Planejamento experimental para mudas de couve-flor e plantas de alface: definição do tamanho amostral ótimo
Autor(a) principal: | |
---|---|
Data de Publicação: | 2023 |
Tipo de documento: | Dissertação |
Idioma: | por |
Título da fonte: | Manancial - Repositório Digital da UFSM |
dARK ID: | ark:/26339/001300000ggxs |
Texto Completo: | http://repositorio.ufsm.br/handle/1/32039 |
Resumo: | Defining the sample size is an important step in the planning of experiments, as collecting a sufficiently representative sample is essential to obtain reliable results. However, the optimal sample size may vary depending on the species, evaluated characters, and the subsequently estimated statistics. In this sense, research on economically important vegetable crops, such as cauliflower and lettuce, has commonly used small sample sizes, given the scarcity of studies focusing on their sample dimensioning. Therefore, the present work aimed to optimize the experimental planning of experiments with cauliflower and lettuce crops through sample sizing for different statistics and characters. Thus, a greenhouse experiment with cauliflower seedlings was conducted in the experimental area of the Federal University of Pampa, Itaqui Campus, and a field experiment with 26 lettuce genotypes was conducted in the experimental area of the Federal University of Santa Maria, Frederico Westphalen Campus. For cauliflower seedlings, the following characters were assessed: number of leaves, plant height, root length, and total length (plant height + root length), and for lettuce plants, the yield per plant (fresh weight in grams), number of leaves, plant height, stem diameter, and mean head diameter were evaluated. Precision statistics were estimated, obtaining the 95% confidence interval width. One hundred sampling scenarios were simulated for each statistic and character using bootstrap resampling with replacement, and optimal sample sizes were defined by adjusting the 95% confidence intervals to models of the power family and finding the maximum curvature point. Furthermore, four methods for obtaining the maximum curvature point were compared, and predictive equations for precision statistics based on sample size were proposed. The 95% confidence interval width of the statistics reduced as the sample size increased, until a point of stabilization. The perpendicular distance method was considered the most efficient for defining the maximum curvature point. The sample sizes varied according to statistics and characters, with this variation being greater between statistics. The F statistic stood out for obtaining larger sample sizes in all studies. The predictive equations presented excellent fitting quality, which allows for knowing the mean, maximum, and minimum values of precision statistics based on the selection of a specific sample size. Thus, the information provided by these studies contributes to optimizing the experimental planning of cauliflower and lettuce crops and may be useful for researchers in the field who wish to evaluate experimental precision through the statistics and characters described. |
id |
UFSM_4a5be5971e6314b96a02b0f5419e5ced |
---|---|
oai_identifier_str |
oai:repositorio.ufsm.br:1/32039 |
network_acronym_str |
UFSM |
network_name_str |
Manancial - Repositório Digital da UFSM |
repository_id_str |
|
spelling |
Planejamento experimental para mudas de couve-flor e plantas de alface: definição do tamanho amostral ótimoExperimental planning for cauliflower seedlings and lettuce plants: definition of the optimal sample sizeBrassica oleraceaLactuca sativaEstatísticas de precisãoHorticulturaReamostragem bootstrapPrecision statisticsBootstrap resamplingCNPQ::CIENCIAS AGRARIAS::AGRONOMIADefining the sample size is an important step in the planning of experiments, as collecting a sufficiently representative sample is essential to obtain reliable results. However, the optimal sample size may vary depending on the species, evaluated characters, and the subsequently estimated statistics. In this sense, research on economically important vegetable crops, such as cauliflower and lettuce, has commonly used small sample sizes, given the scarcity of studies focusing on their sample dimensioning. Therefore, the present work aimed to optimize the experimental planning of experiments with cauliflower and lettuce crops through sample sizing for different statistics and characters. Thus, a greenhouse experiment with cauliflower seedlings was conducted in the experimental area of the Federal University of Pampa, Itaqui Campus, and a field experiment with 26 lettuce genotypes was conducted in the experimental area of the Federal University of Santa Maria, Frederico Westphalen Campus. For cauliflower seedlings, the following characters were assessed: number of leaves, plant height, root length, and total length (plant height + root length), and for lettuce plants, the yield per plant (fresh weight in grams), number of leaves, plant height, stem diameter, and mean head diameter were evaluated. Precision statistics were estimated, obtaining the 95% confidence interval width. One hundred sampling scenarios were simulated for each statistic and character using bootstrap resampling with replacement, and optimal sample sizes were defined by adjusting the 95% confidence intervals to models of the power family and finding the maximum curvature point. Furthermore, four methods for obtaining the maximum curvature point were compared, and predictive equations for precision statistics based on sample size were proposed. The 95% confidence interval width of the statistics reduced as the sample size increased, until a point of stabilization. The perpendicular distance method was considered the most efficient for defining the maximum curvature point. The sample sizes varied according to statistics and characters, with this variation being greater between statistics. The F statistic stood out for obtaining larger sample sizes in all studies. The predictive equations presented excellent fitting quality, which allows for knowing the mean, maximum, and minimum values of precision statistics based on the selection of a specific sample size. Thus, the information provided by these studies contributes to optimizing the experimental planning of cauliflower and lettuce crops and may be useful for researchers in the field who wish to evaluate experimental precision through the statistics and characters described.Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPESA definição do tamanho amostral é uma importante etapa do planejamento de experimentos, pois a coleta de uma amostra suficientemente representativa é essencial para obter resultados confiáveis. Entretanto, o tamanho de amostra ótimo pode variar segundo a espécie, caracteres avaliados e estatísticas posteriormente estimadas. Nesse sentido, pesquisas com culturas olerícolas de importância econômica, como a couve-flor e a alface, comumente têm utilizado tamanhos amostrais pequenos, em vista da escassez de trabalhos com foco no seu dimensionamento amostral. Dessa forma, o presente trabalho teve como objetivo geral otimizar o planejamento experimental de experimentos com as culturas da couve-flor e da alface por meio do dimensionamento amostral para diferentes estatísticas e caracteres. Assim, um experimento em ambiente protegido com mudas de couve-flor foi conduzido na área experimental da Universidade Federal do Pampa, Campus Itaqui, e um experimento a campo com 26 genótipos de alface foi conduzido na área experimental da Universidade Federal de Santa Maria, Campus Frederico Westphalen. Em mudas de couve-flor, os seguintes caracteres foram avaliados: número de folhas, altura de planta, comprimento da raiz e comprimento total (altura de planta + comprimento de raiz), e em plantas de alface, a produtividade por planta (massa fresca em gramas), o número de folhas, a altura de planta, diâmetro do colo e o diâmetro médio da cabeça foram avaliados. Estatísticas de precisão foram estimadas, obtendo-se a amplitude dos seus intervalos de confiança a 95%. Cem cenários amostrais foram simulados para cada estatística e caractere utilizando reamostragem bootstrap com reposição, e tamanhos amostrais ótimos foram definidos ajustando os intervalos de confiança de 95% a modelos da família potência e encontrando o ponto máximo de curvatura. Além disso, quatro métodos para obter o ponto de máxima curvatura foram comparados, e equações preditivas para estatísticas de precisão com base no tamanho amostral foram propostas. A amplitude do intervalo de confiança a 95% das estatísticas reduziu conforme o tamanho amostral aumentou, até um ponto de estabilização. O método de distâncias perpendiculares foi considerado o mais eficiente para definir o ponto de máxima curvatura. Os tamanhos amostrais variaram conforme estatísticas e caracteres, sendo esta variação maior entre estatísticas. A estatística F destacou-se por obter tamanhos amostrais maiores em todos os estudos. As equações preditivas apresentaram excelente qualidade de ajuste, permitindo conhecer os valores médios, máximos e mínimos de estatísticas de precisão a partir da seleção de um tamanho amostral específico. Assim, as informações trazidas por estes estudos contribuem para otimizar o planejamento experimental das culturas da couve-flor e da alface e serão úteis para pesquisadores da área que desejam avaliar a precisão experimental por meio das estatísticas e caracteres descritos.Universidade Federal de Santa MariaBrasilAgronomiaUFSMPrograma de Pós-Graduação em Agronomia - Agricultura e AmbienteUFSM Frederico WestphalenToebe, Marcoshttp://lattes.cnpq.br/1350890583236601Cargnelutti Filho, AlbertoHaesbaert, Fernando MachadoBittencourt, Karina Chertok2024-06-14T14:19:59Z2024-06-14T14:19:59Z2023-10-09info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://repositorio.ufsm.br/handle/1/32039ark:/26339/001300000ggxsporAttribution-NonCommercial-NoDerivatives 4.0 Internationalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessreponame:Manancial - Repositório Digital da UFSMinstname:Universidade Federal de Santa Maria (UFSM)instacron:UFSM2024-06-14T14:20:00Zoai:repositorio.ufsm.br:1/32039Biblioteca Digital de Teses e Dissertaçõeshttps://repositorio.ufsm.br/ONGhttps://repositorio.ufsm.br/oai/requestatendimento.sib@ufsm.br||tedebc@gmail.comopendoar:2024-06-14T14:20Manancial - Repositório Digital da UFSM - Universidade Federal de Santa Maria (UFSM)false |
dc.title.none.fl_str_mv |
Planejamento experimental para mudas de couve-flor e plantas de alface: definição do tamanho amostral ótimo Experimental planning for cauliflower seedlings and lettuce plants: definition of the optimal sample size |
title |
Planejamento experimental para mudas de couve-flor e plantas de alface: definição do tamanho amostral ótimo |
spellingShingle |
Planejamento experimental para mudas de couve-flor e plantas de alface: definição do tamanho amostral ótimo Bittencourt, Karina Chertok Brassica oleracea Lactuca sativa Estatísticas de precisão Horticultura Reamostragem bootstrap Precision statistics Bootstrap resampling CNPQ::CIENCIAS AGRARIAS::AGRONOMIA |
title_short |
Planejamento experimental para mudas de couve-flor e plantas de alface: definição do tamanho amostral ótimo |
title_full |
Planejamento experimental para mudas de couve-flor e plantas de alface: definição do tamanho amostral ótimo |
title_fullStr |
Planejamento experimental para mudas de couve-flor e plantas de alface: definição do tamanho amostral ótimo |
title_full_unstemmed |
Planejamento experimental para mudas de couve-flor e plantas de alface: definição do tamanho amostral ótimo |
title_sort |
Planejamento experimental para mudas de couve-flor e plantas de alface: definição do tamanho amostral ótimo |
author |
Bittencourt, Karina Chertok |
author_facet |
Bittencourt, Karina Chertok |
author_role |
author |
dc.contributor.none.fl_str_mv |
Toebe, Marcos http://lattes.cnpq.br/1350890583236601 Cargnelutti Filho, Alberto Haesbaert, Fernando Machado |
dc.contributor.author.fl_str_mv |
Bittencourt, Karina Chertok |
dc.subject.por.fl_str_mv |
Brassica oleracea Lactuca sativa Estatísticas de precisão Horticultura Reamostragem bootstrap Precision statistics Bootstrap resampling CNPQ::CIENCIAS AGRARIAS::AGRONOMIA |
topic |
Brassica oleracea Lactuca sativa Estatísticas de precisão Horticultura Reamostragem bootstrap Precision statistics Bootstrap resampling CNPQ::CIENCIAS AGRARIAS::AGRONOMIA |
description |
Defining the sample size is an important step in the planning of experiments, as collecting a sufficiently representative sample is essential to obtain reliable results. However, the optimal sample size may vary depending on the species, evaluated characters, and the subsequently estimated statistics. In this sense, research on economically important vegetable crops, such as cauliflower and lettuce, has commonly used small sample sizes, given the scarcity of studies focusing on their sample dimensioning. Therefore, the present work aimed to optimize the experimental planning of experiments with cauliflower and lettuce crops through sample sizing for different statistics and characters. Thus, a greenhouse experiment with cauliflower seedlings was conducted in the experimental area of the Federal University of Pampa, Itaqui Campus, and a field experiment with 26 lettuce genotypes was conducted in the experimental area of the Federal University of Santa Maria, Frederico Westphalen Campus. For cauliflower seedlings, the following characters were assessed: number of leaves, plant height, root length, and total length (plant height + root length), and for lettuce plants, the yield per plant (fresh weight in grams), number of leaves, plant height, stem diameter, and mean head diameter were evaluated. Precision statistics were estimated, obtaining the 95% confidence interval width. One hundred sampling scenarios were simulated for each statistic and character using bootstrap resampling with replacement, and optimal sample sizes were defined by adjusting the 95% confidence intervals to models of the power family and finding the maximum curvature point. Furthermore, four methods for obtaining the maximum curvature point were compared, and predictive equations for precision statistics based on sample size were proposed. The 95% confidence interval width of the statistics reduced as the sample size increased, until a point of stabilization. The perpendicular distance method was considered the most efficient for defining the maximum curvature point. The sample sizes varied according to statistics and characters, with this variation being greater between statistics. The F statistic stood out for obtaining larger sample sizes in all studies. The predictive equations presented excellent fitting quality, which allows for knowing the mean, maximum, and minimum values of precision statistics based on the selection of a specific sample size. Thus, the information provided by these studies contributes to optimizing the experimental planning of cauliflower and lettuce crops and may be useful for researchers in the field who wish to evaluate experimental precision through the statistics and characters described. |
publishDate |
2023 |
dc.date.none.fl_str_mv |
2023-10-09 2024-06-14T14:19:59Z 2024-06-14T14:19:59Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://repositorio.ufsm.br/handle/1/32039 |
dc.identifier.dark.fl_str_mv |
ark:/26339/001300000ggxs |
url |
http://repositorio.ufsm.br/handle/1/32039 |
identifier_str_mv |
ark:/26339/001300000ggxs |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.rights.driver.fl_str_mv |
Attribution-NonCommercial-NoDerivatives 4.0 International http://creativecommons.org/licenses/by-nc-nd/4.0/ info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Attribution-NonCommercial-NoDerivatives 4.0 International http://creativecommons.org/licenses/by-nc-nd/4.0/ |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidade Federal de Santa Maria Brasil Agronomia UFSM Programa de Pós-Graduação em Agronomia - Agricultura e Ambiente UFSM Frederico Westphalen |
publisher.none.fl_str_mv |
Universidade Federal de Santa Maria Brasil Agronomia UFSM Programa de Pós-Graduação em Agronomia - Agricultura e Ambiente UFSM Frederico Westphalen |
dc.source.none.fl_str_mv |
reponame:Manancial - Repositório Digital da UFSM instname:Universidade Federal de Santa Maria (UFSM) instacron:UFSM |
instname_str |
Universidade Federal de Santa Maria (UFSM) |
instacron_str |
UFSM |
institution |
UFSM |
reponame_str |
Manancial - Repositório Digital da UFSM |
collection |
Manancial - Repositório Digital da UFSM |
repository.name.fl_str_mv |
Manancial - Repositório Digital da UFSM - Universidade Federal de Santa Maria (UFSM) |
repository.mail.fl_str_mv |
atendimento.sib@ufsm.br||tedebc@gmail.com |
_version_ |
1815172339556417536 |