Produção contínua de ésteres metílicos de ácidos graxos a partir do óleo de soja degomado com carbonato de dimetila em condições pressurizadas

Detalhes bibliográficos
Autor(a) principal: Nunes, Ana Luiza Barrachini
Data de Publicação: 2023
Tipo de documento: Tese
Idioma: por
Título da fonte: Manancial - Repositório Digital da UFSM
dARK ID: ark:/26339/001300000kmvj
Texto Completo: http://repositorio.ufsm.br/handle/1/30284
Resumo: The continued growth in biodiesel production has encouraged the exploration of new approaches. One of these approaches is the interesterification route, using dimethyl carbonate (DMC) as a reagent, which can be obtained by environmentally friendly methods. The soybean production chain is well established and degummed soybean oil (DSO), a partially refined raw material, has a lower cost than the refined oil, being a good alternative to reduce the biodiesel production cost. This study investigated the continuous process using pressurized conditions for the reaction between DMC and DSO, aiming at the production of fatty acid methyl esters (FAME). The reaction system was analyzed with and without a heterogeneous catalyst, specifically the mixed oxide derived from hydrotalcite in a molar ratio of Mg:Al close to 3:1. The influence of non-catalytic process variables was studied, including reaction temperature (258 to 342 °C), mass ratio DMC:DSO (0.48:1 to 5.52:1) and pressure (6.6 to 23.4 MPa), at different residence times, on the yield of fatty acid methyl esters from the reaction. The temperature presented a more notable influence than the other variables, and the optimization of the response surface equation indicates that it would be possible to obtain a FAME yield of 90.5% at 325 °C, 17 MPa, 3 gDMC/gDSO in the residence time of 10 min. The study of the kinetic profiles confirmed the distinct importance of temperature in the process, and the increase in the free fatty acid content in the raw material, through the addition of oleic acid to DSO, allowed an increase in the FAME yield in the non-catalytic process. Mg:Al hydrotalcite in the molar ratio 3:1, the mixed oxide derived from it and the rehydrated hydrotalcite were synthesized and characterized. The mixed oxide had the highest specific area and was also what enabled the highest yield of esters in the supercritical reaction of DMC and DSO. The process demonstrated stability from the third residence time onwards, and from that time on, small levels of leached Mg were quantified. The most suitable temperature for the catalytic process was 275 °C, the particle size smaller than 1.7 mm and the mass of 5 g of catalyst in the bed. The thermal decomposition of the products was influenced by the increase in temperature and in residence time. The condition with the highest yield for the uncatalyzed process was 325 °C, 1.5 gDMC/gDSO, 20 MPa and residence time of 10 min. For the catalyzed process, the condition was 5 g of Mg:Al mixed oxide in a molar ratio close to 3:1, with particle size between 1.4-1.7 mm, at 275 °C, 3.0 gDMC/gDSO , 15 MPa, in the residence time of 20 min. In both, esters yield was close to 90%, and the combination of catalyst with supercritical conditions allowed expressive FAME yields, with a reduction in process temperature and thermal decomposition, even with a slight increase in residence time.
id UFSM_749ffcd313520fc7f40de359946ce2f9
oai_identifier_str oai:repositorio.ufsm.br:1/30284
network_acronym_str UFSM
network_name_str Manancial - Repositório Digital da UFSM
repository_id_str
spelling Produção contínua de ésteres metílicos de ácidos graxos a partir do óleo de soja degomado com carbonato de dimetila em condições pressurizadasContinuous production of fatty acid methyl esters from degummed soybean oil with dimethyl carbonate under pressurized conditionsInteresterificaçãoDecomposição térmicaCatálise heterogêneaProcesso supercríticoInteresterificationThermal decompositionHeterogeneous catalysisSupercritical processCNPQ::ENGENHARIAS::ENGENHARIA QUIMICAThe continued growth in biodiesel production has encouraged the exploration of new approaches. One of these approaches is the interesterification route, using dimethyl carbonate (DMC) as a reagent, which can be obtained by environmentally friendly methods. The soybean production chain is well established and degummed soybean oil (DSO), a partially refined raw material, has a lower cost than the refined oil, being a good alternative to reduce the biodiesel production cost. This study investigated the continuous process using pressurized conditions for the reaction between DMC and DSO, aiming at the production of fatty acid methyl esters (FAME). The reaction system was analyzed with and without a heterogeneous catalyst, specifically the mixed oxide derived from hydrotalcite in a molar ratio of Mg:Al close to 3:1. The influence of non-catalytic process variables was studied, including reaction temperature (258 to 342 °C), mass ratio DMC:DSO (0.48:1 to 5.52:1) and pressure (6.6 to 23.4 MPa), at different residence times, on the yield of fatty acid methyl esters from the reaction. The temperature presented a more notable influence than the other variables, and the optimization of the response surface equation indicates that it would be possible to obtain a FAME yield of 90.5% at 325 °C, 17 MPa, 3 gDMC/gDSO in the residence time of 10 min. The study of the kinetic profiles confirmed the distinct importance of temperature in the process, and the increase in the free fatty acid content in the raw material, through the addition of oleic acid to DSO, allowed an increase in the FAME yield in the non-catalytic process. Mg:Al hydrotalcite in the molar ratio 3:1, the mixed oxide derived from it and the rehydrated hydrotalcite were synthesized and characterized. The mixed oxide had the highest specific area and was also what enabled the highest yield of esters in the supercritical reaction of DMC and DSO. The process demonstrated stability from the third residence time onwards, and from that time on, small levels of leached Mg were quantified. The most suitable temperature for the catalytic process was 275 °C, the particle size smaller than 1.7 mm and the mass of 5 g of catalyst in the bed. The thermal decomposition of the products was influenced by the increase in temperature and in residence time. The condition with the highest yield for the uncatalyzed process was 325 °C, 1.5 gDMC/gDSO, 20 MPa and residence time of 10 min. For the catalyzed process, the condition was 5 g of Mg:Al mixed oxide in a molar ratio close to 3:1, with particle size between 1.4-1.7 mm, at 275 °C, 3.0 gDMC/gDSO , 15 MPa, in the residence time of 20 min. In both, esters yield was close to 90%, and the combination of catalyst with supercritical conditions allowed expressive FAME yields, with a reduction in process temperature and thermal decomposition, even with a slight increase in residence time.Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPESO crescimento contínuo na produção de biodiesel tem incentivado a exploração de novas abordagens. Uma dessas abordagens é a rota da interesterificação, utilizando o carbonato de dimetila (CDM) como reagente, o qual pode ser obtido por métodos ambientalmente amigáveis. A cadeia produtiva da soja é bem estabelecida e o óleo de soja degomado (OSD), matéria prima parcialmente refinada, apresenta menor custo que o óleo refinado, sendo uma boa alternativa para a redução do custo de produção de biodiesel. Este estudo averiguou o processo contínuo utilizando condições pressurizadas para a reação entre CDM e o OSD, visando à produção de ésteres metílicos de ácidos graxos (EMAG). O sistema reacional foi analisado com e sem o uso de catalisador heterogêneo, especificamente o óxido misto derivado de hidrotalcita em razão molar de Mg:Al próxima a 3:1. Foi estudada a influência das variáveis de processo não-catalítico, incluindo temperatura de reação (258 a 342 °C), razão mássica CDM:OSD (0,48:1 a 5,52:1) e pressão (6,6 a 23,4 MPa), em diversos tempos de residência, sobre o rendimento de ésteres metílicos de ácidos graxos da reação. A temperatura apresentou influência mais marcante que as demais variáveis, e a otimização da equação da superfície de resposta aponta que seria possível a obtenção de um rendimento de 90,5% de EMAG a 325 °C, 17 MPa, 3 gCDM/gOSD no tempo de residência de 10 min. O estudo dos perfis cinéticos confirmou a distinta importância da temperatura no processo; e o aumento do teor de ácidos graxos livres na matéria prima, mediante adição de ácido oleico ao OSD, permitiu aumento do rendimento de EMAG obtido sem catalisador. Hidrotalcita de Mg:Al na razão molar 3:1, o óxido misto derivado dela e a hidrotalcita reidratada foram sintetizados e caracterizados. O óxido misto apresentou maior área específica e também foi o que possibilitou maior rendimento de ésteres na reação supercrítica de CDM e OSD. O processo demonstrou estabilidade a partir do terceiro tempo de residência, e a partir desse tempo, teores pequenos de Mg lixiviado foram quantificados. A temperatura mais adequada para o processo catalítico foi de 275°C, o tamanho de partículas inferior a 1,7 mm e a massa de 5 g de catalisador no leito. A decomposição térmica dos produtos foi influenciada pelo aumento da temperatura e do tempo de residência. A condição com maior rendimento para o processo não catalisado foi de 325 °C, 1,5gCDM/gOSD, 20 MPa e tempo de residência de 10 min. Para o processo catalisado, a condição foi de 5 g de óxido misto de Mg:Al em razão molar próxima a 3:1, com tamanho de partículas entre 1,4-1,7 mm, a 275 °C, 3,0 gCDM/gOSD, 15 MPa, no tempo de residência de 20 min. Em ambas o rendimento de ésteres foi próximo a 90%, e a combinação de catalisador com as condições supercríticas possibilitou rendimentos expressivos de EMAG com uma redução na temperatura do processo e na decomposição térmica, mesmo com um ligeiro aumento no tempo de residência.Universidade Federal de Santa MariaBrasilEngenharia QuímicaUFSMPrograma de Pós-Graduação em Engenharia QuímicaCentro de TecnologiaCastilhos, Fernanda dehttp://lattes.cnpq.br/4590978604104577Collazzo, Gabriela CarvalhoWancura, João Henrique CabralVisioli, Luiz JardelLopez, Oscar William PerezNunes, Ana Luiza Barrachini2023-09-29T17:33:04Z2023-09-29T17:33:04Z2023-08-29info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttp://repositorio.ufsm.br/handle/1/30284ark:/26339/001300000kmvjporAttribution-NonCommercial-NoDerivatives 4.0 Internationalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessreponame:Manancial - Repositório Digital da UFSMinstname:Universidade Federal de Santa Maria (UFSM)instacron:UFSM2023-09-29T17:33:05Zoai:repositorio.ufsm.br:1/30284Biblioteca Digital de Teses e Dissertaçõeshttps://repositorio.ufsm.br/ONGhttps://repositorio.ufsm.br/oai/requestatendimento.sib@ufsm.br||tedebc@gmail.comopendoar:2023-09-29T17:33:05Manancial - Repositório Digital da UFSM - Universidade Federal de Santa Maria (UFSM)false
dc.title.none.fl_str_mv Produção contínua de ésteres metílicos de ácidos graxos a partir do óleo de soja degomado com carbonato de dimetila em condições pressurizadas
Continuous production of fatty acid methyl esters from degummed soybean oil with dimethyl carbonate under pressurized conditions
title Produção contínua de ésteres metílicos de ácidos graxos a partir do óleo de soja degomado com carbonato de dimetila em condições pressurizadas
spellingShingle Produção contínua de ésteres metílicos de ácidos graxos a partir do óleo de soja degomado com carbonato de dimetila em condições pressurizadas
Nunes, Ana Luiza Barrachini
Interesterificação
Decomposição térmica
Catálise heterogênea
Processo supercrítico
Interesterification
Thermal decomposition
Heterogeneous catalysis
Supercritical process
CNPQ::ENGENHARIAS::ENGENHARIA QUIMICA
title_short Produção contínua de ésteres metílicos de ácidos graxos a partir do óleo de soja degomado com carbonato de dimetila em condições pressurizadas
title_full Produção contínua de ésteres metílicos de ácidos graxos a partir do óleo de soja degomado com carbonato de dimetila em condições pressurizadas
title_fullStr Produção contínua de ésteres metílicos de ácidos graxos a partir do óleo de soja degomado com carbonato de dimetila em condições pressurizadas
title_full_unstemmed Produção contínua de ésteres metílicos de ácidos graxos a partir do óleo de soja degomado com carbonato de dimetila em condições pressurizadas
title_sort Produção contínua de ésteres metílicos de ácidos graxos a partir do óleo de soja degomado com carbonato de dimetila em condições pressurizadas
author Nunes, Ana Luiza Barrachini
author_facet Nunes, Ana Luiza Barrachini
author_role author
dc.contributor.none.fl_str_mv Castilhos, Fernanda de
http://lattes.cnpq.br/4590978604104577
Collazzo, Gabriela Carvalho
Wancura, João Henrique Cabral
Visioli, Luiz Jardel
Lopez, Oscar William Perez
dc.contributor.author.fl_str_mv Nunes, Ana Luiza Barrachini
dc.subject.por.fl_str_mv Interesterificação
Decomposição térmica
Catálise heterogênea
Processo supercrítico
Interesterification
Thermal decomposition
Heterogeneous catalysis
Supercritical process
CNPQ::ENGENHARIAS::ENGENHARIA QUIMICA
topic Interesterificação
Decomposição térmica
Catálise heterogênea
Processo supercrítico
Interesterification
Thermal decomposition
Heterogeneous catalysis
Supercritical process
CNPQ::ENGENHARIAS::ENGENHARIA QUIMICA
description The continued growth in biodiesel production has encouraged the exploration of new approaches. One of these approaches is the interesterification route, using dimethyl carbonate (DMC) as a reagent, which can be obtained by environmentally friendly methods. The soybean production chain is well established and degummed soybean oil (DSO), a partially refined raw material, has a lower cost than the refined oil, being a good alternative to reduce the biodiesel production cost. This study investigated the continuous process using pressurized conditions for the reaction between DMC and DSO, aiming at the production of fatty acid methyl esters (FAME). The reaction system was analyzed with and without a heterogeneous catalyst, specifically the mixed oxide derived from hydrotalcite in a molar ratio of Mg:Al close to 3:1. The influence of non-catalytic process variables was studied, including reaction temperature (258 to 342 °C), mass ratio DMC:DSO (0.48:1 to 5.52:1) and pressure (6.6 to 23.4 MPa), at different residence times, on the yield of fatty acid methyl esters from the reaction. The temperature presented a more notable influence than the other variables, and the optimization of the response surface equation indicates that it would be possible to obtain a FAME yield of 90.5% at 325 °C, 17 MPa, 3 gDMC/gDSO in the residence time of 10 min. The study of the kinetic profiles confirmed the distinct importance of temperature in the process, and the increase in the free fatty acid content in the raw material, through the addition of oleic acid to DSO, allowed an increase in the FAME yield in the non-catalytic process. Mg:Al hydrotalcite in the molar ratio 3:1, the mixed oxide derived from it and the rehydrated hydrotalcite were synthesized and characterized. The mixed oxide had the highest specific area and was also what enabled the highest yield of esters in the supercritical reaction of DMC and DSO. The process demonstrated stability from the third residence time onwards, and from that time on, small levels of leached Mg were quantified. The most suitable temperature for the catalytic process was 275 °C, the particle size smaller than 1.7 mm and the mass of 5 g of catalyst in the bed. The thermal decomposition of the products was influenced by the increase in temperature and in residence time. The condition with the highest yield for the uncatalyzed process was 325 °C, 1.5 gDMC/gDSO, 20 MPa and residence time of 10 min. For the catalyzed process, the condition was 5 g of Mg:Al mixed oxide in a molar ratio close to 3:1, with particle size between 1.4-1.7 mm, at 275 °C, 3.0 gDMC/gDSO , 15 MPa, in the residence time of 20 min. In both, esters yield was close to 90%, and the combination of catalyst with supercritical conditions allowed expressive FAME yields, with a reduction in process temperature and thermal decomposition, even with a slight increase in residence time.
publishDate 2023
dc.date.none.fl_str_mv 2023-09-29T17:33:04Z
2023-09-29T17:33:04Z
2023-08-29
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://repositorio.ufsm.br/handle/1/30284
dc.identifier.dark.fl_str_mv ark:/26339/001300000kmvj
url http://repositorio.ufsm.br/handle/1/30284
identifier_str_mv ark:/26339/001300000kmvj
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International
http://creativecommons.org/licenses/by-nc-nd/4.0/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International
http://creativecommons.org/licenses/by-nc-nd/4.0/
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal de Santa Maria
Brasil
Engenharia Química
UFSM
Programa de Pós-Graduação em Engenharia Química
Centro de Tecnologia
publisher.none.fl_str_mv Universidade Federal de Santa Maria
Brasil
Engenharia Química
UFSM
Programa de Pós-Graduação em Engenharia Química
Centro de Tecnologia
dc.source.none.fl_str_mv reponame:Manancial - Repositório Digital da UFSM
instname:Universidade Federal de Santa Maria (UFSM)
instacron:UFSM
instname_str Universidade Federal de Santa Maria (UFSM)
instacron_str UFSM
institution UFSM
reponame_str Manancial - Repositório Digital da UFSM
collection Manancial - Repositório Digital da UFSM
repository.name.fl_str_mv Manancial - Repositório Digital da UFSM - Universidade Federal de Santa Maria (UFSM)
repository.mail.fl_str_mv atendimento.sib@ufsm.br||tedebc@gmail.com
_version_ 1815172357293080576