauliflower seedlings was conducted in the experimental area of the Federal University of Pampa, Itaqui Campus, and a field experiment with 26 lettuce genotypes was conducted in the experimental area of the Federal University of Santa Maria, Frederico Westphalen Campus. For cauliflower seedlings, the following characters were assessed: number of leaves, plant height, root length, and total length (plant height + root length), and for lettuce plants, the yield per plant (fresh weight in grams), number of leaves, plant height, stem diameter, and mean head diameter were evaluated. Precision statistics were estimated, obtaining the 95% confidence interval width. One hundred sampling scenarios were simulated for each statistic and character using bootstrap resampling with replacement, and optimal sample sizes were defined by adjusting the 95% confidence intervals to models of the power family and finding the maximum curvature point. Furthermore, four methods for obtaining the maximum curvature point were compared, and predictive equations for precision statistics based on sample size were proposed. The 95% confidence interval width of the statistics reduced as the sample size increased, until a point of stabilization. The perpendicular distance method was considered the most efficient for defining the maximum curvature point. The sample sizes varied according to statistics and characters, with this variation being greater between statistics. The F statistic stood out for obtaining larger sample sizes in all studies. The predictive equations presented excellent fitting quality, which allows for knowing the mean, maximum, and minimum values of precision statistics based on the selection of a specific sample size. Thus, the information provided by these studies contributes to optimizing the experimental planning of cauliflower and lettuce crops and may be useful for researchers in the field who wish to evaluate experimental precision through the statistics and characters described.
id UFSM_4a5be5971e6314b96a02b0f5419e5ced
oai_identifier_str oai:repositorio.ufsm.br:1/32039
network_acronym_str UFSM
network_name_str Manancial - Repositório Digital da UFSM
repository_id_str
spelling Planejamento experimental para mudas de couve-flor e plantas de alface: definição do tamanho amostral ótimoExperimental planning for cauliflower seedlings and lettuce plants: definition of the optimal sample sizeBrassica oleraceaLactuca sativaEstatísticas de precisãoHorticulturaReamostragem bootstrapPrecision statisticsBootstrap resamplingCNPQ::CIENCIAS AGRARIAS::AGRONOMIADefining the sample size is an important step in the planning of experiments, as collecting a sufficiently representative sample is essential to obtain reliable results. However, the optimal sample size may vary depending on the species, evaluated characters, and the subsequently estimated statistics. In this sense, research on economically important vegetable crops, such as cauliflower and lettuce, has commonly used small sample sizes, given the scarcity of studies focusing on their sample dimensioning. Therefore, the present work aimed to optimize the experimental planning of experiments with cauliflower and lettuce crops through sample sizing for different statistics and characters. Thus, a greenhouse experiment with cauliflower seedlings was conducted in the experimental area of the Federal University of Pampa, Itaqui Campus, and a field experiment with 26 lettuce genotypes was conducted in the experimental area of the Federal University of Santa Maria, Frederico Westphalen Campus. For cauliflower seedlings, the following characters were assessed: number of leaves, plant height, root length, and total length (plant height + root length), and for lettuce plants, the yield per plant (fresh weight in grams), number of leaves, plant height, stem diameter, and mean head diameter were evaluated. Precision statistics were estimated, obtaining the 95% confidence interval width. One hundred sampling scenarios were simulated for each statistic and character using bootstrap resampling with replacement, and optimal sample sizes were defined by adjusting the 95% confidence intervals to models of the power family and finding the maximum curvature point. Furthermore, four methods for obtaining the maximum curvature point were compared, and predictive equations for precision statistics based on sample size were proposed. The 95% confidence interval width of the statistics reduced as the sample size increased, until a point of stabilization. The perpendicular distance method was considered the most efficient for defining the maximum curvature point. The sample sizes varied according to statistics and characters, with this variation being greater between statistics. The F statistic stood out for obtaining larger sample sizes in all studies. The predictive equations presented excellent fitting quality, which allows for knowing the mean, maximum, and minimum values of precision statistics based on the selection of a specific sample size. Thus, the information provided by these studies contributes to optimizing the experimental planning of cauliflower and lettuce crops and may be useful for researchers in the field who wish to evaluate experimental precision through the statistics and characters described.Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPESA definição do tamanho amostral é uma importante etapa do planejamento de experimentos, pois a coleta de uma amostra suficientemente representativa é essencial para obter resultados confiáveis. Entretanto, o tamanho de amostra ótimo pode variar segundo a espécie, caracteres avaliados e estatísticas posteriormente estimadas. Nesse sentido, pesquisas com culturas olerícolas de importância econômica, como a couve-flor e a alface, comumente têm utilizado tamanhos amostrais pequenos, em vista da escassez de trabalhos com foco no seu dimensionamento amostral. Dessa forma, o presente trabalho teve como objetivo geral otimizar o planejamento experimental de experimentos com as culturas da couve-flor e da alface por meio do dimensionamento amostral para diferentes estatísticas e caracteres. Assim, um experimento em ambiente protegido com mudas de couve-flor foi conduzido na área experimental da Universidade Federal do Pampa, Campus Itaqui, e um experimento a campo com 26 genótipos de alface foi conduzido na área experimental da Universidade Federal de Santa Maria, Campus Frederico Westphalen. Em mudas de couve-flor, os seguintes caracteres foram avaliados: número de folhas, altura de planta, comprimento da raiz e comprimento total (altura de planta + comprimento de raiz), e em plantas de alface, a produtividade por planta (massa fresca em gramas), o número de folhas, a altura de planta, diâmetro do colo e o diâmetro médio da cabeça foram avaliados. Estatísticas de precisão foram estimadas, obtendo-se a amplitude dos seus intervalos de confiança a 95%. Cem cenários amostrais foram simulados para cada estatística e caractere utilizando reamostragem bootstrap com reposição, e tamanhos amostrais ótimos foram definidos ajustando os intervalos de confiança de 95% a modelos da família potência e encontrando o ponto máximo de curvatura. Além disso, quatro métodos para obter o ponto de máxima curvatura foram comparados, e equações preditivas para estatísticas de precisão com base no tamanho amostral foram propostas. A amplitude do intervalo de confiança a 95% das estatísticas reduziu conforme o tamanho amostral aumentou, até um ponto de estabilização. O método de distâncias perpendiculares foi considerado o mais eficiente para definir o ponto de máxima curvatura. Os tamanhos amostrais variaram conforme estatísticas e caracteres, sendo esta variação maior entre estatísticas. A estatística F destacou-se por obter tamanhos amostrais maiores em todos os estudos. As equações preditivas apresentaram excelente qualidade de ajuste, permitindo conhecer os valores médios, máximos e mínimos de estatísticas de precisão a partir da seleção de um tamanho amostral específico. Assim, as informações trazidas por estes estudos contribuem para otimizar o planejamento experimental das culturas da couve-flor e da alface e serão úteis para pesquisadores da área que desejam avaliar a precisão experimental por meio das estatísticas e caracteres descritos.Universidade Federal de Santa MariaBrasilAgronomiaUFSMPrograma de Pós-Graduação em Agronomia - Agricultura e AmbienteUFSM Frederico WestphalenToebe, Marcoshttp://lattes.cnpq.br/1350890583236601Cargnelutti Filho, AlbertoHaesbaert, Fernando MachadoBittencourt, Karina Chertok2024-06-14T14:19:59Z2024-06-14T14:19:59Z2023-10-09info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://repositorio.ufsm.br/handle/1/32039ark:/26339/001300000ggxsporAttribution-NonCommercial-NoDerivatives 4.0 Internationalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessreponame:Manancial - Repositório Digital da UFSMinstname:Universidade Federal de Santa Maria (UFSM)instacron:UFSM2024-06-14T14:20:00Zoai:repositorio.ufsm.br:1/32039Biblioteca Digital de Teses e Dissertaçõeshttps://repositorio.ufsm.br/ONGhttps://repositorio.ufsm.br/oai/requestatendimento.sib@ufsm.br||tedebc@gmail.comopendoar:2024-06-14T14:20Manancial - Repositório Digital da UFSM - Universidade Federal de Santa Maria (UFSM)false
dc.title.none.fl_str_mv Planejamento experimental para mudas de couve-flor e plantas de alface: definição do tamanho amostral ótimo
Experimental planning for cauliflower seedlings and lettuce plants: definition of the optimal sample size
title Planejamento experimental para mudas de couve-flor e plantas de alface: definição do tamanho amostral ótimo
spellingShingle Planejamento experimental para mudas de couve-flor e plantas de alface: definição do tamanho amostral ótimo
Bittencourt, Karina Chertok
Brassica oleracea
Lactuca sativa
Estatísticas de precisão
Horticultura
Reamostragem bootstrap
Precision statistics
Bootstrap resampling
CNPQ::CIENCIAS AGRARIAS::AGRONOMIA
title_short Planejamento experimental para mudas de couve-flor e plantas de alface: definição do tamanho amostral ótimo
title_full Planejamento experimental para mudas de couve-flor e plantas de alface: definição do tamanho amostral ótimo
title_fullStr Planejamento experimental para mudas de couve-flor e plantas de alface: definição do tamanho amostral ótimo
title_full_unstemmed Planejamento experimental para mudas de couve-flor e plantas de alface: definição do tamanho amostral ótimo
title_sort Planejamento experimental para mudas de couve-flor e plantas de alface: definição do tamanho amostral ótimo
author Bittencourt, Karina Chertok
author_facet Bittencourt, Karina Chertok
author_role author
dc.contributor.none.fl_str_mv Toebe, Marcos
http://lattes.cnpq.br/1350890583236601
Cargnelutti Filho, Alberto
Haesbaert, Fernando Machado
dc.contributor.author.fl_str_mv Bittencourt, Karina Chertok
dc.subject.por.fl_str_mv Brassica oleracea
Lactuca sativa
Estatísticas de precisão
Horticultura
Reamostragem bootstrap
Precision statistics
Bootstrap resampling
CNPQ::CIENCIAS AGRARIAS::AGRONOMIA
topic Brassica oleracea
Lactuca sativa
Estatísticas de precisão
Horticultura
Reamostragem bootstrap
Precision statistics
Bootstrap resampling
CNPQ::CIENCIAS AGRARIAS::AGRONOMIA
description Defining the sample size is an important step in the planning of experiments, as collecting a sufficiently representative sample is essential to obtain reliable results. However, the optimal sample size may vary depending on the species, evaluated characters, and the subsequently estimated statistics. In this sense, research on economically important vegetable crops, such as cauliflower and lettuce, has commonly used small sample sizes, given the scarcity of studies focusing on their sample dimensioning. Therefore, the present work aimed to optimize the experimental planning of experiments with cauliflower and lettuce crops through sample sizing for different statistics and characters. Thus, a greenhouse experiment with cauliflower seedlings was conducted in the experimental area of the Federal University of Pampa, Itaqui Campus, and a field experiment with 26 lettuce genotypes was conducted in the experimental area of the Federal University of Santa Maria, Frederico Westphalen Campus. For cauliflower seedlings, the following characters were assessed: number of leaves, plant height, root length, and total length (plant height + root length), and for lettuce plants, the yield per plant (fresh weight in grams), number of leaves, plant height, stem diameter, and mean head diameter were evaluated. Precision statistics were estimated, obtaining the 95% confidence interval width. One hundred sampling scenarios were simulated for each statistic and character using bootstrap resampling with replacement, and optimal sample sizes were defined by adjusting the 95% confidence intervals to models of the power family and finding the maximum curvature point. Furthermore, four methods for obtaining the maximum curvature point were compared, and predictive equations for precision statistics based on sample size were proposed. The 95% confidence interval width of the statistics reduced as the sample size increased, until a point of stabilization. The perpendicular distance method was considered the most efficient for defining the maximum curvature point. The sample sizes varied according to statistics and characters, with this variation being greater between statistics. The F statistic stood out for obtaining larger sample sizes in all studies. The predictive equations presented excellent fitting quality, which allows for knowing the mean, maximum, and minimum values of precision statistics based on the selection of a specific sample size. Thus, the information provided by these studies contributes to optimizing the experimental planning of cauliflower and lettuce crops and may be useful for researchers in the field who wish to evaluate experimental precision through the statistics and characters described.
publishDate 2023
dc.date.none.fl_str_mv 2023-10-09
2024-06-14T14:19:59Z
2024-06-14T14:19:59Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://repositorio.ufsm.br/handle/1/32039
dc.identifier.dark.fl_str_mv ark:/26339/001300000ggxs
url http://repositorio.ufsm.br/handle/1/32039
identifier_str_mv ark:/26339/001300000ggxs
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International
http://creativecommons.org/licenses/by-nc-nd/4.0/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International
http://creativecommons.org/licenses/by-nc-nd/4.0/
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal de Santa Maria
Brasil
Agronomia
UFSM
Programa de Pós-Graduação em Agronomia - Agricultura e Ambiente
UFSM Frederico Westphalen
publisher.none.fl_str_mv Universidade Federal de Santa Maria
Brasil
Agronomia
UFSM
Programa de Pós-Graduação em Agronomia - Agricultura e Ambiente
UFSM Frederico Westphalen
dc.source.none.fl_str_mv reponame:Manancial - Repositório Digital da UFSM
instname:Universidade Federal de Santa Maria (UFSM)
instacron:UFSM
instname_str Universidade Federal de Santa Maria (UFSM)
instacron_str UFSM
institution UFSM
reponame_str Manancial - Repositório Digital da UFSM
collection Manancial - Repositório Digital da UFSM
repository.name.fl_str_mv Manancial - Repositório Digital da UFSM - Universidade Federal de Santa Maria (UFSM)
repository.mail.fl_str_mv atendimento.sib@ufsm.br||tedebc@gmail.com
_version_ 1815172339556417536